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Centro de Matemática e Aplicações and Departamento de Matemática, Faculdade de Ciências
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Abstract

The quantification of operational risk has to deal with various concerns regarding
data. One of the main questions is the bias in the data on the operational losses amounts
recorded even if it’s compiled internally. We show that it’s possible, based on mild
assumptions on the internal procedures put in place to manage operational losses, to
estimate the parameters for the losses amounts, taking in consideration the bias that, not
being considered, generates a twofold error in the estimators for the mean loss amount and
the total loss amount, the former being overvalued and the last undervalued. We consider
that the probability that a loss is reported and ends up recorded for analysis, increases
with the size of the loss, what causes the bias in the database but, at the same time, we
don’t consider the existence of a threshold, above which, all losses are recorded. Hence, no
loss has probability one of being recorded, in what we defend is a realist framework. We
deduce the general formulae, present simulations for common theoretical distributions,
estimate the impact for not considering the bias factor when estimating the value at risk
and estimate the true total operational losses the bank incurred.

Key Words: Operational Risk Management, Loss Data, Bias, VaR, Applications
and Case Studies.
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1 INTRODUCTION

The quantification of operational risk has to deal with various concerns regarding data, much
more than other types of risk which banks and insurers are obliged to manage. Several studies,
at first more empirical and at present already more theoretical and mathematical supported,
document several of those concerns. First of all, the lack of internal or external data on
operational losses. Although this problem has, in the last years, been dealt with by researchers
and practitioners, by using data collected by commercial vendors, these commercial databases
still have various handicaps that, more or less, summarize the problems regarding operational
loss data and, at the same time, drives the motivation to our approach to the problem of
making parametric inference, using loss data statistics, in some cases aggregated data, e. g.,
totals or mean values.

We can summarize the main problems for operational losses data by:
a) Some of the databases reported in several papers, contain data only for big banks.

Since, at least to our knowledge, there are no studies documenting that we are dealing
with scale factors, meaning that, an increase in scale results in a proportional increase in
operational risk, we can say that part of the industry is not represented. Another question
is raised by the methods applied to compile the databases that, usually, have to depend on
public disclosed losses. See, for instance de Fontnouvelle et al. (2003), where the authors
compare results for two commercial databases collected this way, raising some interesting
questions about the data or de Fontnouvelle et al. (2005) where some concerns about a
completely different collection method and database are reported.

b) Usually these vendors can collect only data for losses that exceed some threshold, 1
million USD being common.

c) Deciding if a loss is an operational loss or not, is another problem posed to data
compilers and, once decided that the loss can be classified as such, they have to define in
which business line and type to classify the loss. The common classification being eight busi-
ness lines, Corporate Finance; Trading and Sales; Retail Banking; Payment and Settlement;
Agency Services; Commercial Banking; Asset Management; and Retail Brokerage and seven
loss types, Internal Fraud; External Fraud; Employment Practices and Workplace Safety;
Clients, Products and Business Practices; Damage to Physical Assets; Business Disruption
and System Failure; and Execution, Delivery and Process Management.

Hence, when considering the caveats above we can say that a) and b) poses problems of
bias. In the first case, we have a structural bias due to the large size of companies that supply
the data, leaving us with a potentially biased database of institutions. For several reasons,
mainly because the data is compiled from publicly available sources, only large institutions are
considered, this should motivate not so large institutions to compile their own data resulting
from their specific experience. In the second case, we have to deal with a confirmed biased
sample of operational losses since, the vendors or the data collectors, only report data above
a predefined threshold. Again, small companies will not be represented if only large losses
are recorded. In the last case c), we can have misclassification of operational losses, where
some losses will not be reported as operational losses, or end up wrongly labeled among the
line of business or loss type.

Our motivation is to propose a method to deal with the bias posed not only by the
references a)-b) above, but also by our experience when dealing with small size insurers and
banks. Our experience tells us that it is unlikely that all operational losses end up reported.

2



Even when the institutions have in place methods to detect and document operational losses,
intending to be exhaustive and error free, not every operational loss ends us reported. There
are two main reasons for that relative small losses, unless all the process is automated, will
tend not to be reported. Firstly, it usually implies cumbersome work and the time used
is perceived by professionals not to provide a good cost/benefit relation. Secondly, more
usually than not, it implies to recognize an own or a colleagues’ error. So that, we are lead
to consider that there is a size bias, making more likely to report bigger losses than small
losses. However, mainly due to protect the company image and reputation, even some of the
largest losses can end up not being reported.

This final consideration being our leitmotif. We are lead to believe that, when dealing
with loss data reported due to operational risk, we are always in the presence of a biased
sample, no matter if the data comes from a commercial vendor or it is provided by internal
procedures to manage operational losses. Even in the situation where there is no threshold
for the losses being recorded, that is, even when the institutions try to record all operational
losses, we think that the probability of a loss being reported, is still positively correlated with
value of the loss, but, at the same time, not all the largest losses are reported. Meaning that,
even for high thresholds, there is a chance that a loss will not be reported. The framework for
this paper is that, the probability that a loss is reported and ends up recorded for analysis,
increases with the size of the loss, what causes the bias in the database but, at the same time,
we don’t consider that a threshold exists, above which all losses are recorded and available
for analysis, hence, no loss has probability one of being recorded.

We present some data, collected by a small Portuguese retail bank that, due to disclosure
concerns we will not identify. For instance, in this case, the risk department estimated a
probability of 1/250, for an operation to generate a operational loss and of 95%, for the loss
ending up reported and documented.

2 SAMPLING FRAME AND SAMPLE

We consider that the original stochastic process we want do model is represented by the
random variable (rv) X with a cumulative distribution function (cdf) FX(·). In our case the
rv will be the individual operational loss amount.

We follow the usual model and consider that this stochastic process originated a random
sample of the operational losses occurred over a period (usually a year or several years), that
is, SX = {Xi, i = 1, ...N} with the Xi independent and identically distributed (i.i.d.) with
FX(·).

Now, consider that, due to several reasons, some presented in Section 1, it is possible
that not all the observations originated by X are to be registered and considered in future
analysis, that is, not all the observations presented in the original sample SX , will be available
to model operational losses and for statistical inference, namely, parametric estimation. The
observations available for estimation we call it (naturally) sample and represent by SY =
{Yj , j = 1, ...M}, with M ≤ N . To the unobservable SX , produced by the original stochastic
process, we call it sampling frame. Here we make use of the usual denominations from
sampling theory, that we will be using in our results.

Let us now suppose that, each individual loss presented in SX has a probability, say
pi, i = 1, ..., n, of being recorded and, in that case, belonging to the sample SY , the data that
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is available to us to study the phenomenon.
If all the observations in SX have the same probability of being recorded, the distribution

of the Yj would not depart from the distribution of the original stochastic process. If not,
the recorded observations will not have the original distribution. In this case, the sample will
have a different distribution from the sampling frame.

We suppose that the researcher of operational losses ends up with a biased sample of
all the operational losses that should have been reported. The bias is originated due to the
positive correlation between the loss amount and the probability of being reported.

Let us know consider that each element in the sampling frame SX , has probability of
inclusion in the sample SY , depending on the quality of the mechanism put in place to
filter the sampling frame and on the size of the element, with largest elements having bigger
probabilities. If the mechanism is perfect, all the elements in the sampling frame would be
selected and end up in the sample, so that we would have no loss of information and no biased
sample.

At the same time, we need a sampling scheme that takes in consideration the rarity of the
largest elements, without giving probability one to all the elements above some threshold.
That is, we want to put the probability of sampling the elements in SX in perspective not
only to their absolute values. For instance, if a loss of below 500.000 e is almost as common
as a loss of below 1.000.000 e, we want to preserve this relative relation. On the contrary, if
a loss of below 500.000 e is unlikely but below 1.000.000 e is very likely, we want to have a
much higher probability to select 1.000.000 e than 500.000 e.

That is, once the sampling frame is defined, we want the sampling scheme, representing
the mechanism put in place to record operational losses, to take in consideration the stochastic
process origination the sampling frame and not only if a loss amount is twice another loss
amount.

Let us consider that, after realization, the probability for an operational loss to be reported
(or recorded, using the terminology of the probability theory) is, somehow, dependent on the
quality of the mechanism put in place to record operational losses, and if the mechanism is
not perfect, proportional to its likelihood.

The imperfections could arise for several reasons, for instance, due to the relative small
size of some losses, that the staff don’t consider worthwhile to report, due to managerial
decisions, misclassification and, ultimately, because perfect control systems are difficult to
implement, if at all possible.

3 WEIGHTED DISTRIBUTIONS

It’s well known that, the observation of the sample, SY = {Y1, . . . , YM} ⊆ SX = {X1, . . . , XN}
will only have the same distribution as the Xi presented in the sampling frame if the sampling
mechanism gives equal recording probabilities to every originally observation Xi, i = 1, . . . , N .

In our model N (and of course M) is a random variable, although, depending on the
sampling scheme used, the distribution of M conditional on N may be a degenerated random
variable.

We propose that an approach considering a sampling scheme proportional to size and
depending on the likelihood, in this case, proportional to the size of the loss, should be
considered when dealing with loss data reported due to operational risk. In this framework,
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somehow contrary to the approach that makes the trend at the moment to deal with problems
of modeling and making inference for operational risk, the Extreme Value Theory and Peeks
Over Thresholds, not all the largest values have to be recorded and available to the researcher.
In this case, we are not sure that all the big losses are available for study or even took part
in the aggregated figures reported, e.g., total losses; mean loss, that the institution produce
for accounting support.

We consider that the observations appear in the frame in a given order {X1, . . . , XN}
and that the sample membership indicator, Ik, are independent with k = 1, . . . , N . The
sampling scheme implies naturally that the sampling is made without replacement. The
sample membership indicator are distributed relating to size according to P(Ik = 1 | Xk) =

F ξX(xk), ξ ∈ [0,+∞[.

So, Ik | Xk ∼ B
(
F ξX(x)

)
has a Bernoulli distribution with F ξX(x) the probability of

success. We can say that this is a particular case of a Poisson sampling design, with inclusion
probabilities proportional-to-size, about it see, for instance, Sarndal et al. (1992).

It’s possible to think of ξ as a censorship parameter (other possible analogies can be a
disclosure or a quality parameter). If ξ = 0 (implying no censorship, total disclosure of all
losses or a system so effective that all losses end up reported) we would have P(Ik = 1 | Xk) =
1, so that SY = SX , and we would be in the usual situation of a random sample from FX(·).

However, when ξ > 0, we are in the presence of some degree of censorship in our sample,
making more likely that big losses are included in the sample than small losses.

The following proposition helps us in establishing the framework for our model.

Proposition 1 Let X1, . . . , XN be a random sample of individual losses, with Xi independent
of N a random variable with support on N. If we consider SX = {X1, . . . , XN} as our
sampling frame (or simply frame) and apply on SX a sampling scheme proportional-to-size

with no replacement, such that, P(Ii = 1 | Xi = x) = F ξX(x), with i = 1, ...N , where FX(·) is
the cdf of Xi and ξ ∈ [0,+∞[ is the censorship parameter, then:

a) Not conditional on knowledge of the frame, the inclusion variables are i.i.d. Bernoulli
with π = 1/(ξ+1) the probability of success; B (1/(ξ + 1)) = B (π), that is, P(Ii = 1) =
1/(ξ + 1) = π, i = 1, ...N .

b) Since ]SY =
∑

X Ik =
∑N

i=1 IXi, E(]SY | N) = Nπ = N/(ξ + 1).

c) P(SY = s) =

(
1

ξ

)]s∑
j≥]s

(
ξ

ξ + 1

)j
P(N = j).

d) P(Xj = x | Ij = 1) = F ξX(x)fX(x)(ξ + 1), j=1,...N, ξ ∈ [0,+∞[.

Proof.
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a) The independence follows from the sampling scheme. The Bernoulli distribution from

P(Ik = 1) =

∫
R

P(Ik = 1 | X = x)P(X = x)dx

=

∫
R
F ξX(x)fX(x)dx = E

(
F ξX(X)

)
=

1

ξ + 1

[
F ξ+1
X (x)

]+∞
−∞

=
1

ξ + 1
. (1)

b) It follows directly from a).

c) Conditional on the knowledge of the frame X, we have for the probability of observing
the specific samples s,

P(Y = s | X) =
∏
k∈s

πk
∏

j∈SX−s
(1− πj),

so that, due to the independence of the inclusion variables, we have

P(Y = s) =

∫
RN

∏
k∈s

πkfX(xk)
∏

j∈SX−s
(1− πj)fX(xj)d

N∏
i=1

xi =

=
∏
k∈s

∫
R
πkfX(xk)dxk

∏
j∈SX−s

∫
R

(1− πj)fX(xj)dxj

=
∏
k∈s

∫
R
F ξX(xk)fX(xk)dxk

∏
j∈SX−s

∫
R

(
1− F ξX(xj)

)
fX(xj)dxj

=
∏
k∈s

[
1

ξ + 1
F ξ+1
X (x)

]+∞
−∞

∏
j∈SX−s

(
1−

[
1

ξ + 1
F ξ+1
X (x)

]+∞
−∞

)

=

(
1

ξ + 1

)]s(
1− 1

ξ + 1

)N−]s
I{]s,]s+1,...}(N)

≡
(

1

ξ + 1

)]s(
1− 1

ξ + 1

)N−]s
I≥]s(N).

Now integrating in order to N , we have:

P(Y = s) =
∑
j≥]s

(
1

1 + ξ

)]s(
1− 1

1 + ξ

)j−]s
P(N = j).

d)

P(Xj = x | Ij = 1) = P(Ij = 1 | X = x)P(X = x)/P(Ij = 1)

= F ξX(x)fX(x)(ξ + 1). (2)

From this result it follows immediately that P(Xj ≤ x | Ij = 1) = F
(ξ+1)
X .
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Proposition 2 With the assumptions of Proposition 1, the distribution of the observations
in the sample, that is, the distribution of the losses recorded, hence, the distribution of the
observations available to the researcher to make inference, is a weighted distribution on fX(·)
with weight function w(x) = F ξX(x).

Before we start the proof we introduce the definition of weighted distribution. Following
Rao (1965) we have,

Definition 3 Assume that interest is in a random variable X, with probability density func-
tion (pdf) (or probability mass function (pmf)) f(x), with parameters θ ∈ Θ a given param-
eter space. Also, assume that the values x and y are observed and recorded in the ratio of
w(x)/w(y), where w(x) is a non-negative weight function, such that E (w(X)) exists. If the
relative probability that x will be observed and recorded is given by w(x) ≥ 0, then the pdf of the
observed data is fw(x) = f(x)w(x)/ω, where w(x) ≥ 0 and ω =

∫
Rw(x)fX(x)dx = E (w(X)).

The pdf fw(x) is denominated the weighted pdf corresponding to f(x).

We can read the yearly work on weighted distributions in Fisher (1934). The problem
of parameter estimation using non equally probable sampling scheme was first addressed by
Rao (1965), Patil and Rao (1977) and Patil and Rao (1978). In these papers the authors
identified various sampling situations which can be modeled using weighted distributions
and calculated the Fisher information for certain exponential families, focusing primarily on
w(x) = x, for nonnegative random variables, denominating this weighted distributions by the
size-based form of the original distribution.

Proof. (proposition 2): By considering d) in Proposition 1 and equation (1), we’ve

P(Xj = x | Ij = 1) = F ξX(x)fX(x)(ξ + 1) =
F ξX(x)

1
(ξ+1)

fX(x) (3)

=
F ξX(x)

E
(
F ξX(X)

)fX(x),

and obviously F ξX(·) is non-negative, so the conclusion follows.
The most common situation studied in the specialized literature deals with the size-biased

weighted distribution, so that fw(x) = x f(x)/E (w(X)) = x f(x)/E(X), where X is a non-
negative random variable with first order moment.

In this paper we propose that this weight function, originating the denominated sized-
biased distribution, gives to much weight to the larger losses or, if you prefer, is to light on
the smaller losses, not allowing the recording of to much of smaller losses and, at the same
time, does not take in consideration the original process X for the operational losses.

The introduction of the ξ(≥ 0) parameter, allows us to define in a natural way the quality
of the in place mechanism to record operational losses, since we have that E (IX = 1) =
1/(ξ + 1), being possible for the people involved in the process of controlling and managing
the operational risk, to have a good ”informed guess” for the value of ξ, for instance if
ξ = 1/2 then 2/3 of all the operational losses end up recorded, or even, through some specific
methods to estimate the parameter ξ. For instance, by inserting in the system erroneous
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impacts, that should be detected and document by the control system in place, with the
objective of estimating the success rate 1/(ξ + 1). Naturally, the usual statistical inference
methods can and should be applied here.

From (2), we can write f(x) = (ξ + 1)−1F−ξ(x)fw(x), as a function of fw(x) and F (x).
Observing that Fw(x) =

∫ x
∞ F

ξ(y)(ξ + 1)f(y)dy = F ξ+1(x) we can also write f(x) as a
function of fw(x) and Fw(x) :

f(x) = (ξ + 1)−1F
− ξ
ξ+1

w fw(x), (4)

and write fw(x) = (ξ + 1)F
ξ/(ξ+1)
w f(x), as a function of f(x) and Fw(x).

4 WEIGHTED DISTRIBUTIONS APPLIED TO MODEL
OPERATIONAL RISK

In this section we will consider four distributions models for the individual operations losses
amounts. The Uniform, Exponential, Pareto (type I) and the Normal model. We will deduce
the impact in the parameters estimates, when using aggregate data, and not considering the
bias presented in the sample, produced by a mechanism to record operational losses that is
not perfect, that is by not considering a ξ > 0, in Proposition 1.

We will consider that the operational losses, Xi in SX = {Xi, i = 1, ...N}, the sampling
frame, have pdf f(x) and the recorded operational losses, Yj in SY = {Yj , j = 1, ...M}, the
sample available to make inference, have pdf fw(x). We will analyze the impact for not
considering the bias presented in the sample SY and estimating the parameters as if the
distribution is the original distribution f(x). We consider both situations, when the classical
theoretical model is the underling model for the weighted and non-weighted sample.

For all four distributions we will first consider that we know f(x) and we want to estimate
Ew(X) and Vw(X) and secondly we consider that we know fw(x) and we want to estimate
E(X) and V (X). Although the Uniform model does not usually fits well to data related to
losses either in banking or insurance, we present it here just to gain some insight for the ξ
parameter effect and to study a distribution with limited support.

4.1 The Uniform Model

Consider two cases, the first when Xi ∼ f(x) is Uniform in ]a, b[ and secondly Yj ∼ fw(x) is
Uniform in ]a, b[ :

1. Xi is Uniform in ]a, b[ so f(x) = (b− a)−1I]a,b[(x) and
F (x) = (x− a)/(b− a)I]a,b[(x) + I[b,+∞[(x) and by (2) we have the pdf for Yj :

fw(x) =

(
x− a
b− a

)ξ 1

(b− a)
(ξ + 1)I]a,b[(x), (5)

with moments:

Ew (X) =
b(ξ + 1) + a

ξ + 2
,

Vw (X) = b2 − 2b(b− a)

ξ + 2
+

2(b− a)2

(ξ + 2)(ξ + 3)
−
(
b(ξ + 1) + a

ξ + 2

)2

.
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2. Yj is Uniform in ]a, b[, so that fw(x) is Uniform in ]a, b[ and by (4) we have the pdf for

Xi f(x) = (ξ + 1)−1 ((x− a)/(b− a))−ξ/(ξ+1) (b− a)−1

I]a,b[(x) and cdf F (x) =
(
(x− a)/(b− a)I]a,b[(x) + I[b,+∞[(x)

) 1
ξ+1 with moments:

E (X) =
b+ (ξ + 1)a

ξ + 2
,

V (X) = b2 − 2b(b− a)(ξ + 1)

ξ + 2
+

2(b− a)2(ξ + 1)2

(ξ + 2)(2ξ + 3)
−
(
b+ (ξ + 1)a

ξ + 2

)2

.

These results are easily obtained integrating by parts.

4.2 The Exponential Model

Using the same methodology as in Uniform distribution.

1. Consider f(x) the Exponential density with parameters λ and β so that f(x) = β−1 exp((x−
λ)/β)I]λ,+∞[(x), β > 0 and
F (x) = (1− exp((x− λ)/β)) I]λ,+∞[(x) by (2) we have:

fw(x) = (ξ + 1)

(
1− exp

(
−x− λ

β

))ξ 1

β
exp

(
−x− λ

β

)
I]λ,+∞[(x), (6)

considering x = −(β ln(y)− λ), noting that ∂
∂xB(x, y) =

∫ 1
0 t

x−1 ln(t)

(1 − t)y−1dt, where B (x, y) =
∫ 1
0 t

x−1(1 − t)y−1dt is the beta function. Note that
∂
∂xB(x, y) = B(x, y) (ψ(x)− ψ(x+ y)), being ψ(z) = ∂

∂x ln Γ(x) the digamma function.
Consider also that ψ(n) = Hn−1 − γ and ψ(1) = −γ where Hn is the n-th harmonic
number or in the generic form, Hx =

∫ 1
0 (tx− 1)/(t− 1)dt, with γ the Euler-Mascheroni

constant we have:

Ew (X) = λ+ βHξ+1,

Vw (X) = β2
(
π2/6− ψ′(ξ + 2)

)
.

2. Consider now that fw(x) the Exponential density with parameters λ and β by (4) we

have f(x) = (ξ + 1)−1 (1− exp (−(x− λ)/β))−ξ/(ξ+1)

β−1 exp (−(x− λ)/β) I]λ,+∞[(x). Using similar calculation we have:

E (X) = λ+ βH1/(ξ+1),

V (X) = β2
(
π2/6− ψ′ ((ξ + 2)/(ξ + 1))

)
.

4.3 The Pareto (Type I) Model

Consider now that:

1. f(x) is the Pareto density with parameters α and β so that f(x) = α
x

(
β
x

)α
I]β,∞[(x)

and F (x) =
(

1−
(
β
x

)α)
I]β,∞[(x) by (2) we have:

fw(x) =

(
x− a
b− a

)ξ 1

(b− a)
(ξ + 1)I]a,b[(x). (7)
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Considering y = (β/α)α and observing that B (1− 1/α, ξ + 1) =∫ 1
0 y
−1/α(1− y)ξdy the moments are:

Ew (X) = β(ξ + 1)B (1− 1/α, ξ + 1) ,

Vw (X) = β2(ξ + 1)B (1− 2/α, ξ + 1)− β2(ξ + 1)2 (B (1− 1/α, ξ + 1))2 .

2. Consider now that fw(x) is Pareto with parameters α and β by (4)

f(x) = (ξ + 1)−1 (1− (β/x)α)−ξ/(ξ+1) αx−1 (β/x)α I]β,∞[(x)

Using similar calculation we have:

E (X) = β/(ξ + 1)B (1− 1/α, 1/(ξ + 1)) ,

V (X) = β2/(ξ + 1)B (1− 2/α, 1/(ξ + 1))−
β2/(ξ + 1)2 (B (1− 1/α, 1/(ξ + 1)))2 .

4.4 The Normal Model

With the Normal model, observing that erf(z) = 2/
√
π
∫ z
0 exp(−t2)dt and erfc(z) = 1−erf(z),

let us consider the same two cases:

1. Consider f(x) the Normal density with parameters µ and σ2 using (2) we have:

fw(x) = (ξ + 1)

(
1

2
erfc

(
µ− x√

2σ

))ξ 1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(8)

Considering −(x− µ)/σ = y and Z ∼ N(0, 1), observing that∫ +∞
−∞ (ξ + 1)

(
1/2 erfc

(
−y/
√

2
))ξ

(2π)−1/2 exp
(
−y2/2

)
= 1 we have:

Ew (X) = µ+ σEw(Z),

Vw (X) = σ2Vw(Z).

2. If fw(x) follows a Normal distribution with parameters µ and σ2, then Fw(x) =
1/2 erfc

(
(µ− x)/(

√
2σ)
)
, we have

f(x) = (ξ + 1)−1
(

1/2 erfc
(

(µ− x)/(
√

2σ)
))−ξ/(ξ+1)

(
√

2πσ)−1

exp
(
−(x− µ)2/(2σ2)

)
. Using the same methodology as above, with Ew∗(Z) =

∫ +∞
−∞ y/(ξ+

1)
(
1/2 erfc

(
−y/
√

2
))−ξ/(ξ+1)

(
√

2πσ)−1 exp
(
−y2/2

)
dy we have:

E (X) = µ+ σEw∗(Z),

V (X) = σ2Vw∗(Z).

5 APPLICATION

Our data was provided by a Portuguese small retail bank. We are only authorized to disclosure
aggregated data and, although very inconvenient for our purposes, it is somehow a ”realistic”
situation because, it is very usual that we are confronted with this type of constraints when
dealing with very sensitive topics.
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During 2010 the bank internal reports account for a total operational loss of 4.414.000
e(rounded to the thousands). This total loss was originated by 4.700 (rounded to the hun-
dreds) operations. So that we’ve a mean operational loss of 939 Euros. The risk department
estimated a probability of 1/250, for an operation to generate a operational loss and of 95%,
for the loss ending up reported and documented. In this case ξ0 = (1− 95%)/95%.

In the application we will consider only the bias effect on the classical model.

5.1 The Uniform Model

Let us consider a particular case of section 4.1 where the density of the original data being
Uniform with f(x) = 1/θI]0,θ[(x), and E(X) = θ/2. Using (5) in this particular case we have

fw(x) = xξ/θξ+1(ξ + 1)I]0,θ[(x), with moments:

Ew (X) = (ξ + 1)/(ξ + 2) θ,

Vw (X) = θ2 + 2θ2/(ξ + 2)− 2θ2/ ((ξ + 2)(ξ + 3))− θ2(ξ + 1)2/(ξ + 2)2.

If we estimate the parameter θ using the method of the moments, using the sample, but
with the assumption that the Yj ∼ f(x) and not the weighted Yj ∼ fw(x), j = 1, ...,M , the

true distribution, we would obtain: θ̂ = 2YM , and not θ̂w = (ξ + 2)/(ξ + 1)YM .
When we compare Ew (X) with E(X), we have R = Ew (X) /E(X) = 2(ξ + 1)/(ξ + 2).
For instance, when ξ = 1/2, so that P(IX = 1) = 2/3, we have that Ew (X) /E(X) =

6/5 = 1, 2, meaning that we have an increase of 20% on the expected value of the recorded
losses if 1/3 of the losses end up not being recorded according to size and to F (x), that is,
the expected value of a recorded loss is 20% larger than the original loss.

Considering our data, we have, R = 1.0256 and θ̂ = 1.878 e versus θ̂w = 1.831 e.
So, when considering a Value at Risk analysis, for a one year period with a confidence level

of 1%, we would obtain for the for the 99% percentiles of the individual losses, F−1
θ̂

(99%) =

1.859, 22 e versus F−1
θ̂w

(99%) = 1.812, 69 e.

Now, using Proposition 1 b), we can estimate the total loss occurred during the year.
This corresponds to the total of the SX , the sampling frame or, if preferred, the true total
operational losses the bank incurred. We know that, although the mean value of individual
losses is smaller when estimated using the weighted distribution, the total is bigger than the
4.414.000 e reported, due to the presence of a ξ0 = (1− 95%)/95%(> 0).

Generically, we have, E
(∑N

i=1Xi

)
= E (N)E (X) = (1 + ξ)E (M)E (X), so, with our

data and the Uniform model, we obtain, E
(∑N

i=1Xi

)
= (1 + ξ0) × 4.700 × 1.831/2 =

4.529.440e, estimating an increase of (115.439 e) 2.62%, in the total operational losses.

5.2 The Exponential Model

With the Exponential model, consider, without loss of generality, the particular case where
λ = 0 in (6) fwX(x) = β−1 exp (−x/β) IR+(x), β > 0, with E(X) = β. Using (6) in this
particular case we have fw(x) = (1− exp(−x/β))ξ

β−1 exp(−x/β)(ξ + 1)IR+(x), with moments:

Ew (X) = βHξ+1,

Vw (X) = β2
(
1 + ψ′(2)− ψ′(ξ + 2)

)
.
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When we compare Ew (X) with E(X), we have R = Hξ+1.
For instance, when ξ = 1/2, so that P(IX = 1) = 2/3, we have that R = H1,5 = 1, 28, so

that, the expected value of a recorded loss is 28% larger than the original loss.
The same reasoning used for the Uniform model, and considering our data, with R =

H1+ξ0 = 1, 0334 we have, β̂ = 939 e versus β̂w = 939/1, 0334 = 908, 65 e.
So, when considering a Value at Risk analysis, for a one year period with a confidence level

of 1%, we would obtain for the for the 99% percentiles of the individual losses,F−1
β̂

(99%) =

4.324, 25 e versus F−1
β̂w

(99%) = 4.184, 51 e.

Estimating the true total operational losses the bank incurred,

E
(∑N

i=1Xi

)
= (1 + ξ0)× 4.700× 908, 65 = 4.495.450 e estimating an increase of (81.449, 3

e ) 1, 85%.

5.3 The Pareto (Type I) Model

With the Pareto model, we will consider the case where β = 1 but the generalization is
straightforward. fx(x) = α/xα+1I]1,+∞[(x), α ∈ R+ with E(X) = α/(α−1), α > 1. Using (7)

in this particular case we have fw(x) = (1− x−α)
ξ
αx−(α+1)(ξ + 1)I]1,+∞[(x), with moments:

Ew (X) = (1 + ξ)B (1− 1/α, 1 + ξ) ,

Vw (X) = (ξ + 1)B (1− 2/α, ξ + 1)− (ξ + 1)2 (B (1− 1/α, ξ + 1))2 .

R = (1 + ξ)B (1− 1/α, 1 + ξ) (α− 1)/α.
The same reasoning used for the previous models, and considering our data, we have,

R = 1, 0525, and, α̂ = 939/(939− 1) = 1, 0011 e versus α̂w = 1, 00112 e.
So, when considering a Value at Risk analysis, for a one year period with a confidence level

of 1%, we would obtain for the for the 99% percentiles of the individual losses,F−1
β̂

(99%) =

99, 49 e versus F−1
β̂w

(99%) = 99, 49 e .

Estimating the true total operational losses the bank incurred, we have E
(∑N

i=1Xi

)
=

(1 + ξ0)× 4.700× 893, 86 = 4.422.240 e, estimating an increase of (8.240, 6 e) 0, 19%.

5.4 The Normal Model

With the Normal model, we don’t have any information about the standard deviation of
our estimate so we will consider, without loss of generality three scenarios, the case where
σ2 = µ2, σ2 = (1, 5µ)2 and σ2 = (2µ)2 in (8). E(X) = µ and V (X) = σ2 and fw(x) =

(ξ + 1)
(

1/2 erfc
(

(µ− x)/(
√

2σ)
))ξ

(
√

2πσ)−1 exp
(
−(x− µ)2/(2σ2)

)
with moments:

Ew (X) = µ+ σEw(Z),

Vw (X) = σ2Vw(Z).

When we compare Ew (X) with E(X), we have R = 1 + σ/µEw(Z).
Using simulation we produced Table 5.4 that gives, for several values of ξ, the Ew(Z) and

Vw(Z).
Considering our data, we have, Ew(Z) = 0, 04584, Vw(Z) = 0, 97034, µ̂ = 939 and which

give us the results of Table 2 for each scenario.
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ξ Ew(Z) Vw(Z)

0 0 1
0,05 0,0436237 0,9717802
0,1 0,0845134 0,9456232
0,15 0,1230976 0,9215820
0,2 0,1595146 0,8994342

0,25 0,1940403 0,8788356
0,3 0,2267963 0,8596403
0,35 0,2579512 0,8417305
0,4 0,2876004 0,8250203
0,45 0,3159077 0,8092599

0,5 0,3429962 0,7944314
0,55 0,3689178 0,7805055
0,6 0,3937355 0,7673920
0,65 0,4175952 0,7549811
0,7 0,4405459 0,7431625

0,75 0,4626823 0,7319154
0,8 0,4840094 0,7212104
0,85 0,5045644 0,7110475
0,9 0,5244416 0,7013075
0,95 0,5436312 0,6920580

1 0,5621984 0,6831728
1,05 0,5802073 0,6746808
1,1 0,5976971 0,6665238
1,15 0,6146264 0,6587113
1,2 0,6310785 0,6511954

1,25 0,6470511 0,6439900
1,3 0,6625772 0,6370587
1,35 0,6777101 0,6303338
1,4 0,6923962 0,6238948
1,45 0,7067428 0,6176528

1,5 0,7207365 0,6115930

Table 1: Ew(Z) and Vw(Z) for ξ from 0 to 1,5
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σ = 0, 5µ σ = 0, 75µ σ = µ

R 1,02292 1,03438 1,04584
µ̂w 917,96 907,79 897,85

σ̂2 220.430 495.968 881.721

σ̂2w 210.663 463.548 806.126

F−1
µ̂,σ̂2(99%) 513.736 1.154.730 2.052.130

F−1
µ̂w,σ̂2

w
(99%) 490.994 1.079.280 1.876.230

E
(∑N

i=1Xi

)
4.541.490 4.491.180 4.441.970

increase of 2,9% 1,7% 0.6%

Table 2: Results for each scenario - Normal distribution

6 GRAPHICS FOR RATIOS

Figures 1 and 2 show the ratio between the expected value of a recorded loss and the original
loss, for ξ ∈ [0, 1] and for the four distributions. In Figure 2 we plot the ratio for the three
coefficient of variation used in the Normal model.
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Ξ
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1.4
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R
Uniform

Exponential
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Figure 1: Ratio between the expected value of a recorded loss and the original loss for Pareto,
Exponential and Uniform distributions.
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Figure 2: Ratio between the expected value of a recorded loss and the original loss, Normal
Distribution for different values of σ.

7 CONCLUSIONS

Our experience tell us that, even when the institutions have in place methods to detect and
document operational losses, intending to be exhaustive and error free, not every operational
loss ends us reported. We are lead to believe that, when dealing with loss data reported due
to operational risk, we are always in the presence of a biased sample, no matter if the data
used to model the individual losses and total losses, comes from a commercial vendor or it is
provided by internal procedures to manage operational losses.

Using weighted distributions we are able to consider that the probability of a loss to be
reported and ends up recorded for analysis, increases with the size of the loss but, at the
same time, we don’t consider that a threshold exists, above which all losses are recorded and
available for analysis, hence, no loss has probability one of being recorded.

Since operational risk management relies has relied more on qualitative approaches than
on quantitative ones, more work is needed to better understand and model the exposure to
operational risk. The bias presented in operational losses data, mainly due to the natural
emphasis given to (public) very large losses, makes it more challenging.

Our model takes in consideration the sample bias towards the largest losses by defining
a weight function functional dependent on the distribution of the original stochastic process
and on the reliability recording the operational losses. In this way we can infer how the bias
affects the original distribution and the estimators of the parameters.

By concentrating our attention in the expected values for the individual losses and the
total losses, we learn that, for a relative high rate of success in recording operational risk
losses, 95% in our example, the heavy tail distribution, that is, the Pareto’s distribution, is
much less affected by the bias, when estimating the parameters, than the light tail Exponential
distribution.

Since our sampling scheme originates a bias towards the larger observations, if the original
stochastic mechanism originating the observations has a right heavy tail distribution, the
parametric estimation is less affected by the bias originated by the sampling scheme, since
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the observations that will not be recorded, have a bigger probability to be closer to values in
the right tail. This can help to explain why the heavy tails are usually accepted as good (or
nor so bad) fits to operational risk loss data.

Also, when the Normal model is considered, the increase in the variance diminishes the
impact of the bias in the total operational losses estimator. The explanation being that, by
increasing the volatility of the original stochastic process, we increase the probability of larger
losses (relative to the mean) being recorded, hence, for an arbitrary ξ > 0, the soundness of
the recording system, the non-recorded losses have a relative small impact in the total losses
estimate.

Another important lesson to retrieve by considering the Normal model is that we should
use it with extreme care. Since the support contains the negative real numbers, it would be
possible for very volatile processes, to estimate a negative value for the expected value of the
original stochastic process or a total mean value below the total recorded (total sample). If
any of these results could be considered acceptable, this would imply that the operational
losses would allow us to get some gain, for instance, by overcharging the clients.
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