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Abstract

When modeling extreme events there are a few primordial param-

eters, among which we refer the extreme value index and the extremal

index. The extreme value index measures the right tail-weight of the

underlying distribution and the extremal index characterizes the de-

gree of local dependence in the extremes of a stationary sequence.
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Most of the semi-parametric estimators of these parameters shows the

same type of behavior: nice asymptotic properties, but a high vari-

ance for small values of k, the number of upper order statistics used

in the estimation, and a high bias for large values of k. This brings

a real need for the choice of k. Choosing some well-known estimators

of those two parameters we revisit the application of a heuristic algo-

rithm for the adaptive choice of k. A simulation study illustrates the

performance of the proposed algorithm.
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1 Introduction and preliminaries

In Extreme Value Theory (EVT) we deal essentially with the estimation of

parameters of extreme or rare events. A large number of applications in areas

such as hydrology, telecommunications, finance, biology and environmental

studies, reveals the need for an adequate estimation of those parameters.

The classical assumption in EVT is that we have a set of independent

and identically distributed (i.i.d.) random variables (r.v.’s), X1, . . . , Xn, from

an unknown distribution function (d.f.) F and we are concerned with the

limit behavior of either Mn ≡ Xn:n = max(X1, . . . , Xn) or mn ≡ X1:n =

min(X1, . . . Xn) as n → ∞. Thinking on maximum values, whenever it is

possible to linearly normalize Mn so that we get a non-degenerate limit, as

n→∞, such a limit is of the type of the extreme value (EV ) d.f.,

EVγ(x) :=

 exp[−(1 + γx)−1/γ], 1 + γx > 0 if γ 6= 0

exp[− exp(−x)], x ∈ R if γ = 0.
(1)

We then say that F is in the domain of attraction for maxima of EVγ,

denoting this by F ∈ DM(EVγ).
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There is a large variety of parameters of extreme events, but the esti-

mation of the extreme value index, the parameter denoted γ, in (1), is of

primordial importance by itself and because it is the basis for the estimation

of all other parameters of extreme events. Among the most relevant param-

eters of extreme events, and assuming that we are interested in large values,

i.e. in the right tail of the underlying model F , we can mention:

• the probability of exceedance of a high level x ≡ x
H

, px := P(X > x) =

1− F (x);

• the return period of a high level x, which is given by rx := 1/(1−F (x))

in any i.i.d. scheme;

• the right endpoint of an underlying model F , x∗ ≡ xF := sup{x :

F (x) < 1};

• a high quantile of probability 1 − p, p small, situated in the border

or even beyond the range of the available data, defined as χ1−p :=

inf {x : F (x) ≥ 1− p} =: F←(1 − p) = U(1/p), p < 1/n, where

U(t) = F←(1− 1/t), t ≥ 1 is the associated reciprocal quantile func-

tion. In financial frameworks χ1−p is known as the Value at Risk at a

level p (VaRp).

The EVγ d.f., in (1), incorporates the three Fisher-Tippett types:

• Gumbel: Λ(x) = EV0(x) = exp(− exp(−x)), x ∈ R, (γ = 0), the limit

for exponential tailed distributions;

• Fréchet: Φα(x) = EV1/α (α(x− 1)) = exp(−x−α), α > 0, x > 0,

(γ = 1/α > 0), the limit for heavy tailed distributions;

• Weibull: Ψα(x) = EV−1/α (α(x+ 1)) = exp(−(−x)α), α > 0, x < 0,

(γ = −1/α < 0), the limit for short tailed distributions.
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We can consider location and scale parameters, µ ∈ R and σ > 0, re-

spectively, in the EVγ d.f., denoting it by EVγ(x;µ, σ) = EVγ((x − µ)/σ).

To say that F ∈ DM(EVγ) means that for large values of n we can consider

the approximation P [Xn:n ≤ x] = F n(x) ≈ EVγ((x− bn)/an), for adequate

an > 0 and bn ∈ R. The shape parameter γ is directly related to the weight

of the right tail, F := 1− F , of the underlying model F . As γ increases the

right tail becomes heavier and heavier. Figure 1 shows the behavior of the

right-tails for the three different types of EV models, and the Gauss model

for comparison.
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Figure 1: Gumbel, Fréchet, Weibull and Gauss p.d.f.’s (left) and a zoom of the

right tail of those p.d.f.’s (right).

• If γ = 0, the right tail is of an exponential type. The right endpoint

can then be either finite or infinite;

• If γ > 0, the right tail is heavy, of a negative polynomial type, and F

has an infinite right endpoint ;

• If γ < 0, the right tail is light, and F has a finite right endpoint ,

x∗ < +∞.

However in many practical applications extreme conditions often persist

over several consecutive observations, i.e. the random variables are no longer
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independent. If {Yn}n≥1 is a stationary dependent sequence coming from an

underlying d.f. F such that some general local and asymptotic dependence

conditions hold, the limiting process of exceedances of high levels, after a

suitable normalization is a compound Poisson process, i.e. there is a cluster-

ing of exceedances of high levels. The underlying Poisson values represent

cluster positions and the multiplicities are the clusters sizes. In such a sit-

uation it appears a new parameter that needs to be taken into account in

any inferential procedure. Such a parameter, called the extremal index and

usually denoted by θ, has an important role in the obtention of the sizes of

the clusters of exceedances.

Let us consider the following example:

Example 1.1. Let {Xn}n≥1 be a sequence of i.i.d. variables from the model

F (x) = (1− exp(−x))2, x ≥ 0 and {Yn}n≥1 the two-dependent sequence

defined as Yn = max(Zn+1, Zn), n ≥ 1, where {Zi}i≥1 are exponential i.i.d.

random variables with d.f. H(z) = 1−exp(−z), z ≥ 0. The underlying model

for Yn is then also given by F (y) = (1− exp(−y))2, y ≥ 0. Figure 2 shows

a size equal to 2 for the clusters of exceedances of high levels by the {Yn}
sequence. We shall see that this implies an extremal index θ = 1/2 = 0.5. It

can also be seen a shrinkage of the largest observations for the 2-dependent

sequence, despite of the fact that we have the same model underlying both

sequences.

For the extremal index θ, 0 ≤ θ ≤ 1, directly related to the clustering

of exceedances, we have θ = 1 for i.i.d. sequences and θ → 0 whenever

dependence increases. The case θ = 0 appears in pathological situations.

For ‘almost all cases’ of interest, we have θ > 0.

If the stationary sequence {Yn}n≥1 comes from an underlying d.f. F , and

{Xn}n≥1 is the associated i.i.d. sequence, i.e. an i.i.d. sequence from the

same model F , then, under general asymptotic and local dependence re-

strictions as, e.g., both the long-range dependence condition D, in Lead-
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Figure 2: Sample paths from an i.i.d. process and a 2-dependent process.

better et al. (1983), and the local dependence condition D′, in Leadbet-

ter and Nandagopalan (1989), the limiting d.f. of the maximum Yn:n =

max(Y1, . . . , Yn) may be directly related to the limiting d.f. of the maximum,

Xn:n, of the i.i.d. associated sequence, through the extremal index .

Definition 1.1 (Leadbetter et. al., 1983). The stationary sequence {Yn}n≥1
is said to have an extremal index θ ∈ (0, 1] if, for all τ > 0, there exists a

sequence of levels (un(τ))n∈N , such that

lim
n→∞

P [Xn:n ≤ un(τ)] = lim
n→∞

F n(un(τ)) = e−τ

and lim
n→∞

P [Yn:n ≤ un(τ)] = e−θτ .

From this definition we see that the extremal index , θ, can be informally

defined by the approximation

P [Yn:n ≤ x] ≈ F nθ(x) ≈ EV θ
γ

(
x− an
bn

)
= EVγ

(
x− a′n
b′n

)
,

where

 b′n = bnθ
γ

a′n = an + bn

(
θγ−1
γ

) .

So, as a consequence of the stability for maxima of the EV d.f., the limiting

d.f. of Yn:n, linearly normalized, is still an EV d.f. It is what is established

in the following theorem:
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Theorem 1.1 (Leadbetter et. al., 1983). Let {Yn}n≥1 be a station-

ary sequence with marginal distribution F , {Xn}n≥1 an i.i.d. sequence of

r.v.’s with the same distribution F , Mn = max (Y1, · · · , Yn) and M̃n =

max (X1, · · · , Xn). Under the D(un) condition, with un = anx+ bn,

Pr
{

(M̃n − bn)/an ≤ x
}
−→
n→∞

G1(x)

as n −→∞, for normalizing sequences {an > 0} and {bn}, if and only if,

Pr {(Mn − bn)/an ≤ x} −→
n→∞

G2(x)

where G2(x) = Gθ
1(x), for 0 < θ ≤ 1.

So, being G1(·) ≡ EVγ(·) an extreme value d.f., the limit law G2(·) ≡
EV θ

γ (·) is a extreme value d.f. with location, scale and shape parameters

(µθ, σθ, γθ) given by

µθ = µ− σ1− θγ

γ
, σθ = σθγ and γθ = γ.

The extremal index estimation is then important not only by itself but

also because of its influence in the estimation of other important parameters

of rare events.

2 Extreme value index and extremal index

estimation

Here, we consider models with a heavy right tail, i.e. models for which γ > 0.

We write F ∈ DM(EVγ>0) =: DM+.

Given a sample (X1, . . . , Xn), let X1:n ≤ · · · ≤ Xn:n be the associated

ascending order statistics. The semi-parametric estimation of γ is usually

based on the k top order statistics in the sample. Several estimators have

been extensively studied by many authors. For heavy right tail models, we
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consider here a classical estimator, the Hill estimator (Hill, 1975), H, and a

more recent very well behaved estimator, the minimum-variance reduced-bias

estimator (Caeiro et al., 2005), H, defined, respectively, as

H ≡ H(k) :=
1

k

k∑
i=1

lnXn−i+1:n − lnXn−k:n (2)

and

H ≡ H(k) := H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
, (3)

where β̂ and ρ̂ are adequate consistent estimators of β 6= 0 and ρ < 0, ‘scale’

and ‘shape’ second-order parameters, respectively. For the estimation of ρ

we refer to Fraga Alves et al. (2003) and for the estimation of β see Gomes

and Martins (2002), Gomes et al. (2008a) and Caeiro et al. (2009), among

others.

For consistent semi-parametric γ-estimation in the whole domain of at-

traction, DM+, we need to consider a first order condition, 1− F ∈ RV−1/γ,
where the notation RVα stands for the class of regularly-varying functions

with an index of regular variation equal to α ∈ R, i.e. positive measurable

functions g(·) such that for any x > 0, g(tx)/g(t)→ xα, as t→∞ (Bingham

et al., 1987). We further need to work with intermediate k, i.e. k verifying

k ≡ kn →∞ and k/n→ 0, as n→∞.
Classical estimators of θ have been developed based on characterizations

of θ given by Leaddbetter (1983) and O’Brien (1987). We consider the most

common interpretation of θ, as being the reciprocal of the ‘mean time of

duration of extreme events’ what is directly related to the exceedances of

high levels (Hsing et al., 1988, Leadbetter and Nandagopalan,1989),

θ =
1

limiting mean size of clusters
.

Identifying clusters by the occurrence of downcrossings or upcrossings,

we can write

θ = lim
n→∞

Pr[X2 ≤ un|X1 > un] = lim
n→∞

Pr[X1 ≤ un|X2 > un]. (4)
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The classical up-crossing UC-estimator, Θ̂UC (Nandagopalan, 1990;

Gomes, 1990, 1992, 1993), is a naive estimator that comes directly as an

empirical counterpart of (4),

Θ̂UC ≡ Θ̂UC(un) :=

∑n−1
i=1 I (Xi ≤ un < Xi+1)∑n

i=1 I(Xi > un)
, (5)

for a suitable threshold un, where I(A) denotes, as usual, the indicator func-

tion of A.

Consistency of this estimator is obtained provided that the high level un

is a normalized level, i.e. if with τ ≡ τn fixed, the underlying d.f. F verifies

F (un) = 1− τ/n+ o(1/n), n→∞ and τ/n→ 0.

A deterministic level u ∈ [Xn−k:n, Xn−k+1:n[ is considered. The

UC−estimator can now be written as a function of k, the number of top

order statistics above the chosen threshold,

Θ̂UC(k) :=
1

k

∑n−1

i=1
I (Xi ≤ Xn−k:n < Xi+1). (6)

For many dependent structures, the bias of Θ̂UC(k) has two dominant

components of orders k/n and 1/k (see Gomes et al., 2008b),

Bias[Θ̂UC(k)] = ϕ1(θ)

(
k

n

)
+ ϕ2(θ)

(
1

k

)
+ o

(
k

n

)
+ o

(
1

k

)
(7)

whenever n→∞ and k ≡ k(n)→∞, k = o(n).

The Generalized Jackknife methodology has the properties of estimating

the bias and the variance of any estimator, helping the building of estimators

with bias and mean squared error often smaller than those of an initial set

of estimators.

The Generalized Jackknife methodology states that if the bias has two

main terms we would like to reduce, we need to have access to three estima-

tors, with the same type of bias.

Definition 2.1 (Gray and Schucany, 1972). Given three biased estimators

of θ, T
(1)
n , T

(2)
n and T

(3)
n such that

E[T (i)
n − θ] = b1(θ)ϕ

(i)
1 (n) + b2(θ)ϕ

(i)
2 (n) i = 1, 2, 3,
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the Generalized Jackknife Statistic (of order 2) is given by

TGJ
n :=

∥∥∥∥∥∥∥∥
T

(1)
n T

(2)
n T

(3)
n

ϕ
(1)
1 (n) ϕ

(2)
1 (n) ϕ

(3)
1 (n)

ϕ
(1)
2 (n) ϕ

(2)
2 (n) ϕ

(3)
2 (n)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1 2 3

ϕ
(1)
1 (n) ϕ

(2)
1 (n) ϕ

(3)
1 (n)

ϕ
(1)
2 (n) ϕ

(2)
2 (n) ϕ

(3)
2 (n)

∥∥∥∥∥∥∥∥
.

Using the information obtained from (7) and based on the estimator Θ̂UC

computed at the three levels, k, [k/2] + 1 and [k/4] + 1, where [x] denotes,

as usual, the integer part of x, Gomes et al. (2008b) derived a reduced-bias

estimator for θ, the Generalized Jackknife estimator of order 2, Θ̂GJ , defined

as

Θ̂GJ ≡ Θ̂GJ(k) := 5Θ̂UC([k/2] + 1)− 2
(
Θ̂UC([k/4] + 1) + Θ̂UC(k)

)
. (8)

This is an asymptotically unbiased estimator of θ, in the sense that it can

remove the two dominant components of bias referred to in (7).

3 Monte Carlo simulations

Asymptotically, the reduced-bias estimators in (3) and (8) present very nice

properties outperforming the associated classical estimators. However for

finite samples, those estimators still present the aforementioned difficulties,

high variance for small values of k, the number of upper order statistics used

in the estimation, and a high bias for very large values of k. Procedures for

the choice of k are again required. Recently the use of adequate bootstrap

procedures revealed an improvement in the finite sample properties of the

estimators. Let us refer to Prata Gomes and Neves (2011) and Gomes et

al. (2012a). However the choice of the level k still remains an interesting

research topic.
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Monte Carlo simulation studies give us the possibility of analyzing the

behavior of our procedures, given that the true values of the parameters

are known. In this study, the Fréchet model for an i.i.d. setup and some

stationary models, described below, will be considered. For those models,

and on the basis of 1000 replicates, patterns of Mean Values (E) and Root

Mean Squared Errors (RMSE) of estimators in (2), (3), (6) and (8) are shown,

for some values of the unknown parameters, and for samples of size 1000. In

this article the following models were considered:

Model I. (IID sequence) Let {Xi}i≥1 be a sequence of independent random

variables, with d.f. F (x) = exp(−x−1/γ), x > 0, with γ = 1 and

γ = 0.25. Then θ = 1.

Model II. (Moving Maximum Process I). The stationary two-dependent

model referred to in Example 1.1, defined by Yi = max{Zi+1, Zi}, for

i ≥ 1, where {Zi}i≥1 is an i.i.d. sequence of standard exponential ran-

dom variables. Then, {Yi}i≥1 has a d.f. F (y) = (1− exp(−y))2, y > 0.

Choosing un(τ) such that nP (Y1 > un)→ τ as n→∞, then nP (Z1 >

un)→ τ/2 as n→∞ and P
{
Yn:n ≤ un(τ)

}
= P

{
max

(
Z1, · · · , Zn

)
≤

un(τ)
}
P
{
Zn+1 ≤ un(τ)

}
→ exp(−τ/2), as n → ∞, i.e. {Yn} has then

extremal index θ = 1/2 (see Leadbetter and Rootzén, 1988).

Model III. (Max-Autoregressive Process I). Let {Zi}i≥1 be a sequence of

independent, unit-Fréchet distributed random variables. For 0 < θ ≤ 1,

let Y1 = Z1 and Yi = max{(1 − θ)Yi−1, θZi}, for i ≥ 2. The marginal

distribution of the process {Yi}i≥1 is unit-Fréchet and for un = ny,

0 < y < ∞, P
{
Mn ≤ un

}
→ exp

(
− θ/y

)
, as n → ∞. The extremal

index of the sequence is equal to θ (see Beirlant et al., 2004).

Model IV. (Max-Autoregressive Process II). Let Z0 be a random variable

with d.f. H0(z) = exp
(
− θz−α(1 − θ)−1

)
, α > 0, and {Zi}i≥1 be a

sequence of independent random variables, independent of Z0, with

d.f. F (z) = exp
(
− z−α

)
. For 0 < θ < 1, let Y0 = Z0 and Yi =
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(1− θ)1/α max{Yi−1, Zi}, for i ≥ 1. The extremal index of this process

is θ (see Alpuim, 1989, and Canto e Castro, 1992).

Model V. (Moving Maximum Process II). Let {Zi}i≥0 be a sequence of

independent, unit-Fréchet distributed random variables. For a ≥ 0,

let Y0 = Z0 and Yi = (a + 1)−1 max
{
aZi−1, Zi

}
. If a ≤ 1 we have

P{Mn ≤ nx} = P{M̃n ≤ nx}θ → {exp
(
− x−1

)
}1/(a+1) as n → ∞,

otherwise P{Mn ≤ nx} → {exp
(
− x−1

)
}a/(a+1) as n → ∞. Then

θ = max{1, a}/(a+ 1) and 1/2 ≤ θ ≤ 1 (see Davidson, 2011).

3.1 An illustration of the finite sample behavior of the

extreme value index estimators

Extensive comparative simulation studies of the extreme value index esti-

mators H and H, in (2) and (3), respectively, can be seen in Caeiro et al.

(2005), among others. The pattern for dependent processes does not differ

much from the pattern associated to independent structures, as can be seen

in Figure 3, where the simulated mean values and root mean squared errors

of the aforementioned estimators are pictured, as a function of k, for Model

III above and θ = 0.1.
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Figure 3: Simulated mean values (left) amd RMSE’s (right) of the extreme value

index estimators under study, for Model III (θ = 0.1) and a sample n = 1000.
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The main advantage of the corrected Hill estimators in (3) lies on the fact

that we can adequately estimate the second-order parameters β and ρ so that

the MSE of H is smaller than the MSE of Hill’s estimator for all k. And

this happens together with a higher stability of the sample paths around the

target value not only for i.i.d. processes, but also for all dependent processes

considered.

3.2 Simulation of the finite sample behavior of the ex-

tremal index estimators

Figures 4, 5, 6, 7, 8, 9 and 10 show an illustration of the results obtained for

the simulated mean values and root mean squared errors of the extremal index

estimators under study, for the above mentioned models, here provided only

for a sample size n = 1000 and for a few values of the parameters. Further

values for the sample size as well as for the parameters are available from the

authors.

Figure 4: Simulated mean values (left) amd RMSE’s (right) of the estimators

under study, for Model II (θ = 0.5) and a sample n = 1000.

As already noticed in Gomes et al. (2008b), the generalized jackknife

extremal index estimator in (8), has very stable sample paths, around the

target value θ, but at expenses of a very high variance, which does not enable
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Figure 5: Simulated mean values of the estimators under study, for Model III

with θ = 0.1, 0.5, 0.9 and a sample n = 1000.

Figure 6: Simulated RMSE’s of the estimators under study, for Model III with

θ = 0.1, 0.5, 0.9 and a sample n = 1000.

Figure 7: Simulated mean values of the estimators under study, for Model IV

with θ = 0.1, 0.5, 0.9 and a sample n = 1000.
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Figure 8: Simulated RMSE’s of the estimators under study, for Model IV with

with θ = 0.1, 0.5, 0.9 and a sample n = 1000.

Figure 9: Simulated mean values of the estimators under study, for Model V

with a = 0.9, 0.4, 0.1(θ = 0.526, 0.714, 0.909) and a sample n = 1000.

Figure 10: Simulated RMSE’s of the estimators under study, for Model V with

a = 0.9, 0.4, 0.1(θ = 0.526, 0.714, 0.909) and a sample n = 1000.
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it to overpass the original estimator, regarding MSE at optimal levels. It is

there suggested the consideration of the levels k, [δk] + 1 and [δ2k] + 1,

dependent of a tuning parameter δ, 0 < δ < 1, or the use of subsampling

techniques similar to the ones in Robinson and Tawn (2000), Scotto et al.

(2003) and Martins and Ferreira (2004), a topic deserving further research,

but out of the scope of this paper (see Gomes et al., 2008b, for further details

on the subject).

3.3 Finite sample behaviour of adaptive extreme value

index and extremal index estimators

Our interest lies now on the choice of the level k to be used in the estimation

of either γ or θ. Let us generally denote by T (k) any of the above mentioned

estimators. The heuristic algorithm in Gomes et al. (2012b) is now applied

to the adaptive choice of the sample fraction needed for estimating each one

of the parameters. This algorithm is the following:

Heuristic choice of the optimal sample fraction

1. Given an observed sample (x1, . . . , xn), compute, for k = 1, . . . , n− 1,

the observed values of T (k).

2. Obtain j0, the minimum value of j, a non-negative integer, such that

the rounded values, to j decimal places, of the estimates in Step 1

are distinct. Define a
(T )
k (j) = round(T (k), j), k = 1, 2, . . . , n− 1, the

rounded values of T (k) to j decimal places.

3. Consider the sets of k values associated to equal consecutive values

of a
(T )
k (j0), obtained in Step 2. Set k

(T )
min and k

(T )
max the minimum and

maximum values, respectively, of the set with the largest range. The

largest run size is then l
T

:= k
(T )
max − k(T )min.

4. Consider all those estimates, T (k), k
(T )
min ≤ k ≤ k

(T )
max, now with two

extra decimal places, i.e. compute T (k) = a
(T )
k (j0 + 2). Obtain the
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mode of T (k) and denote K
T

the set of k-values associated with this

mode.

5. Take k̂T as the maximum value of K
T
, and consider the adaptive esti-

mate T (k̂
T
).

6. The best estimate is the value of T that corresponds to the maximum

run size l
T

computed in Step 3.

From the models described above, samples were generated for some val-

ues of the parameters. Table 1 shows, for each model, the values of the

parameters considered in the simulation and the results obtained from the

application of the adaptive algorithm: the largest run size, l(•), the estimate

of k, k̂(•), where (•) denotes the estimators under study, and finally the param-

eters’ estimates, either of γ for the i.i.d. structures or of θ for the dependent

processes.

Parameter lH lH k̂H k̂H γ̂H γ̂H

Model I γ = 1 278 302 583 790 1.220 0.960

γ = 0.25 540 379 593 792 0.305 0.242

Parameter lUC lGJ k̂UC k̂GJ θ̂UC θ̂GJ

Model II θ = 0.5 284 242 191 646 0.435 0.594

(another sample) θ = 0.5 261 96 196 585 0.439 0.582

Model III θ = 0.1 387 190 545 621 0.059 0.122

θ = 0.5 246 119 206 886 0.495 0.525

θ = 0.9 148 184 142 623 0.826 0.886

Model V θ = 0.526 228 107 473 550 0.331 0.537

θ = 0.714 146 154 265 990 0.580 0.726

θ = 0.909 125 186 227 945 0.708 0.975

Table 1: Results from the application of the adaptive algorithm to the models de-

scribed. Random samples were generated considering the true values of parameters

pointed out.
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In Figure 11, we present the sample paths of the estimators of γ for two

independent samples from Fréchet models with γ = 1 and γ = 0.25, as a

function of k, together with the adaptive choices provided by the algorithm.

Finally, Figures 12, 13 and 14 are similar to Figure 11, but for the esti-

mation of the extremal index θ and three different dependent sample paths,

respectively associated to Model II, III and V.
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Figure 11: Adaptive choice of the level k for estimating γ for two samples from a

Fréchet Model, with γ = 1 (left) and γ = 0.25 (right).
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Figure 12: Adaptive choice of the level k for estimating θ for two random samples

from a 2-dependent Model.
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Figure 13: Adaptive choice of the level k for estimating θ for random samples

generated with θ = 0.1, 0.5, 0.9 (left to right) from Model III.
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Figure 14: Adaptive choice of the level k for estimating θ for random samples

generated with θ = 0.526, 0.714, 0.909 (left to right) from Model V.

4 Concluding remarks

The heuristic algorithm described above seems to perform very well in the

choice of the level k to be used in the estimation of both γ and θ. Further

simulation studies are now in progress. For the estimation of γ, and as

expected, the algorithm leads to large k-estimates and consequently to more
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reliable estimates of γ. A similar comment applies to the adaptive estimation

of θ.

However we think that future research is still welcome for improving the

estimators of θ, so that more stable patterns can be obtained and possibly

other alternative adaptive estimators too.
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