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Abstract. We consider a pure exchange economy with a finite set of types

of agents which have incomplete and asymmetric information on the states of

nature. Our aim is to describe the equilibrium price formation and analyze how

the lack of information may affect the allocation of resources. For it, we adapt

to an asymmetric information scenario a variant of the Shapley-Shubik game

introduced by Dubey and Geanakoplos (2003).
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Keywords: Competitive equilibrium, differential information, Nash equili-
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1 Introduction

We consider a pure exchange economy with a finite number of types of agents

and commodities. The economy extends over two periods and agents arrange

contracts at the first period that may be contingent on the realized state of

nature in the second period. Agents have incomplete information on a finite

set of the states of nature and this information may differ among agents (dif-

ferential information economies). After the realization of the state of nature, a

particular agent may be unaware of the precise state of nature that has actually

occurred, (since, for example, she receives a signal that may be identical for dif-

ferent states). Therefore they are restricted to sign contracts that are compatible

with their private information.

For these economies, following an analogous concept to the Walrasian equili-

brium in Arrow-Debreu model with symmetric information, Radner (1968, 1979)

defined and established the existence of two different notions of equilibrium; Wal-

rasian expectation or Radner equilibrium and Rational expectation equilibrium,

respectively, depending on whether agents are able to learn from the prevailing

price system. More recently, there has been a resurgent interest on differential

information economies, and, in parallel to the Arrow-Debreu model, new results

concerning the existence and characterization of equilibrium has been obtained

(see Allen and Yannelis, 2001, Einy, et at al., 2001, Hervés-Beloso, et al., 2005a

and 2005b, Daher,W., et al., 2006, Correia da Silva and Hervés-Beloso, 2009, De

Castro and Yannelis, 2010).

Our aim is to use a market-game approach to study the behavior of these

markets and to analyze the price formation mechanism.

The wide literature on market games uses the principles of game theory to

motivate or justify the description of markets in which certain behavioral charac-

teristics, such us price-taking behavior, are assumed. Most of these works show

how strategic interactions by rational agents lead to a competitive equilibrium

situation. One of the advantages of building a strategic foundation for perfect

competition is that we will be forced to describe the process completely and

explain how the market equilibrium is reached.

In order to explain the equilibrium price formation, we adapt a variant of

the Shapley-Shubik game introduced by Dubey and Geanakoplos (2003). We

describe new rules for price formation and the corresponding allocations, which
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underlie the differentiated information structures. For it, we define a market

game that provides a mechanism for the equilibrium price formation and allows

to observe how the lack of information may affect the allocation of wealth.

In our market game the mechanism leads consumers to receive the same bundle

in states which they do not distinguish. Actually, the game forces consumers to

be conservative or prudent (see Correia da Silva and Hervés-Beloso 2009, and

De Castro and Yannelis 2010) and, as agents are familiar with the game, they

will not be deceived. Then, without the Radner (1968) explicit assumption that

agents choose constant consumption in states which they do not distinguish, this

market game leads to a Radner equilibrium.

Moreover, we also describe a different game where the mechanism specifying

the price formation leads to a particular price system which is compatible with

the common information structure and we refer to as non-disclosure prices.

We show existence of Nash equilibrium for both types of games. Then, the

corresponding market equilibrium solutions are obtained as a limit of a sequence

of Nash equilibria. These limit results provide an alternative proof of the exis-

tence of Walrasiam Expectation Equilibrium (Radner 1968) and a proof for the

existence of the refinement of equilibrium with prices that do not add any new

insight to the private information of any agent.

For the general case our assumptions are the same as in Radner (1968). How-

ever, as we show in an example, in order to obtain the existence of the refinement

of equilibrium, additional assumptions become necessary.

Regarding related work, Fugarolas et al. (2009) also undertake a non-coope-

rative approach to differential information economies by extending Schmeidler’s

(1980) work to the differential information setting. However, as in Schmeidler’s

result, the existence of Nash equilibrium is obtained as a consequence of the

existence of the Walrasian expectations equilibrium and, since prices are included

in the strategy sets, no explicit price formation rule is obtained.

The remaining of the paper is organized as follows. In Section 2 we describe

the differential information model and the notion of market equilibrium. In

Section 3 we state an associated game à la Shapley-Shubik and we prove existence

of Nash equilibrium. In Section 4 we prove that the limit of a sequence of

Nash equilibria results in a Radner equilibrium. A new game where the price

resulting from the interaction among consumers are compatible with the common

information structure is defined in Section 5. This game allows us to show
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existence of non-disclosure prices equilibrium. Finally, the last section is devoted

to the conclusions.

2 The model

Let us consider an economy E with differential information. Let Ω be the set of

states of nature that describes the uncertainty. We suppose that Ω is finite with

cardinality k and there is a finite number of goods, L, in each state. There is a

continuum of agents that trade the L commodities at each state of nature ω ∈ Ω.

The private information structure of each agent is described by a partition

of the set of states Ω. Given a partition P of Ω, a commodity bundle x =

(x(ω))ω∈Ω ∈ (IRL+)k is said to be P-measurable when it is constant on the elements

of the partition .1

The set of agents is represented by the unit real interval I = [0, 1] =
n⋃
i=1

Ii,
2

where Ii =
[
i−1
n
, i
n

)
, if i 6= n, and In =

[
n−1
n
, 1
]
. We consider the Lebesgue

measure µ on the Borel subsets of I. Each agent t ∈ Ii is characterized by

her private information Pt = Pi , her initial endowments et = ei ∈ IRLk+ and

preference relation over the consumption space, which is represented by a utility

function Ut = Ui : IRLk+ → IR+. We will refer to agents belonging to the subinterval

Ii as agents of type i.

The economy lasts for two periods τ = 0, 1. Consumption takes place at

τ = 1. At τ = 0 there is uncertainty about the states of nature and the agents

make contracts (agreements) that are contingent on the realized state of nature

that occurs at τ = 1. Thus, the contracts are specified ex-ante.

An agent t ∈ Ii with information given by the partition Pi is not able to

distinguish those states of nature that are in the same element of Pi. Given a

state ω ∈ Ω, let Ei(ω) denote the event in the partition Pi which contains the

state ω. We say that a consumption bundle x ∈ (IRL+)k is compatible with the

1That is, x(ω) = x(ω′), for all {ω, ω′} ⊆ S, for some S ∈ P.
2There is a continuum of agents represented by the real interval [0, 1]. Note that only a finite

number of initial endowments and preference relations can be distinguished in the analysis.
This implies that a finite number of different types of agents can be considered. Let us suppose
that the measure of the set of agents of type j is a rational number rj/n, j = 1, . . . ,m. Then
we will consider n types of agents each one represented by the interval

[
j−1
n , j

n

)
(observe that

we will have rj types of agents that are equal to agents of type j), with j = 1, . . . , n.
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information of agents of type i if, given any state ω, we have x(ω) = x(ω′) for

every ω′ ∈ Ei(ω). Let us denote by Xi the set which consists in the bundles that

are compatible with the information structure of agents of type i. That is,

Xi =
{
x ∈ (IRL+)k|x is Pi-measurable

}
.

We state the following assumptions:

(U) For every i the utility Ui is a continuous, concave and monotone3 function.

(E) ei � 0 and ei ∈ Xi, i = 1, . . . , n. That is, every agent is initially endowed

with strictly positive amounts of every commodity and ei is Pi-measurable

for every type i of consumers.

An allocation x is a µ-integrable function that associates to each agent t

a consumption bundle xt. We refer to an allocation x as physically feasible if∫
I

(xt − et)dµ(t) ≤ 0, and as informationally feasible if xt ∈ Xi, for every t ∈ Ii
and every i. A feasible allocation is both physically and informationally feasible.

Each agent t ∈ I behaves as a price-taker and maximizes her utility function

restricted to the allocations in her budget set. Given a price system p ∈ IRLk+

that specifies a commodity price p(ω) ∈ IRL+ at each state ω ∈ Ω, the budget set

of an agent of type i is given by

Bi(p) = {x ∈ Xi |
∑
ω∈Ω

p(ω) · (x(ω)− ei(ω)) ≤ 0}.

Next we define a competitive equilibrium notion in the sense of Radner where

traders must balance the budget ex-ante.

Definition 2.1 A pair (p, x), where p is a price system and x is a feasible allo-

cation, is a competitive or a Radner equilibrium if the bundle xt maximizes Ut

on Bt(p), for almost all t ∈ I.

Notice that we assume free disposal. It is well known that if we impose

the condition of non-free disposal then a Radner equilibrium might not exist

with positive prices (see, for example, Glycopantis, Muir and Yannelis, 2003).

3x� y implies Ui(x) > Ui(y)
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However, allowing for negative prices one can dispense with the free disposal

assumption.

Finally, given our atomless economy E , let us consider an economy En with

a finite number n of agents. In the differential information economy En each

agent i is characterized by an initial endowments ei, the utility funtion Ui and

a private information structure given by the partition Pi. We have that if (p, x)

is a competitive equilibrium for the continuum economy E then (p, z) is a com-

petitive equilibrium for En, where the allocation z = (zi, i = 1, . . . n) is given

by zi =
1

µ(Ii)

∫
Ii

xtdµ(t). Reciprocally, if (p, z) is a competitive equilibrium for

the economy En with n consumers, then (p, x) is a competitive equilibrium for

E where x is the step function given by xt = zi for every consumer t ∈ Ii.

Therefore, if we consider an economy with n consumers associated to the n-type

continuum economy then the equilibrium solutions for the continuum and the

discrete approach are equivalent (see Hervés-Beloso et. al, 2005, for details)

3 An Associated Game à la Shapley-Shubik

Following Shapley-Shubik (1977) approach, each commodity in each state of

nature is traded at a trade-post, so there is a post for each commodity in each

state of nature. Each consumer delivers to the post the endowment of commodity

` in each state ω ∈ Ω for sale and fiat money to purchase the consumption

goods and then the trading-post for commodity ` in the state ω receives the

corresponding total endowment in the economy, i.e., e`(ω) =

∫
I

e`t(ω)dµ(t). As in

Dubey and Geanakoplos (2003) inside fiat money is the sole medium of exchange,

agents initially have no money but can borrow up to a bound M at zero interest

from a bank that, in order to trigger the market, places 1 unit of fiat money at

each post. The trading-posts and the bank are dummy players. They can make

no choices and therefore, they do not optimize.

In our scenario, once the total endowments are placed in the corresponding

trading-posts, the game starts. The individuals choose strategies that precise

the amount of fiat money to purchase the consumption goods.

The strategic variable of each agent is the amount of fiat money that she wants

to spend in each contingent commodity. Precisely, to purchase commodity ` at

the state ω each agent t delivers to the post fiat money θ`t(ω) that she borrows at
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zero interest. In order to have compact strategy sets we impose an upper bound

on borrowing. Thus, as we have already remarked, each agent cannot borrow

more than M units of fiat money. Therefore, the strategy set of each consumer

t ∈ I is given by the set

ξt(M) = ξ(M) = {θ ∈ IRLk+ such that
∑
ω∈Ω

L∑
`=1

θ`(ω) ≤M}.

A strategy profile Θ = (θt, t ∈ I) is a µ-integrable function which associates to

each player t a strategy θt.

We remark that, in this setting, the role of money is just a “means of payment”

and prices are determined by the actions of traders. Given a strategy profile

Θ = (θt, t ∈ I), the price for each commodity ` in each state of nature ω ∈ Ω

arises in each post according to the next rule:

p`(ω) =
θ`(ω) + 1

e`(ω)
> 0,

where θ`(ω) =

∫
I

θ`t(ω)dµ(t).

Let p(Θ) = (p`(ω), ω ∈ Ω, ` = 1, . . . , L).

Let us consider an agent t ∈ Ii, and recall that Ei(ω) denote the event in the

partition Pi which contains the state ω. The amount of commodity ` assigned to

an individual t ∈ Ii in the state ω is given by:

x`t(ω) = min

{
θ`t(ω

′)

p`(ω′)
, ω′ ∈ Ei(ω)

}
.

Let xt(Θ) = (x`t(ω), ω ∈ Ω, ` = 1, . . . , L) be the bundle allocated to consumer

t when Θ is the strategy profile.

The agent t ∈ Ii also receives money from the sale of her endowment, thus,

his net deficit is given by,

dt(Θ) =
∑
ω∈Ω

L∑
`=1

θ`t(ω)−
∑
ω∈Ω

L∑
`=1

p`(ω)e`t(ω).

The payoff of each agent t ∈ Ii for each strategy profile Θ is

Πt(Θ) = Ui(xt(Θ))− dt+(Θ),

8



where dt+ = max{0, dt}. The use of the maximum to define the payoff function

means that agents do not ascribe utility to fiat money, but are penalized in the

case of default.

Now, let us show that the mechanism guarantees that for every strategy profile

the resulting allocation of commodities is feasible. Note that the informational

feasibility trivially follows since for each agent the mechanism assigns the same

bundle in states that belong to the same event of the private partition. The

final allocation for agents is physically feasible, in fact, for every commodity

` = 1, . . . , L and every state ω ∈ Ω, the following inequality holds

∫
I

x`t(ω)dµ(t) ≤
∫
I

θ`t(ω)

p`(ω)
dµ(t) =

∫
I

θ`t(ω)

θ`(ω) + 1
e`(ω)dµ(t) ≤ e`(ω).

Let G(M) ≡ {(Πt, ξt(M)) = ξ(M), t ∈ I} denote the pseudo-game (to sim-

plify, in which follows, we will just say game) previously described. Given a

strategy profile Θ : I → ξ(M) we denote by Θ \ αt the strategy profile which

coincides with Θ except for player t who chooses αt instead of Θ(t). A strategy

profile Θ is a Nash equilibrium in the game G(M) if for almost all t ∈ I we have

Πt(Θ) ≥ Πt(Θ \ αt) for all αt ∈ ξ(M).

Before showing a Nash equilibrium existence result for the game G(M), we

state a Lemma obtaining a property of these equilibria that will be used in the

convergence result presented in the next section.

Lemma 3.1 If the profile Θ = (θt, t ∈ I) is a Nash equilibrium for the game

G(M), then for every commodity ` and type i we have
θ`t(ω)

p`(ω)
=
θ`t(ω̄)

p`(ω̄)
for any

ω ∈ Ei(ω̄) for almost all t ∈ Ii.

Proof. Assume that the statement of the Lemma does not hold. Then there

exist a Nash equilibrium Θ = (θt, t ∈ I) and a positive measure set J of agents

of a type j such that, for every t ∈ J ⊂ Ij one has
θ`t(ω)

p`(ω)
6= θ`t(ω̄)

p`(ω̄)
for some

commodity ` and some states ω and ω̄ such that ω ∈ Ej(ω̄)4. For each t ∈ J,
and each commodity ` let A`t be the set of states at which the minimum of{
θ`t(ω)

p`(ω)
with ω ∈ Ej(ω̄)

}
is attained. Recall that one player is not able to alter

4The commodity ` and the states ω and ω̄ may depend on t.
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the price by modifying her strategy unilaterally. For each t ∈ J let us consider a

strategy αt given by

α`t(ω) =


θ`t(ω) if ω does not belong to Ej(ω̄)

θ`t(ω)− εt if ω does not belong to A`t

θ`t(ω) + δt if ω belongs to A`t

We can choose εt > 0 and δt > 0 in such a way that dt(Θ) ≥ dt(Θ \ αt)5 and

min

{
α`t(ω)

p`(ω)
with ω ∈ Ej(ω̄)

}
> min

{
θ`t(ω)

p`(ω)
with ω ∈ Ej(ω̄)

}
.

Therefore, this indicates the way to choose the strategy that gives to every player

t ∈ J an incentive to deviate from the profile Θ which is a contradiction to the

conditions of Nash Equilibrium.

Q.E.D.

Observe that at the end of the previous proof we require the assumption of

weak monotonicity as stated in the footnote 3. On the other hand, note that the

Lemma guarantees that if Θ is a Nash equilibrium, then the resulting allocation

x(Θ) is µ-integrable and therefore it is feasible.

A strategy profile Θ is called symmetric if every agent of the same type selects

the same strategy, that is, Θ(t) = θi for every t ∈ Ii. If it is the case, we write

Θ = (θ1, . . . , θn) ∈ (ξ(M))n.

Theorem 3.1 For every M ∈ IR+ the set of symmetric Nash equilibria for the

game G(M) is non-empty.

Proof. Let Bt be a correspondence which associates to each symmetric strategy

profile the best reply of the player t ∈ I. That is, given the strategy profile

Θ = (θ1, . . . , θn) ∈ (ξ(M))n

Bt(Θ) = arg max
αt∈ξ(M)

Πt(Θ \ αt)

5Let At denote the set of states in Ej(ω̄) which do not belong to A`
t and # denotes cardinal

of the corresponding set. Then, we can take δt and εt in such a way that δt#A`
t ≤ εt#At
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Note that, by symmetry, Bt is the same for every player t ∈ Ii and we denote

Bi. By definition, p(Θ) = p(Θ \ αt) which allows us to obtain that xt(Θ \ αt)
is concave in αt and dt(Θ \ αt) is linear in αt. Then, by assumption (U), we

have that the payoff function Πt is concave in the strategy selected by player t.

This implies that Bt takes non-empty-convex values since ξ(M) is a convex and

compact set.

Moreover, the payoff function Πt is a continuous function. Then, the maximun

theorem allows us to conclude that the correspondence Bi, from (ξ(M))n to ξ(M),

is upper semi-continuous for every i = 1, . . . , n.

Finally, let us consider the correspondence B = (B1, . . . ,Bn). By Kakutani’s

theorem B has a fixed point which is a symmetric Nash equilibrium.

Q.E.D.

4 Radner equilibrium as a limit of a sequence

of Nash equilibria

In this section, we show that a Radner equilibrium can be obtained as the limit

of a sequence of prices and allocations resulting from the sequence of symmetric

Nash equilibria of the games G(M) when M goes to infinity. For it, given a price

system p ∈ IRLk+ , let ‖p‖ ≡
∑

ω∈Ω

∑L
`=1 p

`(ω).

Theorem 4.1 For each integer M, let ΘM = (θM,t, t ∈ I), be a symmetric Nash

equilibrium for the game G(M). Let (p(M), x(M)) be the corresponding sequence

of prices and allocations which is defined by the sequence of Nash equilibria.

Then, there exists a subsequence of (p(M)/‖p(M)‖, x(M)) which converges to

a price system p and an allocation x, such that (p, x) is an equilibrium for the

economy E .

Proof. Since ΘM = (θM,t, t ∈ I) is a symmetric Nash equilibrium for the

game G(M), we have θM,t = θM,i for every t ∈ Ii and every type i of players.

This equilibrium defines the price vector p(M) = (p`M(ω), ` = 1, . . . , L, ω ∈ Ω)

which leads to the allocation x(M) = (xi(M), i = 1, . . . , n) and net deficits

(di(M), i = 1, . . . , n).

The definition of the game ensures that
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∫
I

xt(M)dµ(t) =
n∑
i=1

µ(Ii)xi(M) =
1

n

n∑
i=1

xi(M) ≤ e =
n∑
i=1

µ(Ii)ei =
1

n

n∑
i=1

ei.

Thus, the consumption bundles allocated to consumers are bounded.

Note that if a player selects the strategy θ = 0 then she spends and consumes

nothing. This implies that Ui(ne)− di+(M) ≥ Ui(xi(M))− di+(M) ≥ Ui(0) and

then di+(M) is bounded from above by Ui(ne)− Ui(0).

Now, for each M let us consider the sets of types defined as follows:

D(M) = {i ∈ {1, . . . , n} such that di(M) > 0} and

S(M) = {i ∈ {1, . . . , n} such that di(M) < 0}.

That is, D(M) is the subset of types agents who are in deficit and S(M) is the

set of agents who are in surplus. It trivially holds the next equality

n∑
i=1

di(M) =
∑

i∈D(M)

di(M) +
∑

i∈S(M)

di(M).

On the other hand, 0 = Lkn+
n∑
i=1

di(M) = Lkn−
∑

i∈S(M)

−di(M) +
∑

i∈D(M)

di(M),

which implies that
∑

i∈S(M)

−di(M) = Lkn+
∑

i∈D(M)

di(M) is also bounded from

above. Since di+(M) is bounded it follows that −di(M) is also bounded. Finally,

we can conclude that di(M) is bounded.

Thus if we consider a sequence (xi(M), di(M), i = 1, . . . , n)M with M con-

verging to infinity, there exists a converging subsequence with limit (xi, di, i =

1, . . . , n). We write xi(M) → xi and di(M) → di, for each type i. Moreover,

the sequence
p(M)

‖p(M)‖
has also a convergent subsequence with limit p. We write,

xi(M)→ xi, di(M)→ di, for each type i, and
p(M)

‖p(M)‖
→ p.

We remark that since xi(M) belongs to Xi for every M and every i, the limit

allocation x is informationally feasible, that is, xi is Pi-measurable for every type

i of agents. It remains to show that (p, (xt)t∈I), with xt = xi for every t ∈ Ii is a

Radner equilibrium.

Since Lkn > 0, the set S(M) is nonempty. Moreover, every agent of type

i in S(M) must bid all the money that she can borrow. Otherwise, she could
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increase the bidding in every commodity in each state of nature which entails a

strict increase in the consumption quantities of her bundle without incurring any

default, and in consequence her payoff will increase. This is in contradiction with

the fact that we are in a Nash equilibrium. Since any agent of type i ∈ S(M) is

in surplus we have that p(M)ei > M which implies ‖p(M)‖ → ∞ when M →∞.

Recall that the allocation x(M) is defined as

x`M,i(ω̄) = min

{
θ`M,i(ω)

p`M(ω)
, ω ∈ Ei(ω̄)

}
.

The Lemma 3.1, stated in the previous section, allows us to ensure that the

minimum is attained at every ω ∈ Ei(ω̄), that is

θ`M,i(ω)

p`M(ω)
=
θ`M,i(ω̄)

p`M(ω̄)
, for every ω ∈ Ei(ω̄), i = 1, . . . n.

Then, we conclude that actually x`M,i(ω) =
θ`M,i(ω)

p`M(ω)
, that is, θ`M,i(ω) = p`M(ω)x`M,i(ω).

Now, we can write

di(M)

‖p(M)‖
=

∑
ω∈Ω

L∑
`=1

θ`M,i(ω)−
∑
ω∈Ω

L∑
`=1

p`M(ω)e`i(ω)

‖p(M)‖

=

∑
ω∈Ω

L∑
`=1

p`M(ω)x`M,i(ω)−
∑
ω∈Ω

L∑
`=1

p`M(ω)e`i(ω)

‖p(M)‖

=
p(M)

‖p(M)‖
(xi(M)− ei).

Since ‖p(M)‖ → ∞ and di(M) is bounded for every type i, it follows that
p(M)

‖p(M)‖
(xi(M)− ei)→ 0, that is, p(xi − ei) = 0 for all i ∈ {1, . . . , n}.

Note that pxi = pei > 0, provided that ei � 0. To finish the proof, let us show

that Ui(y) ≤ Ui(xi) for any bundle y ∈ Bi(p) for every i. For it, let us take any

real number λ ∈ (0, 1) and a bundle y ∈ Bi(p). Then, λpy ≤ λpei = λpxi < pxi.

This implies that, for all M large enough,
pM

‖p(M)‖
λy <

pM
‖p(M)‖

xi(M) and thus

p(M)λy < p(M)xi(M) ≤ M. Let us consider the strategy given by α`M(ω) =

p`Mλy
`(ω). Note that

∑
ω∈Ω

L∑
`=1

α`M(ω) = p(M)λy and then αM ∈ ξ(M). Note that
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the net deficit that agent t obtains by deviating and selecting αt = αM is

dt(ΘM\αt) =

[∑
ω∈Ω

L∑
`=1

α`M(ω)− p(M)ei

]
+

≤ [p(M)xi(M)− p(M)ei]+ = dt(ΘM),

for any t ∈ Ii. Therefore, since ΘM is a Nash equilibrium, Ui(xi(M)) ≥ Ui(λy).

Finally, passing to the limit and observing that λ < 1 was arbitrary, we conclude

that Ui(xi) ≥ Ui(y).

Q.E.D.

5 A new game: prices and common information

Consider the differential information economy E defined in Section 2. Let PC
denote the common information defined as the meet of the partitions Pi, i =

1, . . . , n), PC =
∧n
i=1Pi6. If consumers could refine their information through

prices, the only price systems which do not transmit any additional information

to any consumer are those which are compatible with the common information

structure. Indeed, by restricting prices to those which are PC-measurable we

obtain a refinement of the Radner equilibrium solution.

In order to provide a game theoretical approach to this refinement we need to

consider different games with a new price formation rule which depends crucially

on the common information structure PC. For it, we use the same notation stated

in Sections 3 and 4. As in the previous game G(M), let us state an upper bound

M on borrowing fiat money. The new game GC(M) is defined by the same

strategy sets as G(M) but differs from it basically in the mechanism defining

prices that is modified as follows:

Given a strategy profile Θ = (θt, t ∈ I) and a state ω the price for the

commodity ` in this state is given by

p`(ω) = max

{
θ`(ω′) + 1

e`(ω′)
, ω′ ∈ E(ω)

}
7.

6The meet is the largest σ-algebra which is contained in each σ-algebra generated by Pi,

for every i. That is, PC is the finest partition of the set of states that is coarser than each Pi.

Note that {ω} ∈ PC if and only if Ei(ω) = {ω} for every i or, equivalently, information does
not lead directly to any consumption restriction at the state ω for any agent.

7We remark that if the initial allocation e is PC-measurable, then the price rule can be

recasted as p`(ω) =
1

e`(ω)
(
1 + max

{
θ`(ω′), ω′ ∈ E(ω)

})
14



In this case, the amount of commodity ` assigned to an individual t ∈ Ii in

the state ω is given by:

x`t(ω) = min

{
θ`t(ω

′)

p`(ω′)
, ω′ ∈ Ei(ω)

}
=

1

p`(ω)
min

{
θ`t(ω

′), ω′ ∈ Ei(ω)
}
,

where the last equality is due to the fact that p is PC-measurable, which implies

that p is Pi-measurable for every i = 1, . . . , n.

As in G(M) agents do not ascribe utility to fiat money, but are penalized in

the case of default. Then the payoff of each agent t ∈ Ii for each strategy profile

Θ is Πt(Θ) = Ui(xt(Θ)) − dt+(Θ), where xt(Θ) is the bundle previously defined

and the penalizations are defined as in the previous game G(M).

We can easily adapt the arguments in Lemma 3.1 and Theorem 3.1, respec-

tively, to our new game and show that the following statements hold:

If the profile Θ = (θt, t ∈ I) is a Nash equilibrium for the game GC(M), then

θt is Pi-measurable for almost all agent t ∈ Ii and every type i = 1, . . . , n.

For every M ∈ IR+ the set of symmetric Nash equilibria for the game GC(M)

is non-empty.

In this way, for each M we obtain existence of Nash equilibrium for the game

GC(M) in which the price formation rule leads to non-disclosure prices. In spite

of this, as the next standard example shows, in general, equilibrium prices which

are compatible with the common information structure does not exist.

Example 1. Let us consider an economy with three states of nature (a, b and

c), one commodity in each state and three types of agents. Let x, y, z denote

the consumptions in a,b and c, respectively. Agents of type 1 belong to the

interval [0, 1/3) and are characterized by the partition {{a}, {b, c}} , the utility

function U1(x, y, z) = x+ 2y + 2z and the initial endowments e1 = (1, 1/2, 1/2).

Agents of type 2 belong to the interval [1/3, 2/3) and are characterized by the

partition {{a, b}, {c}} , the utility function U2(x, y, z) = 2x + 2y + z and the

initial endowments e2 = (1/2, 1/2, 1). Agents of type 3 belong to the interval

[2/3, 1] and are characterized by the partition {{a}, {b}, {c}} , the utility function

U3(x, y, z) = x + 2y + z and the initial endowments e3 = (1/2, 1, 1/2). The

unique non-disclosure price system satisfies p(a) = p(b) = p(c) and leads to

the demanded bundles (0, 1, 1), (1, 1, 0) and (0, 2, 0), for each type 1, 2 and 3,

15



respectively. These bundles results in a non-feasible allocation. Therefore, in

this economy there is no equilibrium price that does not transmit information to

consumers.

Therefore, we need additional assumptions in order to obtain equilibrium with

non-disclosure prices as a limit of a sequence of prices and allocations which

results from a sequence of Nash equilibria. Actually, if the total endowment e

is PC-measurable and preferences verify a risk aversion property8, then we can

show existence of this refinement of equilibrium. The required assumption on

preferences means that a uniform consumption across the states that are not

commonly distinguished is preferred to a more diversified bundle. We remark

that this condition may be verified not only by different expected utility functions

but also for other types of preferences9.

The previous assumptions on endowments and preferences allow us to adapt

the proof of Theorem 4.1 and obtain the existence of non-disclosure equilibrium

prices as follows:

For each integer M, we can take ΘM = (θM,t, t ∈ I) which is a symmetric

Nash equilibrium for the game GC(M), such that θM,t is PC-measurable for

almost all t ∈ I. Let (p(M), x(M)) be the corresponding sequence of prices

and allocations which is defined by this sequence of Nash equilibria. Then,

there exists a subsequence of (p(M)/‖p(M)‖, x(M)) which converges to a

price system p which is PC-measurable and an allocation x, such that (p, x)

is an equilibrium for the economy E .

We conclude this Section presenting an example which shows not only that

the required assumption on preferences is not a necessary condition for the above

existence result but also that the corresponding equilibrium bundles need not to

be measurable with respect the common information structure.

8For every consumer t ∈ I, Ut (A(x)) ≥ Ut(x), where A(x)(ω) =

∑
ω∈E(ω̄) x(ω)

Card(E(ω̄))
, for each

ω ∈ E(ω̄), being E(ω̄) the common information event which contains ω̄.
9Precisely, the assumption holds for expected utility functions defined by a state dependent

utility which is concave and constant across common information events, whenever priors
are compatible with the common information structure (for instance, every state is equally
probable). Moreover, our requirement still holds for other types of preference relations.

Let U(x) =
∑

E∈PC

min{u(x(w)), w ∈ E}, where u is a concave function. U satisfies the

requirement on preferences and is related with a conservative behavior.
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Example 2. Consider an economy with three consumers, three states of na-

ture a, b and c and one commodity in each state. Let x, y, z denote the consump-

tions in a,b and c, respectively. Consumer 1 is characterized by the information

{{a}, {b, c}}, utility function U1(x, y, z) = x2yz and endowments ω1 = (1, 0, 0)

Consumer 2 is characterized by the information {{b}, {a, c}}, utility function

U2(x, y, z) = xy2z and resources ω1 = (0, 1, 0). Consumer 3 is characterized by

the informaation {{c}, {a, b}}, utility function U3(x, y, z) = xyz2 and endow-

ments ω1 = (0, 0, 1). This economy has a non-revealing equilibrium given by

prices pa = pb = pc = 1 and the bundles (1/2, 1/4, 1/4) for the consumer 1,

(1/4, 1/2, 1/4) for the consumer 2 and (1/4, 1/4, 1/2) for the consumer 3.

6 Concluding Remarks

We have followed a market game approach à la Shapley-Shubik in order to an-

alyze the equilibrium price formation in our differentiated information market.

Agents deliver to each trading-post their endowments for sale and the game

starts. The strategic variable of each player is the amount of fiat money that she

wants to spend for each commodity in each state. The price arises in each post

according to the rule of supply and demand. Once the price system is formed,

the ratio strategy-price could be different in states that an agent does not distin-

guish. However, the game allocates the minimum and therefore agents are never

deceived. The rules of the game underlie a conservative or prudent behavior of

the consumers. Then, this market game leads to a Radner equilibrium without

the explicit assumption that agents choose constant consumption in states which

they do not distinguish. Moreover, our result can be used in order to provide a

strategic market game support to the prudent behavior of the agents considered

in Correia da Silva and Hervés-Beloso (2009) and De Castro and Yannelis (2010).

On the other hand, we have provided a new existence result of equilibrium

with non-disclosure prices. The essence of this refinement is that the underlying

equilibrium prices transmit no additional information on the states of nature to

agents and therefore there is no room to learn from prices.
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Hervés-Beloso, C., Moreno-Garćıa, E., Yannelis, N.C. (2005): An Equivalence

Theorem for a Differential Information Economy. Journal of Mathematical

Economics 41, 844-856.
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