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Abstract. In this paper the authors combine the equicorrelation and equivariance test introduced by Wilks [13] with the
likelihood ratio test (l.r.t.) for independence of groups of variables to obtain the l.r.t. of block equicorrelation and equivariance.
This test or its single block version may find applications in many areas as in psychology, education, medicine, genetics and
they are important "in many tests of multivariate analysis, e.g. in MANOVA, Profile Analysis, Growth Curve analysis, etc"
[12, 9]. By decomposing the overall hypothesis into the hypotheses of independence of groups of variables and the hypothesis
of equicorrelation and equivariance we are able to obtain the expressions for the overall l.r.t. statistic and its moments. From
these we obtain a suitable factorization of the characteristic function (c.f.) of the logarithm of the l.r.t. statistic, which enables
us to develop highly manageable and precise near-exact distributions for the test statistic.
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1. INTRODUCTION

The problem of testing whether a p×p covariance matrix
has the equivariance and equicorrelation structure, that
is, to test if it may be written as

σ2(1−ρ)Ip +σ2ρEp

where Ip is the identity matrix of order p and Ep is a p×p
unitary matrix, was first addressed by Wilks [13], under
the multivariate Normal setting.

Later on, Gleser and Olkin [4, Lemma 2.1] have shown
that this is equivalent to test

H0 : Σ = σ2(1−ρ)Ip +σ2ρEp

or
H0 : ΓT ΣΓ = diag (σ2

1,σ
2
2, . . . ,σ

2
2︸      ︷︷      ︸

p−1

)

where σ2
1 = σ2 +σ2ρ(p−1), σ2

2 = σ2(1−ρ) and Γ is a
Helmert orthonormal matrix of dimensions p×p whose
first row is proportional to a vector of ones, and as such,
only function of p and not of ρ.

This test may find applications in many areas, from
psychology and medicine to genetics and it is impor-
tant “in many tests of multivariate analysis, e.g. in
MANOVA, Profile Analysis, Growth Curve analysis,
etc”, as SenGupta [9] states.

The exact distribution of the likelihood ratio test (l.r.t.)
statistic, under normality, was studied by many authors

[13, 11, 7, 5, 8], but it still remains to obtain a manage-
able and very well-fitting approximation to its exact dis-
tribution, which is too elaborate to be used in practice.

In this paper the authors address the l.r.t. of the hy-
pothesis

H0 : Σ =


∆1 . . . 0

∆k
0

. . .
∆m

 (1)

where

∆k = σ2
k

(
(1−ρk)Ipk +ρkEpk

)
, k = 1, . . . ,m , (2)

and develop very well-fitting and highly manageable
approximations for the distribution of the test statistic,
under the normality assumption.

2. SPLITTING THE NULL HYPOTHESIS

The hypothesis H0 in (1) may be written as

H0b|a o H0a (3)

where ‘o’ is to be read as ‘after’ and where

H0a : Σ =


∆1 . . . 0

∆k
0

. . .
∆m


where ∆k is any pk×pk positive definite matrix
(k = 1, . . . ,m), is the null hypothesis of independence



of the m groups of variables, the k-th of which has pk
variables, and

H0b|a ≡

m∧
k=1

H0bk |a , assuming H0a

where

H0bk |a : ∆k = σ2
k(1−ρk)Ipk +σ2

kρkEpk , k = 1, . . . ,m .

If we assume that Σ is the covariance matrix of

X =
[
X1, . . . ,Xk, . . . ,Xm

]′
∼ Np(µ,Σ) , (4)

where
Xk ∼ Npk (µ

k
,∆k) , (5)

with p =
m∑

k=1
pk, then the l.r.t. statistic to test H0a, based

on a sample of size n, is [1, Chap. 9]

Λa =

(
|A|∏m

k=1 |Ak |

)n/2

,

where A is the maximum likelihood estimator (m.l.e.)
of the covariance matrix of X in (4) and Ak is its k-th
diagonal block, with (see [3, 6])

E
(
Λh

a

)
=


p∏

j=2

(n− j
n

)r j (n− j
n

+ h
)−r j


×

Γ
(

n−1
2

)
Γ
(

n−2
2 + n

2 h
)

Γ
(

n−2
2

)
Γ
(

n−1
2 + n

2 h
) 

k∗ (6)

where k∗ = b`/2c, with ` denoting the number of Xk’s
with an odd number of variables, and

r j =


0 , j = 2
h j−2 + (−1) j k∗ , j = 3,4
r j−2 + h j−2 , j = 5, . . . , p ,

(7)

where

h j = (# of pk (k = 1, . . . ,m)≥ j)−1 , j = 1, . . . , p−2 . (8)

Then, following Lemma 2.1 in [4], the l.r.t. statistic to
test H0bk |a, based on a sample of size n, may be written
as

Λbk =

 |Ak |

a1k
(
tr Ak2

p−1

)p−1


n/2

,

where Ak is the m.l.e. of ∆k, being a1k the element in
the first row and first column of Ak and Ak2 the diagonal
block of dimension (pk −1)×(pk −1) that follows a1k.

The h-th moment of Λbk may then be written as

E
(
Λh

bk

)
=

pk∏
j=2

Γ
(

n−1
2 +

j−2
pk−1

)
Γ
( n− j

2

) Γ
( n− j

2 + n
2 h

)
Γ
(

n−1
2 +

j−2
pk−1 + n

2 h
)

which matches expression (1.10) in [13], and which, after
some analytical work may be written as

E
(
Λh

bk

)
=


pk∏
j=2

(n− j
n

)r jk (n− j
n

+ h
)−r jk


×


pk∏
j=2

Γ
( n− j

2 +
j−2

pk−1 +
j−1
2

)
Γ
( n− j

2 +
⌊ j−2

pk−1 +
j−1
2

⌋)
×

Γ
( n− j

2 +
⌊ j−2

pk−1 +
j−1
2

⌋
+ n

2 h
)

Γ
( n− j

2 +
j−2

pk−1 +
j−1
2 + n

2 h
)


where

r jk =


⌊ pk

4

⌋
, j = 2⌊ pk− j+2

2

⌋
, j = 3, . . . , pk .

Then, the l.r.t. statistic to test H0b|a is,

Λb|a =

m∏
k=1

Λbk ,

where all Λbk (k = 1, . . . ,m) are independent, and as such,
with

E
(
Λh

b|a

)
=

m∏
k=1

E
(
Λr

bk

)

=

m∏
k=1




pk∏
j=2

(n− j
n

)r jk (n− j
n

+ h
)−r jk


×


pk∏
j=2

Γ
( n− j

2 +
j−2

pk−1 +
j−1
2

)
Γ
( n− j

2 +
⌊ j−2

pk−1 +
j−1
2

⌋)
×

Γ
( n− j

2 +
⌊ j−2

pk−1 +
j−1
2

⌋
+ n

2 h
)

Γ
( n− j

2 +
j−2

pk−1 +
j−1
2 + n

2 h
)


 .
(9)

The l.r.t. statistic to test H0 in (1) is then

Λ = Λa Λb|a ,

where, given the way H0 was decomposed in (3), and
given the independence between Λa and the matrices Ak
(k = 1, . . . ,m), Λa and Λb|a are independent. As such, we
have

E
(
Λh

)
= E

(
Λh

a

)
E

(
Λh

b|a

)
, (10)

and, as such, if we take W = − log Λ, we have, from (6),
(9) and (10), the c.f. of W given by



ΦW (t) = E
(
Λ−it

)
=


p∏

j=2

(n− j
n

)r∗j (n− j
n
− it

)−r∗j

︸                                ︷︷                                ︸
Φ1(t)

×

Γ
(

n−1
2

)
Γ
(

n−2
2 −

n
2 it

)
Γ
(

n−2
2

)
Γ
(

n−1
2 −

n
2 it

) 
k∗+m

︸                            ︷︷                            ︸
Φ2(t)

×

m∏
k=1


pk∏
j=3

Γ
( n− j

2 +
j−2

pk−1 +
j−1
2

)
Γ
( n− j

2 +
⌊ j−2

pk−1 +
j−1
2

⌋)
×

Γ
( n− j

2 +
⌊ j−2

pk−1 +
j−1
2

⌋
− n

2 it
)

Γ
( n− j

2 +
j−2

pk−1 +
j−1
2 −

n
2 it

)
︸                                                   ︷︷                                                   ︸

Φ3(t)

,

(11)

where

r∗j =


m∑

k=1
bpk/4c , j = 2

r j +
m∑

k=1
I{pk≥ j}

⌊ pk− j+2
2

⌋
, j = 3, . . . ,max pk

r j , j = 1 + max pk, . . . , p

for r j given by (7) and (8) and k∗∗ = b`/2c+ m, with I{A}
being the indicator function of the condition A, that is, a
function that evaluates to 1 if the condition holds and to
zero in the opposite case.

3. NEAR-EXACT DISTRIBUTIONS

In order to build near-exact distributions for W and Λ,
we will then leave Φ1(t) in (11) unchanged and we will
replace Φ2(t)Φ3(t), in (11), by

Φ∗(t) =

m∗∑
`=0

π` λ
r+`(λ− it)−(r+`) (12)

where, for k∗ in (6),

r =
m + k∗

2
+

m∑
k=1

pk∑
j=3

j−2
pk −1

+
j−1

2
−

⌊
j−2

pk −1
+

j−1
2

⌋
(13)

which is the sum of all the second parameters of the
Logbeta distributions in Φ2(t)Φ3(t) in (11).

The choice of Φ∗(t) in (12) as an asymptotic
replacement for Φ2(t)Φ3(t) in (11) is based on
the fact that Φ2(t)Φ3(t) is the c.f. of a sum of
k∗+ m independent Logbeta r.v.’s with parameters

(n−2)/2 and 1/2, with another independent sum
of p =

∑m
k=1 pk independent Logbeta r.v.’s with pa-

rameters (n− j)/2 + b( j−2)/(pk −1) + ( j−1)/2c and
( j−2)/(pk −1) + ( j−1)/2−b( j−2)/(pk −1) + ( j−1)/2c
( j = 1, . . . , pk;k = 1, . . . ,m) and the results from Tricomi
and Erdélyi, in [10], which show that the c.f. of any
Logbeta(a,b) r.v. may be asymptotically replaced by
the c.f. of an infinite mixture of Γ(b + `,a) (` = 0,1, . . .)
distributions.

The parameter λ in (12) is then taken as the rate
parameter in

Φ∗∗(t) = θλs1 (λ− it)−s1 + (1− θ)λs2 (λ− it)−s2

where θ, λ, s1 and s2 are determined in such a way that

d(Φ2(t)Φ3(y))

dth

∣∣∣∣∣∣
t=0

=
dΦ∗∗(t)

dth

∣∣∣∣∣
t=0

for h = 1, . . . ,4 .

The weights π` (` = 0, . . . ,m∗−1) in (12) will then be
determined in such a way that

d(Φ2(t)Φ3(t))

dth

∣∣∣∣∣∣
t=0

=
dΦ∗(t)

dth

∣∣∣∣∣
t=0

for h = 1, . . . ,m∗ ,

with πm∗ = 1−
∑m∗−1
`=0 π`.

This procedure yields near-exact distributions for W
which have c.f.

Φ1(t)Φ∗(t) ,

with Φ1(t) given by (11) and Φ∗(t) by (12), where r, given
by (13) is always either an integer or a half-integer, since,
for pk > 1,

pk∑
j=3

( j−2
pk−1 +

j−1
2 −

⌊ j−2
pk−1 +

j−1
2

⌋)
=

pk−3
2 + 1

2

⌊ Mod(pk ,4)
2

⌋
.

As such, the near-exact distributions developed yield, for
W, distributions which, for non-integer r, are mixtures,
with weights pk (k = 0, . . . ,m∗), of m∗+ 1 Generalized
Near-Integer Gamma (GNIG) distributions of depth p
with integer shape parameters r∗j ( j = 2, . . . , p) and real
shape parameter r and corresponding rate parameters
(n− j)/n ( j = 2, . . . , p) and λ, and which, for integer r,
are similar mixtures but of Generalized Integer Gamma
(GIG) distributions, with the same shape and rate param-
eters (see [2, 3] and Appendix A for further details on the
GIG and GNIG distributions and their probability den-
sity and cumulative distribution functions).

Using the notation in Appendix A, the near-exact dis-
tributions obtained for W, for the case of non-integer r,
will have probability density and cumulative distribution
functions respectively of the form

f ∗W (w) =

m∗∑
`=0

π` f GNIG

(
w | r∗2, . . . ,r

∗
p;r + `;

n−2
n

, . . . ,
n− p

n
;λ; p

)
, w > 0



and

F∗W (w) =

m∗∑
`=0

π` FGNIG

(
w | r∗2, . . . ,r

∗
p;r + `;

n−2
n

, . . . ,
n− p

n
;λ; p

)
, w>0 ,

while the near-exact probability density and cumulative
distribution functions of Λ are respectively given by

f ∗Λ(z) =

m∗∑
`=0

π` f GNIG

(
− log z | r∗2, . . . ,r

∗
p;r + `;

n−2
n

, . . . ,
n− p

n
;λ; p

)
1
z
, 0<z<1

and

F∗Λ(z) =

m∗∑
`=0

π`

(
1−FGNIG

(
− log z |r∗2, . . . ,r

∗
p;r + `;

n−2
n

, . . . ,
n− p

n
;λ; p

))
, 0<z<1 .

For integer r, all we have to do is to replace the GNIG
probability density and cumulative distribution functions
by their GIG counterparts.

4. NUMERICAL STUDIES

In order to assess the performance of the near-exact
distributions developed we will use

∆ =
1

2π

∫ +∞

−∞

∣∣∣∣∣∣ΦW (t)−Φ1(t)Φ∗(t)
t

∣∣∣∣∣∣ dt

with
∆ ≥max

w

∣∣∣FW (w)−F∗W (w)
∣∣∣ ,

as a measure of proximity between the exact and the
near-exact distributions, where ΦW (t) is the exact c.f.
of W in (11) and FW ( · ) and F∗W ( · ) represent respec-
tively the exact and near-exact cumulative distribution
functions of W, corresponding respectively to ΦW (t) and
Φ1(t)Φ∗(t).

In Table 1 we may analyze values of ∆ for different
combinations of pk and different sample sizes. Smaller
values of ∆ indicate a closer agreement with the exact
distribution and as such, a better performance. Anyway,
even for very small sample sizes, that is, for sample sizes
hardly exceeding the total number of variables involved,
the near-exact distributions provide very sharp approxi-
mations to the exact distribution, with upper bounds on
the difference between the exact and near-exact c.d.f.’s of
the order of 10−16 or smaller.

TABLE 1. Values of ∆ for different combinations of pk
values and different sample sizes

pk p n
∆

m∗ = 4 m∗ = 6

{3,5,9,6} 23 25 1.47×10−16 7.33×10−20

125 3.59×10−18 6.02×10−23

225 2.33×10−19 1.12×10−24

{3,5,4,5,6} 23 25 6.76×10−16 9.42×10−20

125 3.29×10−18 8.52×10−23

225 1.80×10−19 1.59×10−24

{8,10,14,11} 43 45 4.42×10−19 4.42×10−24

145 1.90×10−19 1.92×10−25

245 1.96×10−20 6.64×10−27

{7,6,8,9,13} 43 45 1.24×10−18 6.32×10−24

145 2.54×10−19 2.58×10−25

245 2.51×10−20 8.85×10−27

{18,20,24,23} 85 87 6.44×10−21 3.47×10−28

187 3.76×10−21 1.73×10−28

287 4.83×10−22 9.87×10−30

{12,14,16,19,24} 85 87 4.51×10−21 1.51×10−28

187 1.96×10−21 4.11×10−30

287 1.88×10−22 4.42×10−30

5. CONCLUSIONS

From the results of numerical studies carried out we
see that the near-exact distributions developed show an
interesting set of nice features. They not only have a
good asymptotic behavior for increasing sample sizes but
also an extraordinary performance for very small sample
sizes, as for example for sample sizes exceeding only
by 2 the overall number of variables. Furthermore, these
near-exact distributions also display a marked asymptotic
behavior for increasing values of pk, and consequently
also of p and similar behaviors for different numbers of
sets of variables, for a given value of p, with a somewhat
slight asymptotic behavior for increasing numbers of sets
of variables, for the larger values of p, which is another
interesting feature. All these features add up to make the
near-exact approximations developed the best choice for
practical applications of the test studied.

A similar procedure to the one used may be applied
to the case where the random vector X has a complex
multivariate Normal distribution.

For m = 1, the present test reduces to the equivariance-
equicorrelation Wilks [13] test.
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A. THE GIG AND GNIG
DISTRIBUTIONS

We will say that a r.v. Y has a GIG (Generalized Inte-
ger Gamma) distribution of depth p, with integer shape
parameters r j and rate parameters λ j ( j = 1, . . . , p), if

Y =

p∑
j=1

Y j

where

Y j ∼ Γ(r j,λ j) , r j ∈ IN, λ j > 0, j = 1, . . . , p

are p independent integer Gamma or Erlang r.v.’s, with
λ j , λ j′ for all j , j′, with j, j′ ∈ {1, . . . , p} [2].

The r.v. Y has p.d.f. and c.d.f. given by (see [2]),

f GIG(y;r j,λ j; p) = K
p∑

j=1

P j(y)e−λ j y , (y > 0)

and

FGIG(y;r j,λ j; p) = 1−K
p∑

j=1

P∗j(y)e−λ j y , (y > 0)

where K =
∏p

j=1 λ
r j
j ,

P j(y)=

r j∑
k=1

c j,k yk−1 , P∗j(y)=

r j∑
k=1

c j,k

k−1∑
i=0

yi (k−1)!
i!λk−i

j

with

c j,r j =
1

(r j−1)!

p∏
i=1,i, j

(λi−λ j)−ri , j = 1, . . . , p ,

and, for k = 1, . . . ,r j−1; j = 1, . . . , p,

c j,r j−k =
1
k

k∑
i=1

(r j− k + i−1)!
(r j− k−1)!

R(i, j, p)c j,r j−(k−i) ,

where

R(i, j, p) =

p∑
k=1,k, j

rk
(
λ j−λk

)−i
(i = 1, . . . ,r j−1) .

If Yp has a Gamma distribution with a non-integer
shape parameter rp, then we will say that the r.v. Y has
a GNIG (Generalized Near-Integer Gamma) distribution
of depth p. The p.d.f. and c.d.f. of Y are, for y > 0,
respectively given by [3]

f GNIG(y |r1, . . . ,rp−1;rp; λ1, . . . ,λp−1;λp; p) =

Kλrp
p

p−1∑
j=1

e−λ jy
r j∑

k=1

{
c j,k

Γ(k)
Γ(k+r)

yk+rp−1

1F1(rp,k+rp,−(λp−λ j)y)
}
,

and

FGNIG(y |r1, . . . ,rp−1;rp; λ1, . . . ,λp−1;λp; p) =

λ
rp
p zrp

Γ(rp+1) 1F1(rp,rp+1,−λpz)

−Kλr
p−1∑
j=1

e−λ jy
r j∑

k=1

c j,kΓ(k)

λk
j

k−1∑
i=0

zrp+iλi
j

Γ(rp+1+i)

1F1(rp,rp+1+i,−(λp−λ j)y) ,

with K =
∏p−1

j=1 λ
r j
j .
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