
The eigenblock and eigenmatrix decomposition of a matrix: its usefulness in
Statistics – application to the likelihood ratio test for block-circularity

Carlos A. Coelho∗
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Abstract

We are all familiar with the spectral decomposition or eigenvalue-eigenvector decomposition of a
matrix. This paper addresses cases where instead of using a single eigenvalue we may use a square
non-diagonal matrix, which we will call eigenmatrix, which goes along with the concomitant set
or matrix of block-eigenvectors in a number that has to match the dimension of the eigenmatrix.
The usefulness of such construct or decomposition in statistical studies in multivariate analysis,
more precisely, in the derivation of likelihood ratio statistics for tests of elaborate structures of
covariance matrices, their moments and their distributions, is shown, and an application is made
to the derivation and study of the likelihood ratio statistic to test block-circularity of covariance
matrices. Through the use of such construct or decomposition, also near-exact distributions are
easily obtained for this statistic and the relation of the test with other tests is easily derived.

Keywords: characteristic function, composition of hypotheses, decomposition of the null
hypothesis, distribution of likelihood ratio statistics, near-exact distributions, product of
independent Beta random variables, sum of independent Gamma random variables.

1. Introduction

We are all familiar with the eigenvalue-eigenvector or spectral decomposition of a square matrix,
which commonly takes the form

A uα
(p∗×p∗)

= λαuα , α = 1, . . . , p∗ , (1)

where A is a p∗×p∗ square matrix, uα is the α-th eigenvector of A and λα its associated eigenvalue.
The eigenvalues λα are all real in case A is symmetric and all positive in case A is positive-definite.

In this paper we will address the following questions: i) “are there cases where we may have a
similar construct but with λα replaced by Λα, a kα×kα square matrix, and, concomitantly, with uα
replaced by Uα, a p∗×kα matrix?”, and, in case the answer to this question is affirmative, ii) “are
there applications for such construct?”, or rather, “are there ’things’ we can do with such construct
that cannot be done without it, or which are rendered much easier when such construct is used?”.
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The answer to both questions above is affirmative. Namely, the answer to the second of the
two questions above, is affirmative, in the sense that there are results in Statistics, more precisely,
in Multivariate Analysis, which will be rendered much easier to obtain by using such construct,
viz. the expressions for many l.r.t. (likelihood ratio test) statistics as well as the expressions for
their moments and as such also the expressions for the c.f. (characteristic function) of its logarithm,
besides the fact that then also the derivation of the l.r.t. statistics pertaining to bridging tests will
become much easier to derive.

But then a third compound question that may arise is: “the results obtained by using such
construct, cannot they also be obtained by using the common spectral decomposition?”, and if not,
“why not?”. The answer to the first of these questions is indeed “No!” and the answer to the short
last question will have to wait till we get a little further into the next section.

2. The eigenblock-eigenmatrix decomposition of a matrix

There are indeed matrices A, say of dimensions p∗×p∗, for which we may write

A Uα = Uα Λα
(p∗×p∗) (p∗×kα) (p∗×kα) (kα×kα)

, α = 1, . . . , p; p∗ =

p∑

α=1

kα , (2)

or
A U = U Λ

(p∗×p∗) (p∗×p∗) (p∗×p∗) (p∗×p∗)

(3)

where

U =
[
U1

∣∣ . . .
∣∣ Uα

∣∣ . . .
∣∣ Up

]
and Λ = block-diagonal

(
Λα; α = 1, . . . , p

)
, (4)

where Λα (α = 1, . . . , p) are non-diagonal square matrices.
Hereinafter we will restrain ourselves to the case where A is a symmetric positive-definite matrix,

in which case the matrices Λα (α = 1, . . . , p) are also positive-definite matrices, since, ultimately,
the set of eigenvalues of all the p matrices Λα will be the same as the set of eigenvalues of A.

It is true that ultimately, the set of eigenvalues of all the p matrices Λα will be the same as
the set of eigenvalues of A, but the block construct in (2) or (3), when possible to be implemented
in such a way that the matrices Uα are only functions of the dimension of A and not a function
of the elements in A, will be extremely useful, whenever A has some elaborate block-structure,
in: (i) the derivation of l.r.t.’s and corresponding statistics, (ii) the study of the distributions of
such statistics, (iii) the design of bridging tests to other related block-structures, (iv) developing
the implementation of the test for complex random variables, and (v) in avoiding the need for
elaborate estimation procedures for patterned covariance matrices in order to be able to build the
l.r.t’s. Furthermore, since this approach will enable us to obtain, in most cases, the l.r.t. statistic
as the product of l.r.t. statistics used to test the independence of groups of variables, equality of
covariance matrices and sphericity, it will enable us to extend the results obtained to elliptically
contoured distributions, based on the results in Chapters 8–10 in [1]. It happens that, in most
cases when the construct in (2) or (3) is possible to be implemented, if we take the full common
eigenvalue-eigenvector decomposition of the matrix A, then the eigenvectors of A will be functions
of the elements in A, thus rendering this common eigenvalue-eigenvector decomposition useless for
our purpose and this way bringing about the need for the construct or decomposition in (2) or
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(3), rendering it extremely useful. These facts will be illustrated in the next section, with the
application of this construct to the block-circularity test for a covariance matrix.

The construct in (2) or (3) is possible to be implemented when A has some elaborate block-
structure, which will be made precise shortly.

In Multivariate Analysis, it is rather common to test hypotheses of the form

H0 : Σ = Σ0 (5)

on the covariance matrix Σ of some random vector, where Σ0 is specified through some structure
or pattern [18]. Most often it is useful to be able to write the null hypothesis in (5) as

H0 : Σ∗ = Σ∗0 (6)

where
Σ∗ = ΓΣΓ′ and Σ∗0 = ΓΣ0Σ′

for some orthogonal matrix Γ which is either completely specified ‘a priori’ or otherwise is only
function of the dimensions of Σ or Σ0, but not function of the elements of Σ0.

The use of the construct in (2) in Statistics is indeed not completely new. Although it has
never been explicitly written in the form in (2), equivalent constructs have been implicitly used
by [16] and [19]. However, these authors never used such constructs in order to obtain either the
expressions for the l.r.t. statistics or their moments. The authors in [7] implicitly use a construct
of the type of the one in (2) to build the l.r.t. statistic for block compound symmetry and obtain
its moments, but the construct was never stated in the form in (2) and a systematic approach to
this construct was never undertaken.

We need now to systematize the situations in which we will be able to build for A a construct
or decomposition as the one in (2) or (3).

There are many interesting structured p×p matrices A which may be written as

A =

s∑

`=1

a`M` (7)

for some positive integer s ≤ p, some reals a` and some p×p symmetric matrices M` (` = 1, . . . , s),
such that the s matrices M` have common eigenvectors uα, which are only function of p and not of
the elements in each matrix M`, as it is the case of, for example, the equivariance-equicorrelation
and circular matrices [10, 16, 17]. We will call these matrices as scalar-structured matrices.

Let then λα` be the α-th eigenvalue of M` (α = 1, . . . , p), possibly function of the elements in
M`. Then we may write

Auα = λαuα ⇐⇒

(
s∑

`=1

a`M`

)
uα = λαuα

⇐⇒
s∑

`=1

a`M`uα = λαuα

⇐⇒
s∑

`=1

a`λα` uα = λαuα
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so that we have

λα =

s∑

`=1

λα` a` .

But, since a` are scalars, we may write (7) as

A =

s∑

`=1

M` ⊗ a` . (8)

But then, if A has a structure such that instead of the scalars a` we may use m×m square
symmetric matrices A`, keeping the same matrices M` in such a way that A remains positive-
definite, with the matrix blocks appearing on the diagonal of A being positive-definite matrices. In
this case A will have dimensions mp×mp and we will write

A =

s∑

`=1

M` ⊗A` , (9)

having A what we call a block-structure.
In (8) and (9), each a` or each A` should appear in a single term, that is, in case the construction

in (8) or (9) has more than one term where some a` or A` appears, then these terms should be com-
bined into a single term by adding the corresponding matrices M`. We will call such a construction
a ‘legitimate’ one, since only for this case it will be possible to develop the diagonalizations that
follow. In the next section an example is given.

From (9), we may then write

A Uα = Uα Λα
(pm×pm) (pm×m) (pm×m) (m×m)

(α = 1, . . . , p) (10)

for

Uα = uα ⊗ Im and Λα =
s∑

`=1

λα`A` , (11)

since, if we take Uα defined as in (11), using the relation (A⊗B)(C ⊗D) = AC ⊗BD, we have

(M` ⊗A`)Uα = (M` ⊗A`) (uα ⊗ Im)
= (M` uα)⊗A`
= (λα` uα)⊗A`
= λα` (uα ⊗ Im)A` = λα` UαA`

and as such

AUα =

(
s∑

`=1

M` ⊗A`

)
Uα = Uα

(
s∑

`=1

λα`A`

)
= UαΛα , (α = 1, . . . , p)

being thus the eigenmatrices Λα (α = 1, . . . , p), ’similar’ functions of the matrices A`, as the eigen-
values λα were of the scalars a`.

Then unless the matrices Λα have some scalar-structure, which allows for their eigenvectors to
be functions of only their dimension m, their eigenvectors will be function of their elements, and
as such, function of the elements in A.
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3. An example of application of the eigenblock-eigenmatrix decomposition — the
block-circular structure

Let us suppose that we have a random vector X, of dimension mp×1, where there are n exact
linear relations among its components. Let X be split into p subvectors Xk (k = 1, . . . , p), each of
dimension m×1, that is, let

X =
[
X1, . . . , Xk, . . . , Xp

]′
,

with
Θ = V ar(X) , (12)

and
Cov(Xk, Xi) = R|k−i| , (k, i = 1, . . . , p) (13)

and
Rp−j = Rj , j = 1, . . . , p− 1 . (14)

Then the matrix Θ in (12) will have what we call a block-circular structure. For example, for p = 6
and p = 7, we will have

Θ =




R0 R1 R2 R3 R2 R1

R1 R0 R1 R2 R3 R2

R2 R1 R0 R1 R2 R3

R3 R2 R1 R0 R1 R2

R2 R3 R2 R1 R0 R1

R1 R2 R3 R2 R1 R0




, and Θ =




R0 R1 R2 R3 R3 R2 R1

R1 R0 R1 R2 R3 R3 R2

R2 R1 R0 R1 R2 R3 R3

R3 R2 R1 R0 R1 R2 R3

R3 R3 R2 R1 R0 R1 R2

R2 R3 R3 R2 R1 R0 R1

R1 R2 R3 R3 R2 R1 R0




.

Let Ip,s denote an identity matrix of order p, with the elements in each row shifted by s columns,
or, more precisely, let it be a matrix of zeros, where in row i the element 1 appears in column

mod∗(i+ s, p) =

{
mod(i+ s, p) if mod(i+ s, p) 6= 0

p if mod(i+ s, p) = 0 ,

with Ip,0 = Ip,p = Ip.
Then, we may write

Θ =

p−1∑

`=0

Ip,` ⊗R` ,

or

Θ =

b p2c∑

`=0

M` ⊗R` , (15)

where

M` =





Ip,0 = Ip ` = 0

Ip,` + Ip,p−` ` = 1, . . . ,
⌊
p−1

2

⌋

Ip,` ` = p
2 , only for even p ,

(16)
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given that from (13) and (14) it is clear that there will be only 1 +
⌊p

2

⌋
different R` matrices, which

are R0, . . . , Rb p2c.
Moreover, given the comment right after expression (9), in the previous section, it follows that

the construction of Θ in (15) is indeed the ‘legitimate’ one, since it is the one that uses only once
each matrix R` and the one for which the diagonalizations that follow are valid.

Then, if we take
uα = [uαj , j = 1, . . . , p] , (17)

with (see [17])

uαj =
1
√
p

{
cos
(

2π(α− 1)(j − 1)/p
)

+ sin
(

2π(α− 1)(j − 1)/p
)}

, j = 1, . . . , p; α = 1, . . . , p ,

(18)
we will have

M` uα = λα` uα , α = 1, . . . , p; ` = 0, . . . ,
⌊p

2

⌋

or, if we take the matrix
Γ =

[
u1 | . . . |uα | . . . |up

]
,

(p×p)
(19)

it will diagonalize each matrix M`, with

M`Γ = ΓΛ∗` , ` = 0, . . . ,
⌊p

2

⌋

with
Λ∗` = diag(λα`, α = 1, . . . , p) , ` = 0, . . . ,

⌊p
2

⌋

where, for α = 1, . . . , p,

λα` =





1 ` = 0

2 cos
(
2π(α− 1)`/p

)
` = 1, . . .

⌊
p−1

2

⌋

cos
(
2π(α− 1)`/p

)
` = p

2 only for even p

(20)

and thus with
λα` = λp−α+2,` , for α = 2, . . . , p

λ1` = 2 , ` = 1, . . . ,
⌊
p−1

2

⌋

λ1, p
2

= 1 , ` = p
2 for even p .

(21)

Note that uα are the eigenvectors, and λα =
∑bp/2c

`=0 λα`r` the corresponding eigenvalues of the
scalar-circular p×p matrix

A∗ =

b p2c∑

`=0

M` ⊗ r`

for some scalars r`.
Now let us take

Γ∗ = Γ⊗ Im =
[
U1 | . . . |Uα | . . . |Up

]

(pm×pm)
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where, for α = 1, . . . , p, each eigenblock Uα is defined as

Uα = uα ⊗ Im
(pm×m) (p×1) (m×m)

, (22)

with uα given by (17)-(18).
Then, we may write

Θ Uα = Uα Λα
(pm×pm) (pm×m) (pm×m) (m×m)

(α = 1, . . . , p) , (23)

or, since Γ in (19) is an orthonormal matrix, and so is Γ∗,

ΘΓ∗ = Γ∗Λ (24)

or yet
Γ∗′ΘΓ∗ = Λ

= block-diagonal
(
Λ1, . . . ,Λα, . . . ,Λp

) (25)

where

Λα =

b p2c∑

`=0

λα`R` , α = 1, . . . , p (26)

so that, since all all matrices R` are symmetric, also all matrices Λα are symmetric, and unless
all the matrices R` have some particular scalar structure, the matrices Λα will be unstructured,
and the eigenvectors of Θ will be functions of the elements in Θ, rendering a full common spectral
decomposition of Θ useless for our goal, while the construct or decomposition in (23) or (24)–(25)
is much useful. This is the situation we address in the next section.

Given the structure of the λα` in (20) and (21), the matrices Λα in (23)–(26) also verify the
relations

Λ1 =





R0 +
(p−1)/2∑
`=1

2R` odd p

R0 +R p
2

+
p/2−1∑
`=1

2R` even p

and Λα = Λp−α+2 , α = 2, . . . , p . (27)

4. Testing for block-circularity of the covariance matrix

We are interested in the following hypothesis: once assumed

X =
[
X1, . . . , Xk, . . . , Xp

]′ ∼ Nmp(µ,Σ) ,

we want to test
H0 : Σ = Θ , (28)

for Θ bearing the block-circular structure described in the previous section and given by (15)-(16).
But then, by (23)-(25), to test H0 in (28) is the same as to test

H0 : Σ∗ Uα = Uα Λα , α = 1, . . . , p (29)
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for Uα given by (22), or, equivalently,

H0 : Σ∗ = block-diagonal
(
Λ1, . . . ,Λα, . . . ,Λp

)
(30)

where
Σ∗ = Γ∗′ΣΓ∗ ,

and where the matrices Λα (α = 1, . . . , p) verify the relations in (27).
For m = 1 this test reduces to the circularity test for the covariance matrix in sec. 3.3 of [17],

while for general m it may be seen as a generalization of the usual test of equality of p variance-
covariance matrices based on independent samples, since we are indeed testing the equality of the p
diagonal blocks of dimensions m×m of Σ, whose m.l.e.’s (maximum likelihood estimators) are now
not independent.

4.1. Deriving the l.r.t. statistic and its moments

The form of the null hypothesis in (29) or (30), together with the property in (27), exhibited
by the matrices Λα, allow for a much convenient split of this null hypothesis as

H0 ≡ H0b|a oH0a

where ‘o’ is to be read as ‘after’, and where

H0a : Σ∗ = block-diagonal (Σ∗α, α = 1, . . . , p)(
where Σ∗α (α = 1, . . . , p) are unspecified m×m matrices

)

and

H0b|a :
b p+1

2 c∧
k=2

Σ∗k = Σ∗p−k+2 , assuming H0a . (31)

The l.r.t. statistic to test H0a, based on a sample of size n, is

Λa =

(
|A|∏p

j=1 |Aj |

)n/2
,

where A is the unstructured or common m.l.e. of Σ∗ and Aj is its j-th m×m diagonal block.
The l.r.t. statistic to test H0b|a is then

Λb|a =

b p+1
2 c∏

k=2

Λbk|a

where, since the m.l.e.’s of Σ∗k and Σ∗p−k+2 are independent under H0a, and, under H0b|a, both are
Wishart Wm(n− 1,Λk) matrices,

Λbk|a =

(
22m |Ak| |Ap−k+2|
|Ak +Ap−k+2|2

)n/2
.
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The l.r.t. statistic to test H0 in (3) is thus

Λ = Λa Λb|a = Λa

b(p+1)/2c∏

k=2

Λbk|a

=


22mb(p−1)/2c |A|

(
|Abp/2c+1|

)1−mod(p,2)∏b(p+1)/2c
k=2 |Ak +Ap−k+2|2



n/2

,

which, for m = 1 yields exactly the l.r.t. statistic in (3.5) of section 3.3 of [17].
The h-th moment of Λa may be written as [1, Chap. 9][3, 15]

E
(
Λh
a

)
=

p−1∏

k=1

m∏

j=1

Γ
(
n−j

2

)
Γ
(
n−j−m(p−k)

2 + n
2h
)

Γ
(
n−j

2 + n
2h
)

Γ
(
n−j−m(p−k)

2

)

=





mp∏

j=3

(
n− j
n

)rj (n− j
n

+ h

)−rj




(
Γ
(
n−1

2

)
Γ
(
n−2

2 + n
2h
)

Γ
(
n−1

2 + n
2h
)

Γ
(
n−2

2

)
)k∗

where

k∗ =

{
0 m even

bp/2c m odd ,

and

rj =

{
hj−2 + (−1)jk∗ j = 3, 4

rj−2 + hj−2 j = 5, . . . ,mp
with hj =

{
p− 1, j = 1, . . . ,m

−1 j = m+ 1, . . . ,mp− 2 .
(32)

Then, given that Λbk|a is the l.r.t. statistic to test the equality of two covariance matrices, whose
m.l.e.’s, under H0b|a in (31), are both Wishart Wm(n−1,Λk) matrices, from [1, Chap. 10] and [5, 15]
the h-th moment of Λbk|a is

E
(
Λh
bk|a

)
=

m∏

j=1

2∏

`=1

Γ
(
n−1

2 −
j−1

4 + `−1
2

)
Γ
(
n−j

2 + n
2h
)

Γ
(
n−1

2 −
j−1

4 + `−1
2 + n

2h
)

Γ
(
n−j

2

)

=





m∏

j=2

(
n− j
n

)sj (n− j
n

+ h

)−sj




×





bm/2c∏

j=1

Γ
(
n− j − 1

2

)
Γ(n− j − 1 + nh)

Γ
(
n− j − 1

2 + nh
)

Γ(n− j − 1)





×

(
Γ
(
n−m

2 +
⌊
m−1

4

⌋
+ 1

2

)
Γ
(
n−m

2 +
⌊
m−1

4

⌋
+ n

2h
)

Γ
(
n−m

2 +
⌊
m−1

4

⌋
+ 1

2 + n
2h
)

Γ
(
n−m

2 +
⌊
m−1

4

⌋)
)m⊥⊥2

(33)
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where

sj =





s∗j−1 j = 2, . . . ,m
}

if mod(m, 4) 6= 3

s∗j−1 j = 2, . . . ,m

except j = (m+ 3)/2

s∗j−1 + 1 j = (m+ 3)/2





if mod(m, 4) = 3
(34)

with

s∗j =





j − 1 + mod (j, 2) j = 1, . . . , α

2α1 + mod (m+ 1, 2) j = α+ 1

2
(⌊

m
2

⌋
−
⌊
j
2

⌋)
j = α+ 2, . . . ,min(m− 2α1,m− 1)

j = 2 +m− 2α1, . . . , 2
⌊
m
2

⌋
− 1, step 2

2
(⌊

m+1
2

⌋
−
⌊
j
2

⌋)
j = 1 +m− 2α1, . . . ,m− 1, step 2

(35)

for

α =

⌊
m− 1

2

⌋
and α1 =

⌊
m− 1

4

⌋
. (36)

4.2. The characteristic function of W = − log Λ

Given that underH0a the
⌊p

2

⌋
−1 statistics Λbk|a are independent and given that Λb=

∏bp/2c
k=2 Λbk|a

is only function of A2, . . . , Ap and in [6] it is shown that Λa is independence of A1, . . . , Ap, Λa and
Λb are independent. As such, we have

E
(
Λh
)

= E
(
Λh
a

)
E
(
Λh
b

)
= E

(
Λh
a

) b(p+1)/2c∏

k=2

E
(
Λh
bk|a

)
,

so that, for W = − log Λ we may write

ΦW (t) = E
(
eitW

)
= E

(
e−it log Λ

)
= E

(
Λ−it

)

=





mp∏

j=2

(
n− j
n

)zj (n− j
n
− it

)−zj




︸ ︷︷ ︸
Φ1,W (t)

×

(
Γ
(
n−1

2

)
Γ
(
n−2

2 −
n
2 it
)

Γ
(
n−1

2 −
n
2 it
)

Γ
(
n−2

2

)
)k∗

bm/2c∏

j=1

Γ
(
n− j − 1

2

)
Γ(n− j − 1− nit)

Γ
(
n− j − 1

2 − nit
)

Γ(n− j − 1)



b(p−1)/2c

×

(
Γ
(
n−m

2 +
⌊
m−1

4

⌋
+ 1

2

)
Γ
(
n−m

2 +
⌊
m−1

4

⌋
− n

2 it
)

Γ
(
n−m

2 +
⌊
m−1

4

⌋
+ 1

2 −
n
2 it
)

Γ
(
n−m

2 +
⌊
m−1

4

⌋)
)(m⊥⊥2)b p−1

2 c

︸ ︷︷ ︸
Φ2,W (t)

,

(37)
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where, since in (33) we have always s1 = 1,

zj =





b(p− 1)/2c j = 2

rj + b(p− 1)/2csj j = 3, . . . ,m

rj j = m+ 1, . . . ,mp

with rj given by (32) and sj by (34)–(36).
In (37) Φ1,W (t) is the c.f. of a GIG (Generalized Integer Gamma) distribution of depth pm− 1,

with rate parameters n−j
n and integer shape parameters zj (j = 2, . . . , pm), that is the c.f. of the

sum of pm− 1 independent Gamma r.v.’s with those shape and rate parameters, while Φ2,W (t) is
the c.f. of a sum of k∗ + b(p− 1)/2c(bm/2c+ mod(m, 2)) independent Logbeta r.v.’s.

4.3. Near-exact distributions for the l.r.t. statistic

Since the exact distributions of both Λ and W are not manageable due to the part that in the
distribution of W = − log Λ is represented by Φ2,W (t), we will approximate the distribution of W
by leaving Φ1,W (t) unchanged and approximating Φ2,W (t) by the c.f. of a finite mixture of Gamma
distributions, all with the same rate parameter.

This approximation is based on the results in Section 5 of [20] which state that we may asymptot-
ically approximate any Logbeta(a, b) distribution by an infinite mixture of Γ(b+ k, a) distributions
(k = 0, 1, . . . ). Given that the first parameters in the Logbeta distributions in Φ2,W (t) are indeed
not all that different, mainly for large n, we will use a common rate parameter λ for the Gamma
distributions, which will be the parameter λ in

Φ∗(t) = θλr1(λ− it)−r1 + (1− θ)λr2(λ− it)−r2

which is the c.f. of a mixture of two Gamma distributions with a common rate parameter. The
parameter λ, together with the parameters r1, r2 and θ, will be determined in such a way that, for
h = 1, . . . , 4,

dh

dth
Φ∗(t)

∣∣∣∣
t=0

=
dh

dth
Φ2,W (t)

∣∣∣∣
t=0

.

Then, we will approximate Φ2,W (t) with

Φ∗2(t) =
m∗∑

k=0

pkλ
r+k(λ− it)−(r+k) , (38)

which is the c.f. of a finite mixture of Gamma distributions, all with the same rate parameter λ,
and shape parameters r + k, with

r = 1/2

(⌊p
2

⌋
mod(m, 2) +

⌊
p− 1

2

⌋⌊
m+ 1

2

⌋)
,

which is the sum of all the second parameters of the Logbeta distributions in Φ2,W (t). The weights
pk in (38) will be determined in such a way that

dh

dth
Φ∗2(t)

∣∣∣∣
t=0

=
dh

dth
Φ2,W (t)

∣∣∣∣
t=0

,
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for h = 1, . . . ,m∗, and with pm∗ = 1−
∑m∗−1

k=0 pk.
This approach yields for W a near-exact c.f. of the form

Φ∗W (t) =
m∗∑

k=0

pk



λ

r+k(λ− it)−(r+k)
mp∏

j=2

(
n− j
n

)zj (n− j
n
− it

)−zj




which is the c.f. of a mixture of m∗ + 1 Generalized Near-Integer Gamma (GNIG) distributions
(see [4, 5, App. 1] for the GNIG distribution) of depth mp, with with integer shape parameters
zj (j = 2, . . . , pm) and non-integer shape parameter r, and corresponding rate parameters n−j

n
(j = 2, . . . , pm) and λ. Using the notation in Appendix 1 of [5] for the p.d.f. and the c.d.f. of the
GNIG distribution, which formulation is also shown in that reference, or in [4], these distributions
have p.d.f.’s of the form

f∗W (w) =
m∗∑

k=0

pk f
GNIG

(
w | {z2, . . . , zpm}, r + k;

{
n− 2

n
, . . . ,

n− pm
n

}
, λ; pm

)
, w > 0

and c.d.f.’s of the form

F ∗W (w) =
m∗∑

k=0

pk F
GNIG

(
w | {z2, . . . , zpm}, r + k;

{
n− 2

n
, . . . ,

n− pm
n

}
, λ; pm

)
, w > 0 ,

which for Λ yield near-exact distributions with p.d.f.’s

f∗Λ(`) =

m∗∑

k=0

pk f
GNIG

(
− log ` | {z2, . . . , zpm}, r + k;

{
n− 2

n
, . . . ,

n− pm
n

}
, λ; pm

)
1

`
, 0<`<1

and c.d.f.’s

F ∗Λ(w) =
m∗∑

k=0

pk

{
1− FGNIG

(
− log ` | {z2, . . . , zpm}, r + k;

{
n− 2

n
, . . . ,

n− pm
n

}
, λ; pm

)}
,

0 < ` < 1 .

As we may see, from the results of the numerical studies in the next section, these near-
exact distributions yield very sharp approximations to the exact distribution, while remaining
manageable, with closed form expressions for their p.d.f.’s and c.d.f.’s, and while exhibiting the
flexibility of the choice of the number of exact moments that they match, which is the value of m∗.
Of course, the larger m∗ will be, the better will be the approximation obtained. Also, as we may
see from the results of the numerical studies in the next section, the larger m∗ is the clearer will
be the asymptotic behaviors of these near-exact distributions, which besides being asymptotic for
increasing sample sizes, will be also asymptotic for increasing values of p, the number of blocks of
variables involved, which is expected given the expressions for the shape parameters zj in (37) as
increasing functions of p. Nevertheless, in what matters m, we expect the asymptotic behavior of
the near-exact distributions to be not so clear, given that although for increasing values of m we
will have a larger number of shape parameters zj , we will also have a larger number of Logbeta
distributions to approximate in Φ2,W (t).

However, for the particular case m = 1, even better approximations may be obtained if a more
refined process of development of the near-exact distributions, which takes advantage of the par-
ticular structure of the Logbeta distributions in Φ2,W (t), is undertaken, as in [14].
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4.4. Numerical studies

In order to assess the closeness of the near-exact distributions to the exact distribution, we use
the measure

∆ =
1

2π

∫ +∞

−∞

∣∣∣∣
ΦW (t)− Φ∗W (t)

t

∣∣∣∣ dt , (39)

which is related to the Berry-Esseen bound [2, 8, 11, 13] and which verifies the relation

∆ ≥ max
w>0

∣∣∣FW (w)− F ∗W (w)
∣∣∣ = max

0<`<1

∣∣∣FΛ(`)− F ∗Λ(`)
∣∣∣ ,

where ΦW (t) and Φ∗W (t) represent respectively the exact and near-exact c.f.’s of W , FW ( · ) and
F ∗W ( · ) the exact and near-exact c.d.f.’s of W and FΛ( · ) and F ∗Λ( · ) the exact and near-exact c.d.f.’s
of Λ.

In Table 1 we may observe values of the measure ∆ for the near-exact distributions which equate
four, six and ten exact moments, for different values of m and p, and also for different sample sizes
(n), which exceed mp by 2, 50, 100, 350 and 525.

Table 1. – Values of the measure ∆ in (39) for different values of m, p and n.

near-exact distribution near-exact distribution
number of exact moments matched number of exact moments matched

m p n 4 6 10 m p n 4 6 10

5 6 32 7.37×10−17 1.42×10−21 5.03×10−30 15 6 92 1.44×10−17 1.83×10−23 5.42×10−35

80 1.50×10−17 1.44×10−22 1.87×10−31 140 3.99×10−17 7.85×10−23 5.02×10−34

130 1.67×10−18 6.62×10−24 1.52×10−33 190 1.30×10−17 1.73×10−23 4.89×10−35

380 9.47×10−21 4.66×10−27 1.68×10−38 440 2.79×10−19 8.86×10−26 1.36×10−38

555 1.46×10−21 3.40×10−28 2.73×10−40 615 5.48×10−20 9.33×10−27 4.06×10−40

10 52 3.08×10−19 4.05×10−25 2.34×10−35 10 152 1.46×10−19 2.75×10−26 1.49×10−39

100 3.12×10−19 3.72×10−25 1.97×10−35 200 7.97×10−19 3.03×10−25 6.23×10−38

150 6.07×10−20 3.68×10−26 5.29×10−37 250 4.41×10−19 1.39×10−25 1.94×10−38

400 6.48×10−22 6.20×10−29 2.32×10−41 500 2.41×10−20 2.71×10−27 4.50×10−41

575 1.12×10−22 5.25×10−30 4.78×10−43 675 5.86×10−21 3.89×10−28 2.21×10−42

15 77 7.07×10−21 3.66×10−28 7.30×10−42 15 227 4.40×10−21 2.02×10−28 5.90×10−43

125 1.80×10−20 1.25×10−27 3.92×10−41 275 3.23×10−20 3.37×10−27 4.71×10−41

175 5.56×10−21 2.38×10−28 2.77×10−42 325 2.51×10−20 2.47×10−27 3.05×10−41

425 1.13×10−22 1.00×10−30 4.70×10−46 575 2.94×10−21 1.41×10−28 3.92×10−43

600 2.20×10−23 1.01×10−31 1.26×10−47 750 8.80×10−22 2.73×10−29 3.14×10−44

10 6 62 7.02×10−18 1.05×10−23 5.16×10−35 20 6 122 7.58×10−19 3.45×10−25 1.46×10−37

110 5.91×10−18 9.76×10−24 5.30×10−35 170 2.70×10−18 2.21×10−24 2.83×10−36

160 9.41×10−19 8.66×10−25 1.45×10−36 220 1.02×10−18 6.25×10−25 4.47×10−37

410 4.91×10−21 8.06×10−28 4.30×10−41 470 2.07×10−20 3.63×10−27 2.11×10−40

585 6.18×10−22 5.11×10−29 6.92×10−43 645 3.49×10−21 3.41×10−28 6.14×10−42

10 102 6.55×10−20 1.32×10−26 1.02×10−39 10 202 9.03×10−21 6.24×10−28 5.05×10−42

150 1.73×10−19 5.73×10−26 1.11×10−38 250 5.61×10−20 8.42×10−27 3.05×10−40

200 5.31×10−20 1.23×10−26 1.16×10−39 300 3.61×10−20 4.87×10−27 1.43×10−40

450 7.51×10−22 4.38×10−29 2.63×10−43 550 2.31×10−21 1.32×10−28 6.96×10−43

625 1.16×10−22 3.67×10−30 6.45×10−45 725 5.29×10−22 1.88×10−29 3.79×10−44

15 152 2.10×10−21 9.89×10−29 3.67×10−43 15 302 3.38×10−22 5.96×10−30 2.78×10−45

200 9.92×10−21 9.29×10−28 1.29×10−41 350 2.63×10−21 1.08×10−28 2.63×10−43

250 4.84×10−21 3.71×10−28 3.46×10−42 400 2.33×10−21 9.62×10−29 2.35×10−43

500 1.66×10−22 4.35×10−30 4.76×10−45 650 3.57×10−22 8.44×10−30 6.76×10−45

675 3.18×10−23 4.89×10−31 1.82×10−46 825 1.09×10−22 1.76×10−30 6.56×10−46
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As expected, the near-exact distributions that equate a larger number of exact moments display
a much better performance, with much lower values of the measure ∆, and a more pronounced
asymptotic behavior, translated into a faster decrease in the values of the measure ∆ for increasing
values of n and p, although as the value of mp becomes larger, the asymptotic behavior in terms
of increasing values of n becomes only visible for larger values of n.

Although for increasing values of m the asymptotic behavior of the near-exact distributions
developed may be not too clear, we are still able to see a steady tendency for a decrease in the
value of the measure ∆ in (39) for increasing values of m.

Remarkable are the facts that the near-exact distributions yield extremely good approximations
to the exact distribution in all cases, even for very small sample sizes and that they exhibit a much
clear asymptotic behavior for increasing values of p, the number of sub-sets of variables in X, or,
equivalently, the number of row or column blocks in Σ, or yet, the number of variables in the
non-block case m = 1.

4.5. Bridging to other tests

In Figure 1 we have a schematic representation of the four main block-structures we are inter-
ested in. These are, (i) the actually non-structured situation of Σ, the covariance matrix of X being
only a positive-definite matrix, in Figure 1 represented as Σ > 0 for short, (ii) the block-circular
structure, (iii) the block-equicorrelation and equivariance structure and (iv) the block-spherical
structure. In Figure 1, each one of the six tests depicted is indicated by an arrow, which has its
left hand origin at the structure pertaining to H1 and its right hand tip at the structure pertain-
ing to H0. So far we have just addressed test #1. In this section we will give some indications
concerning tests #4, 5 and 6, although not addressing their l.r.t. statistics, neither the exact or
approximate distributions of these statistics in detail, in order to keep the manuscript within a
reasonable dimension. Tests #2 and 3 are addressed respectively in [7] and [6].

�

�

�

�

Σ pos.-def.

 Σ > 0




�

�

�

�

Σ block-circular


R0 R1 R2 R3 R2 R1
R1 R0 R1 R2 R3 R2
R2 R1 R0 R1 R2 R3
R3 R2 R1 R0 R1 R2
R2 R3 R2 R1 R0 R1
R1 R2 R3 R2 R1 R0




�

�

�

�

Σ block-equicorr.


R0 R1 R1 R1 R1 R1
R1 R0 R1 R1 R1 R1
R1 R1 R0 R1 R1 R1
R1 R1 R1 R0 R1 R1
R1 R1 R1 R1 R0 R1
R1 R1 R1 R1 R1 R0




�

�

�

�

Σ block-spher.



R0
R0 0

R0
R0

0 R0
R0




1
44

2
33

3
33
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We will be dealing with Tests 1 and 4.

Test 2 Coelho, C. A., Roy, A. (2013). Testing the hypothesis of a block compound symmetric
covariance matrix. Tech. Rep. # 1, 2013, CMA/FCT-UNL (submitted).

Test 3 Marques, F. J., Coelho, C. A. (2012) Near-exact distributions for the likelihood ratio
test statistic of the multi-sample block-matrix sphericity test. Applied Mathematics
and Computation, 219, 2861-2874.

Marques, F. J., Coelho, C. A., Marques, P. (2012) The Block-Matrix Sphericity Test:
Exact and Near-exact Distributions for the Test Statis- tic, in Recent Developments
in Modeling and Applications in Statistics Studies in Theoretical and Applied
Statistics: Selected Papers of the Statistical Societies, Oliveira, P. E., Temido, M. G.
and Henriques, C. (eds.), International Book Series, Springer, 35-43.

Carlos A. Coelho Bridge between Block-Circularity — Compound Symmetry

Figure 1. – Relations between the block-circularity structure and other block-structures:
Σ > 0 represents the absence of structure, with Σ being only positive-definite;

for each of the 6 possible tests of hypothesis depicted,

the structure on the left hand side of the arrow represents H1,

while the structure on the right hand side of the arrow represents H0.

The block-decomposition or construct in (29) or (30) will reveal itself extremely useful in ob-
taining the l.r.t. statistics and their moments for tests #4, 5 and 6.
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4.5.1. Testing between block-circularity and block-equicorrelation and equivariance or compound
symmetry

The block-equicorrelation and equivariance or compound symmetry structure is, say, similar to
the block-circularity structure, but with R1 = · · · = Rb p2c, together with the relation in (14) (see

Figure 1), which through (26) and (27) implies

Λ1 = R0 + (p− 1)R1 and Λ2 = · · · = Λp = R0 +R1

bp/2c∑

`=1

λα` = R0 −R1

given that, for α = 2, . . . , p, we have
∑bp/2c

`=1 λα` = −1.
Thus, once considered the construct or decomposition in (29) or (30), the test #4 may be seen

as the test of

H0 : Σ∗ = block-diagonal
(
Λ1,Λ2,Λ2, . . . ,Λ2,Λ2, . . . ,Λ2,Λ2︸ ︷︷ ︸

p−1

)
,

once assumed Σ∗ = block-diagonal
(
Λ1,Λ2,Λ3, . . . ,Λb p2c+1,Λb p2c+1, . . . ,Λ3,Λ2
︸ ︷︷ ︸

p−1

)

vs.
H1 : Σ∗ = block-diagonal

(
Λ1,Λ2,Λ3, . . . ,Λb p2c+1,Λb p2c+1, . . . ,Λ3,Λ2
︸ ︷︷ ︸

p−1

)
.

(40)

This allows us to see this test as a test of equality of
⌊p

2

⌋
covariance matrices of dimension m×m.

Indeed H0 in (40) may be re-written as

H0 : Λ2 = Λ3 = · · · = Λb p2c+1

assuming Λp−k+2 = Λk (k = 2, . . . ,
⌊p

2

⌋
+ 1) .

(41)

For odd p, this will be a test of equality of (p− 1)/2 covariance matrices, the m.l.e. of Λk (k = 2, . . . ,
(p + 1)/2) being 1

2(Ak + Ap−k+2) (where Ak is the k-th m×m diagonal block of A, the m.l.e. of
Σ∗), which, under H0 in (40) or (41), is a Wishart Wm(2(n − 1), 1

2Λ2) matrix, while for even p
it will be a test of equality of p

2 covariance matrices, the m.l.e.’s of p
2 − 1 of them being Wishart

Wm(2(n− 1), 1
2Λ2) matrices and the m.l.e. of one of them, Λ1+p/2, being a Wishart Wm(n− 1,Λ2)

matrix.

4.5.2. Testing between block-equicorrelation and equivariance or compound symmetry and block-
sphericity

The block-sphericity structure may be considered equivalent to the block-circularity structure,
but with R1 = · · · = Rb p2c = 0m×m (see Figure 1), which implies

Λ1 = Λ2 = · · · = Λp = R0 ,

so that, once considered the construct or decomposition in (29) or (30), the test #5 may be seen
as the test of
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H0 : Σ∗ = block-diagonal
(
Λ1,Λ1,Λ1, . . . ,Λ1,Λ1, . . . ,Λ1,Λ1︸ ︷︷ ︸

p−1

)
,

once assumed Σ∗ = block-diagonal
(
Λ1,Λ2,Λ2, . . . ,Λ2,Λ2, . . . ,Λ2,Λ2︸ ︷︷ ︸

p−1

)

vs.

H1 : Σ∗ = block-diagonal
(
Λ1,Λ2,Λ2, . . . ,Λ2,Λ2, . . . ,Λ2,Λ2︸ ︷︷ ︸

p−1

)
.

(42)

This allows us to see this test as a test of equality of two covariance matrices of dimension m×m,
since H0 in (42) may be re-written as

H0 : Λ1 = Λ2 = · · · = Λp

assuming Λ2 = · · · = Λp ,
(43)

and as such this will be a test of equality of two covariance matrices, the m.l.e. of Λ1 being
A1 ∼ Wm(n − 1,Λ1), while the m.l.e. of Λ2 is 1

p−1

∑p
k=2Ak (where Ak is the k-th m×m diagonal

block of A, the m.l.e. of Σ∗), which, under H0 in (42) or (43), is a Wishart Wm((p−1)(n−1), 1
p−1Λ1)

matrix.

4.5.3. Testing between block-circularity and block-sphericity

Considering the construct or decomposition in (29) or (30), the test #6 is then a test of

H0 : Σ∗ = block-diagonal
(
Λ1,Λ1,Λ1, . . . ,Λ1,Λ1, . . . ,Λ1,Λ1︸ ︷︷ ︸

p−1

)
,

once assumed Σ∗ = block-diagonal
(
Λ1,Λ2,Λ3, . . . ,Λb p2c+1,Λb p2c+1, . . . ,Λ3,Λ2
︸ ︷︷ ︸

p−1

)

vs.
H1 : Σ∗ = block-diagonal

(
Λ1,Λ2,Λ3, . . . ,Λb p2c+1,Λb p2c+1, . . . ,Λ3,Λ2
︸ ︷︷ ︸

p−1

)
.

(44)

This allows us to see this test as a test of equality of 1 +
⌊p

2

⌋
covariance matrices of dimension

m×m. Indeed H0 in (40) may be re-written as

H0 : Λ1 = Λ2 = Λ3 = · · · = Λb p2c+1

assuming Λp−k+2 = Λk (k = 2, . . . ,
⌊p

2

⌋
+ 1) .

(45)

For odd p, this will be a test of equality of 1 + (p− 1)/2 covariance matrices, the m.l.e. of Λk
(k = 2, . . . , (p+ 1)/2) being 1

2(Ak + Ap−k+2) (where Ak is the k-th m×m diagonal block of A, the
m.l.e. of Σ∗), which, under H0 in (44) or (45), is a Wishart Wm(2(n − 1), 1

2Λ1) matrix, and the
m.l.e. of Λ1 being A1 ∼Wm(n− 1),Λ1). For even p it will be a test of equality of 1 + p

2 covariance
matrices, the m.l.e.’s of p

2 − 1 of them being Wishart Wm(2(n− 1), 1
2Λ2) matrices and the m.l.e. of

two of them, Λ1 and Λ1+ p
2
, being Wishart Wm(n− 1,Λ2) matrices.
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5. Conclusions

Eigenblock and eigenmatrix constructs or decompositions of the type in (2) and (3) or (23)
and (24), where the matrices Uα are not function of the elements in A, are conceptually extremely
useful in helping us in (i) the derivation of l.r.t.’s and corresponding statistics, (ii) the study of the
distributions of such statistics, (iii) the design of bridging tests to other related block-structures
and (iv) the development and implementation of the same l.r.t. tests for complex random variables,
since by using such construct or decomposition we may avoid the need for elaborate estimation
procedures for patterned covariance matrices in order to be able to build the l.r.t’s, thus rendering
all the above tasks much simpler, and, not less important, by enabling us to view the tests under
study as compositions of other, much simpler and well-known, tests. This is exactly what happens
with the proposed example of application, the block-circularity test, whose l.r.t. statistic, by using
the eigenblock-eigenmatrix construct, was shown to be possible to be expressed as a product of well
known statistics, whose distributions in case X is assumed to have a complex multivariate normal
distribution, are also possible to be obtained in the form of products of independent Beta r.v.’s by
using the results in [12, 9].

Furthermore, the use of the method proposed still often enables an immediate extension of the
results obtained both in terms of the exact as well as the near-exact distributions developed to the
cases where X has an elliptically contoured distribution. This is indeed what happens with the
block-circularity test, but this was only made clear through the use of the eigenblock and eigen-
matrix decomposition, since by using this decomposition it was possible to express the likelihood
ratio statistic of this test as the product of independent l.r.t. statistics to test the independence of
blocks of variables and equality of covariance matrices, whose distributions under H0 remain the
same for elliptically contoured distributions as well as for the multivariate normal distribution (see
Chapters 8–10 of [1]), this way widening in a great deal the results obtained.

Although the use of such constructs is indeed not completely new (see for example [16]), its use
in deriving the l.r.t. statistics themselves and its use in obtaining a useful decomposition of the null
hypothesis, which induces a concomitant factorization of the c.f. of the negative logarithm of the
l.r.t. statistic, much useful in obtaining very precise near-exact approximations for the distributions
of the l.r.t. statistics, was never done before, while, on the other hand, in order to be able to fully
use and enjoy the entire potential of this method, some systematization was necessary, allowing for
a more embracing view of all the capabilities of the method.

An application to the development and study of the l.r.t. statistic to test for block-circularity
illustrates well the usefulness and capabilities of this type of constructs or decompositions, further
enabling for an almost easy development of very well-fitting near-exact approximations for the
distribution of this statistic. At the same time, this application will also be much useful in studying
the bridging l.r.t. statistics in subsection 4.5 and obtaining near-exact approximations for their
distributions.

These near-exact approximations obtained exhibit a good asymptotic behavior for increasing
sample sizes, which for larger values of p and m becomes only evident for larger samples, together
with very good performances for very small sample sizes and a marked asymptotic behavior for
increasing values of p, the number of blocks of variables, or the number of variables for the non-
block version of the test. Although for increasing values of the common dimension of the blocks,
m, the near-exact distributions developed are not able to show a so marked asymptotic behavior,
they show an outstanding behavior for very small sample sizes for all combinations of values of m
and p, behavior that gets even better for larger values of either one of these two parameters, as
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it is shown for example by the value of the upper-bound on the difference between the exact and
the near-exact c.d.f. for the near-exact distribution that matches ten exact moments, for m = 20,
p = 15 and n = 302, which is of the order of 2.78×10−45. To have a sense of the magnitude of this
value, we may say that if we commit an error of this magnitude when measuring the diameter of
the Milky Way, which, when including the tidal streams, is about 120,000 light-years (with 1 light-
year≈ 9.46×1012 kilometers), we would commit an error of about 3.16×10−15 nanometers, which
is about 1.43×10−14 of the diameter of a carbon atom, taking this diameter as being about 0.22
nanometers.
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