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Abstract

In this paper the authors study the problem of testing the hypothesis of a block compound symmetry
covariance matrix with two-level multivariate observations, taken for m variables over u sites or time
points. Through the decomposition of the main hypothesis into two sub-hypotheses, the likelihood
ratio test statistic is easily obtained as well as its exact moments. Its exact distribution is then
analyzed. Because this distribution is quite elaborate, yielding a non-manageable distribution
function, a manageable but very precise near-exact distribution is developed. Numerical studies
conducted to evaluate the closeness between this near-exact distribution and the exact distribution
show the very good performance of this approximation even for very small sample sizes. A real
data example is studied and a simulation is also conducted.

Keywords: characteristic function, composition of hypothesis, distribution of likelihood ratio
statistics, near-exact distributions, product of independent Beta random variables, sum of
independent Gamma random variables.

1. Introduction

We say that a covariance matrix has a BCS (block compound symmetry) structure (Rao, 1945,
1953) if it can be written as

Θ =


Σ0 Σ1 . . . Σ1

Σ1 Σ0 . . . Σ1
...

. . .
...

Σ1 Σ1 . . . Σ0


= Iu ⊗ (Σ0 −Σ1) + Ju ⊗Σ1, (1.1)
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where, for u ≥ 2, Iu is the u × u identity matrix, 1u is a u × 1 vector of ones, Ju = 1u1
′
u and

⊗ represents the Kronecker product. We assume Σ0 to be a positive definite symmetric m × m
matrix, and Σ1 to be a symmetric m ×m matrix, subject to the constraints − 1

u−1Σ0 < Σ1 and
Σ1 < Σ0, which mean that Σ0−Σ1 and Σ0 + (u− 1)Σ1 are positive definite matrices, so that the
mu×mu matrix Θ is also positive definite (for a proof, see Lemma 2.1 in Roy and Leiva (2011)).
The m ×m diagonal blocks Σ0 in Θ represent the variance-covariance matrix of the m response
variables at any given site or time point, whereas the m×m off diagonal blocks Σ1 in Θ represent
the covariance matrix of the m response variables between any two sites or time points. We assume
Σ0 is constant for all sites and time points. Also, Σ1 is the same for any two different sites or time
points.

In this paper our goal is to develop a different approach for the l.r.t. (likelihood ratio test) of
the BCS structure and to develop near-exact distributions for the associated statistic, in order to
make this test easy to implement in practice, since its practical application has been hindered by
the complexity of the exact distribution of its l.r.t. statistic.

The need to test for BCS structure arises in many situations, namely those in which it is
assumed as a structure for the covariance matrices involved in further analyses such as in many
biomedical and medical researches. One has to be very careful when assuming this structure for
two-level multivariate data, since an incorrect assumption may result in wrong conclusions. Thus,
testing the validity of this BCS structure is of vital importance before assuming it, for any statistical
analysis.

2. Formulation of the hypothesis and the likelihood ratio test

Let us assume that y ∼ N(µ,Σ). We are interested in testing the hypothesis

H0 : Σ = Θ , (2.1)

where Θ is defined in (1.1).
In Lemma 3.1 in Roy and Fonseca (2012), it is shown that we may write

ΓΘΓ′ =

[
∆2 0
0 Iu−1 ⊗∆1

]
,

where

∆1 = Σ0 −Σ1,

∆2 = Σ0 + (u− 1) Σ1,

and Γ = C∗′
u×u
⊗ Im, with C∗ an orthogonal Helmert matrix whose first column is proportional to a

vector of 1’s. We should note that Γ is not a function of either Σ0, nor Σ1.
Thus, to test H0 in (2.1), is equivalent to test

H0 : Σ∗ = Ω (2.2)
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where
Σ∗ = ΓΣΓ′ and Ω = ΓΘΓ′ ,

where we may split the null hypothesis in (2.2) as

H0 ≡ H0b|a oH0a ,

where ‘o’ means ‘after’, and where

H0a : Σ∗ = block-diag(Σ∗i , i = 1, . . . , u) , (2.3)

is the hypothesis of independence of the u diagonal blocks of size m×m of Σ∗,

H0b|a : Σ∗2 = · · · = Σ∗u ,

assuming H0a
(2.4)

is the null hypothesis corresponding to the test of equality of the u− 1 covariance matrices Σ∗2, . . . ,Σ
∗
u,

assuming H0a.
The l.r.t. statistic to test H0a in (2.3) is, for a sample of size n, (Anderson, 2003, Sec. 9.2)

Λa =

(
|A|∏u

j=1 |Aj |

)n/2
,

where A is the m.l.e. (maximum likelihood estimator) of Σ∗, and Aj its m×m j-th diagonal block.
The l.r.t. statistic to test H0b|a in (2.4) is (Anderson, 2003, Sec. 10.2)

Λb =

(
(u− 1)m(u−1)

∏u
j=2 |Aj |
|A∗|u−1

)n/2
, (2.5)

where

A∗ =
u∑
j=2

Aj .

Then the l.r.t. statistic to test H0 in (2.2) will be

Λ = ΛaΛb =

(
(u− 1)m(u−1) |A|

|A1||A∗|u−1

)n/2
, (2.6)

with
E
(

Λh
)

= E
(

Λha

)
E
(

Λhb

)
, (2.7)

since, underH0a, Λa is independent ofA1, . . . ,Au (Marques and Coelho, 2012; Coelho and Marques,
2012b), which makes Λa independent of Λb, given that this latter one is only function ofA2, . . . ,Au.
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In (2.7) we have (Marques et al., 2011)

E
(
Λha
)

=

u−1∏
k=1

m∏
j=1

Γ
(
n−j

2

)
Γ
(
n−(uv−k)m−j

2 + n
2h
)

Γ
(
n−(uv−k)m−j

2

)
Γ
(
n−j

2 + n
2h
)

=


mu∏
j=3

(
n− j
n

)rj (n− j
n

+ h

)−rj︸ ︷︷ ︸
Φa,1(h)

(
Γ
(
n−1

2

)
Γ
(
n−2

2 + n
2h
)

Γ
(
n−1

2 + n
2h
)

Γ
(
n−2

2

))k∗
︸ ︷︷ ︸

Φa,2(h)

(2.8)

where

k∗ =


⌊u

2

⌋
, m odd

0, m even,

and

rj =

{
hj−2 + (−1)jk∗, j = 3, 4

rj−2 + hj−2, j = 5, . . . ,mu
(2.9)

with

hj =

{
uv − 1, j = 1, . . . ,m

−1, j = m+ 1, . . . ,mu− 2 ,
(2.10)

while for Λb we have

E
(
Λhb
)

=
m∏
j=1

u−1∏
k=1

Γ
(
n−1

2 −
j−1

2(u−1) + k−1
u−1

)
Γ
(
n−j

2 + n
2h
)

Γ
(
n−1

2 −
j−1

2(u−1) + k−1
u−1 + n

2h
)

Γ
(
n−j

2

)
=


m∏
j=2

(
n− j
n

)sj (n− j
n

+ h

)−sj︸ ︷︷ ︸
Φb,1(h)

×


bm/2c∏
j=1

u−1∏
k=1

Γ
(
n− 1 + k−2j

u−1

)
Γ
(
n+

⌊
k−2j
u−1 − 1

⌋
+ nh

)
Γ
(
n− 1 + k−2j

u−1 + nh
)

Γ
(
n+

⌊
k−2j
u−1 − 1

⌋)


×


u−1∏
k=1

Γ
(
n−m

2 + m(u−1)−u−m+2k
2(u−1)

)
Γ
(
n−m

2 +
⌊
m(u−1)−u−m+2k

2(u−1)

⌋
+ n

2h
)

Γ
(
n−m

2 + m(u−1)−u−m+2k
2(u−1) + n

2h
)

Γ
(
n−m

2 +
⌊
m(u−1)−u−m+2k

2(u−1)

⌋)

m⊥⊥2

︸ ︷︷ ︸
Φb,2(h)

(2.11)
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where sj (j = 2, . . . ,m) are given in Appendix A and where m⊥⊥2 is the remainder of the integer
division of m by 2.

Since the supports of Λa and Λb are delimited, their distributions are defined by their moments,
and as such, from the first expression in (2.8) we may write

Λa ∼
u−1∏
k=1

m∏
j=1

Xjk , where Xjk ∼ Beta
(
n− (u− k)m− j

2
,
(u− k)m

2

)
, (2.12)

where Xjk (j = 1, . . . ,m; k = 1, . . . , u− 1) are independent, while from the first expression in (2.11)
we may write

Λb ∼
m∏
j=1

u−1∏
k=1

X∗jk , where X∗jk ∼ Beta
(
n− j

2
,
2k + (u− 2)j − u

2

)
, (2.13)

where X∗jk (j = 1, . . . ,m; k = 1, . . . , u− 1) are independent so that we may say that

Λ ∼
m∏
j=1

{(
u−1∏
k=1

Xjk

)(
u−1∏
k=

X∗jk

)}
, (2.14)

where all random variables are independent.
On the other hand, based on the results in Appendix B and from the second expressions in

(2.8) and (2.11) we may write, for Λa,

Λa ∼

mu∏
j=3

e−Zj

 k∗∏
j=1

Wj

 (2.15)

where

Zj ∼ Γ

(
rj ,

n− j
n

)
and Wj ∼ Beta

(
n− 2

2
,
1

2

)
are all independent r.v.’s (random variables), while for Λb we may write

Λb ∼

 m∏
j=2

e−Z
∗
j

bm/2c∏
j=1

u−1∏
k=1

W ∗1jk

(u−1∏
k=1

W ∗2k

)m⊥⊥2

(2.16)

where

Z∗j ∼ Γ

(
vsj ,

n− j
n

)
, W ∗1jk ∼ Beta

(
n+

⌊
k − 2j

u− 1
− 1

⌋
,
k − 2j

u− 1
−
⌊
k − 2j

u− 1

⌋)
,
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and

W ∗2k ∼ Beta
(
n−m

2
+

⌊
m(u−1)−u−m+2k

2(u−1)

⌋
,
m(u−1)−u−m+2k

2(u−1)
−
⌊
m(u−1)−u−m+2k

2(u−1)

⌋)
are all independent r.v.’s.

From (2.15) and (2.16) we may write,

Λ ∼

mu∏
j=2

e−Tj

 k∗∏
j=1

Wj

bm/2c∏
j=1

u−1∏
k=1

W ∗1jk

(u−1∏
k=1

W ∗2k

)m⊥⊥2

(2.17)

where

Tj ∼ Γ

(
γj ,

n− j
n

)
, (j = 2, . . . ,mu)

with

γj =
mu∑
j=2

(
r+
j + s+

j

)
(2.18)

where

r+
j =

{
0 j = 2

rj j = 3, . . . ,mu
and s+

j =

{
sj j = 2, . . . ,m

0 j = m+ 1, . . . ,mu
(2.19)

where rj are given by (2.9) and (2.10), sj are given by (A.1)–(A.5) and all the other variables are
defined as above.

The form of the distribution of Λ in (2.17), although it may look more complicated than the
one in (2.14), is more useful for the development of near-exact distributions, as we will see in the
next section.

3. The characteristic function of W = − log Λ and the near-exact approximation

From the developments in the previous section and the second parts of (2.8) and (2.11) we may
write the c.f. (characteristic function) of W = − log Λ as

ΦW (t) = E
(
eitW

)
= E

(
Λ−it

)
=


mu∏
j=2

(
n− j
n

)γj (n− j
n
− it

)−γj︸ ︷︷ ︸
ΦW,1(t)

Φa,2(−it)Φb,2(−it)︸ ︷︷ ︸
ΦW,2(t)

(3.1)

where γj is given by (2.18) and Φa,2( · ) and Φb,2( · ) are defined in (2.8) and (2.11), and ΦW,1(t) is
actually equal to Φa,1(−it)Φb,1(−it), being these two functions also defined in (2.8) and (2.11).
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Then, in building the near-exact distributions we will keep ΦW,1(t) untouched and we will
approximate ΦW,2(t) asymptotically by the c.f. of a finite mixture of Gamma distributions.

While ΦW,1(t) is the c.f. of a GIG (Generalized Integer Gamma) distribution (Coelho, 1998) of
depth mu− 1, which is the distribution of the sum of mu independent Gamma distributed random
variables, all with integer shape parameters, ΦW,1(t) is the c.f. of the sum of k∗+bm/2c(u−1)
+(m⊥⊥2) independent Logbeta distributed random variables. For u = 2 and even m, ΦW,1(t) yields
indeed the exact c.f. for W , which means that in this case we have the exact p.d.f. and c.d.f. of W
and Λ in a simple closed form, in the form of the p.d.f. and c.d.f. of a GIG distribution of depth
2m, with shape parameters γj and rate parameters (n − j)/n (j = 1, . . . , 2m) for W , or the form
of a p.d.f. or c.d.f. of an EGIG (Exponentiated Generalized Integer Gamma) distribution (Arnold
et al., 2013) for Λ.

It will be based on the results in Sections 5 and 6 of Tricomi and Erdélyi (1951), which show
that we can asymptotically approximate the c.f. of a Logbeta(a, b) distribution by the c.f. of an
infinite mixture of Γ(b+ j, a) (j = 0, 1, . . . ) distributions, that we will replace ΦW,2(t) by

Φ2(t) =
m∗∑
k=0

πk λ
r(λ− it)−r , (3.2)

which is the c.f. of a finite mixture of Gamma distributions, all with the same rate parameter λ.
In (3.2) we will take λ as the rate parameter in

Φ∗(t) = θλτ1(λ− it)−τ1 + (1− θ)λτ2(λ− it)−τ2

where θ, λ, τ1 and τ2 are determined in such a way that

∂h

∂th
Φ∗(t)

∣∣∣∣
t=0

=
∂h

∂th
ΦW,2(t)

∣∣∣∣
t=0

, h = 1, . . . , 4 ,

and

r =
k∗

2
+

bm/2c∑
j=1

u−1∑
k=1

k−2j

u−1
−
⌊
k−2j

u−1

⌋
+

u−1∑
k=1

m(u−1)−u−m+2k

2(u−1)
−
⌊
m(u−1)−u−m+2k

2(u−1)

⌋

=

{
m
4 (u− 2) m even⌊
u
2

⌋
+ m+1

4 (u− 2) m odd
(u ≥ 2) ,

(3.3)

which is the sum of the second parameters of all the Beta r.v.’s in (2.17). Then the weights
π0, . . . , πm∗−1 in (3.2) will be determined in such a way that

∂h

∂th
Φ2(t)

∣∣∣∣
t=0

=
∂h

∂th
ΦW,2(t)

∣∣∣∣
t=0

, h = 1, . . . ,m∗ ,
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and with πm∗ = 1−
∑m∗−1

k=0 πk.
The near-exact distributions built in this way will match m∗ exact moments and will have c.f.

Φ∗W (t) = ΦW,1(t)Φ2(t) , (3.4)

which, for non-integer r, is the c.f. of a finite mixture, with weights πk (k = 0, . . . ,m∗), of GNIG
(Generalized Near-Integer Gamma) distributions of depth mu, with integer shape parameters γj ,
given by (2.18) and (2.19) and non-integer shape parameter r given by (3.3) and corresponding rate
parameters (n− j)/n (j = 2, . . . ,mu) and λ (Coelho, 2004; Coelho and Marques, 2012a, Appendix
1). Using the notation in Appendix 1 in Coelho and Marques (2012a), these near-exact distributions
will yield for W = − log Λ p.d.f.’s and c.d.f.’s of the form

fW (w) =
m∗∑
k=0

πk f
GNIG

(
w | γ2, . . . , γmu, r + k;

n− 2

n
, . . . ,

n−mu
n

, λ;mu

)
, (w > 0)

and

FW (w) =
m∗∑
k=0

πk F
GNIG

(
w | γ2, . . . , γmu, r + k;

n− 2

n
, . . . ,

n−mu
n

, λ;mu

)
, (w>0) ,

while the near-exact p.d.f. and c.d.f. for Λ are respectively given by

fΛ(z) =
m∗∑
k=0

πk f
GNIG

(
− log z | r∗2, . . . , r∗p, r + k;

n− 2

n
, . . . ,

n−mu
n

, λ;mu

)
1

z
, (0<z<1)

and

FΛ(z) =

m∗∑
k=0

πk

(
1− FGNIG

(
− log z | r∗2, . . . , r∗p, r + k;

n− 2

n
, . . . ,

n−mu
n

, λ;mu

))
, (0<z<1) .

For integer r the above GNIG distributions of depth mu become GIG (Generalized Integer
Gamma) distributions of depth mu (Coelho, 1998; Arnold et al., 2013, App. B), which have even
simpler and more manageable expressions, and in this case the near-exact distributions for Λ will
be mixtures of what Arnold et al. (2013) call EGIG distributions.

We should note that for m = 1, this test yields the equivariance-equicorrelation test in Wilks
(1946).

4. Numerical studies

In order to assess the performance of the near-exact distributions developed, that is, their
closeness to the corresponding exact distribution, we use the measure

∆ =
1

2π

∫ +∞

−∞

∣∣∣∣ΦW (t)− Φ∗W (t)

t

∣∣∣∣ dt , (4.1)
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with
max
w>0
|FW (w)− F ∗W (w)| = max

0<z<1
|FΛ(z)− F ∗Λ(z)| ≤ ∆ ,

where ΦW (t) is the exact c.f. of W in (3.1) and Φ∗W (t) is the near-exact c.f. of W in (3.4) and FW ( · )
and F ∗W ( · ) are the corresponding c.d.f.’s, that is, the exact and near-exact c.d.f. of W , being FΛ( · )
and F ∗Λ( · ) the corresponding c.d.f.’s for Λ.

Table 1: Values of ∆ for the chi-square and near-exact distributions, for different values of m, u and n

m∗ m∗

χ2 4 6 10 χ2 4 6 10

n u = 2,m = 3 n u = 3,m = 3

8 7.35×10−1 6.61×10−9 1.12×10−10 1.57×10−13 11 9.35×10−1 2.64×10−12 4.88×10−15 1.10×10−19

36 4.80×10−1 3.86×10−12 9.48×10−15 2.71×10−19 39 2.27×10−1 2.34×10−15 4.50×10−19 1.85×10−25

136 3.01×10−2 5.04×10−15 1.38×10−18 5.76×10−25 109 7.74×10−2 4.42×10−18 1.05×10−22 6.74×10−31

u = 5,m = 3 u = 7,m = 3

17 1.15×100 5.81×10−13 7.29×10−17 2.86×10−24 23 1.28×100 4.31×10−14 1.59×10−18 5.32×10−27

45 4.67×10−1 2.36×10−14 8.10×10−19 1.73×10−27 51 7.02×10−1 8.03×10−15 1.43×10−19 8.80×10−29

115 1.77×10−1 2.26×10−16 1.29×10−21 6.84×10−32 121 3.06×10−1 1.14×10−16 5.17×10−22 1.27×10−32

u = 3,m = 5 u = 3,m = 10

17 1.17×100 5.16×10−15 2.63×10−18 5.81×10−25 32 1.45×100 1.25×10−14 4.17×10−19 1.15×10−27

45 4.75×10−1 5.02×10−16 3.47×10−20 5.50×10−28 60 9.82×10−1 3.85×10−15 9.25×10−20 1.14×10−28

115 1.80×10−1 6.36×10−18 5.70×10−23 2.13×10−32 130 5.49×10−1 5.66×10−17 3.42×10−22 2.62×10−32

u = 5,m = 10 u = 10,m = 3

52 1.62×100 4.38×10−18 6.51×10−24 3.11×10−35 32 1.42×100 1.53×10−15 1.36×10−20 1.75×10−30

80 1.29×100 6.57×10−18 1.29×10−23 9.27×10−35 60 9.60×10−1 9.15×10−16 6.29×10−21 1.66×10−31

150 9.51×10−1 4.02×10−19 3.31×10−25 3.87×10−37 130 5.29×10−1 3.10×10−17 5.63×10−23 4.87×10−35

u = 10,m = 5 u = 10,m = 10

52 1.63×100 9.64×10−18 1.26×10−23 1.85×10−35 102 1.91×100 1.13×10−21 2.49×10−29 2.52×10−42

80 1.28×100 1.88×10−17 2.62×10−23 5.87×10−35 130 1.68×100 5.81×10−21 2.33×10−28 7.27×10−43

150 9.42×10−1 1.67×10−18 9.18×10−25 2.87×10−37 200 1.42×100 1.99×10−21 5.16×10−29 6.64×10−44

300 1.22×100 4.06×10−22 5.54×10−30 1.96×10−45

400 1.08×100 1.16×10−22 9.54×10−31 1.23×10−46

In Table 1 we may observe the values of ∆ for the common chi-square approximation to the
distribution of the logarithm of the l.r.t. statistic, which says that −2 log Λ is asymptotically a
chi-square with mu(mu+ 1)/2−m(m+ 1) degrees of freedom, and for the near-exact distributions
developed in the previous section. In this table we may observe values of ∆ for different values of
u (number of locations or time points), m (number of variables) and n (sample size) and also for
different values of m∗, the number of exact moments matched by the near-exact distributions.

As expected, as m∗ increases the values of ∆ for the near-exact distributions decrease clearly,
showing an increasing closeness to the exact distribution. We may also see from Table 1 that the
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near-exact distributions developed exhibit a very good asymptotic behavior not only for increasing
sample sizes, but also for increasing values of both u and m, which is a much desirable feature.
For all values of u and m the upper bounds on the difference between the exact and the near-exact
c.d.f. exhibit extremely low values. We may note that, for larger values of u and v, the asymptotic
behavior for increasing n becomes visible only for larger values of n.

We may see from Table 1 that indeed the chi-square asymptotic distribution may only yield
sensible approximations for very large sample sizes and small numbers of variables involved, and
that the performance of this approximation worsens much as the number of variables increase, that
is, as either u or m increase.

It happens that the measure ∆ in (4.1) gives very good upper-bounds on the difference between
the exact and the approximate distributions in case these approximations are rather good, and
too large values in case these approximations are quite bad. This is the reason why we get some
values of ∆ above one for the chi-square approximation for the smaller sample sizes for many of
the combinations of values of u and m, which indicates that in these cases this approximation has
a really very very poor performance, since indeed the values of ∆ should always be between zero
and one.

5. A real data example and a simulation study

In this section we show the implementation of our new hypothesis testing procedure, using the
block-diagonalization of the BCS structure, as a result of the application of Lemma 3.1 in Roy and
Fonseca (2012), with a real data set taken from (Johnson and Wichern, 2007, p. 43). An investigator
measured the mineral content of bones (radius, humerus and ulna) by photon absorptiometry to
examine whether dietary supplements would slow bone loss in 25 older women. Measurements
were recorded for the three bones on the dominant and non-dominant sides. As such, data have
a two-level multivariate structure, with u = 2 and m = 3. Thus, we can think about testing the
hypothesis that the population covariance matrix has a BCS covariance structure. We need to
rearrange the variables in the data set by grouping together the mineral content of the dominant
sides of radius, humerus and ulna as the first three variables, that is, the variables in the first
location ((u = 1) — dominant side) and then the mineral contents for the non-dominant side of the
same bones ((u = 2) — non-dominant side). The resulting MLE of Σ is (with five decimal places)

Σ̂ =



0.01248 0.02146 0.00876
0.02146 0.07714 0.01616
0.00876 0.01616 0.01111

0.00996 0.01928 0.00764
0.01779 0.06411 0.01233
0.00819 0.01703 0.00775

0.00996 0.01779 0.00819
0.01928 0.06411 0.01703
0.00764 0.01233 0.00775

0.01096 0.02026 0.00855
0.02026 0.06671 0.01612
0.00855 0.01612 0.01018

 .

We see that the variance-covariance matrices of the three mineral contents for the dominant and
non-dominant sides appear very similar. Also, the two covariance matrices (the two block off-
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diagonal matrices) of the three bones between the dominant and non-dominant sides seem to be
fairly similar. Thus, we may hypothesize that this data have a BCS structure.

In order to carry out the test, according to (2.2) we will need to compute the matrix

A = Σ̂∗ = ΓΣ̂Γ′,

where

Γ =

 1√
2

1√
2

1√
2
− 1√

2

⊗ I3 =



1√
2

0 0 1√
2

0 0

0 1√
2

0 0 1√
2

0

0 0 1√
2

0 0 1√
2

1√
2

0 0 − 1√
2

0 0

0 1√
2

0 0 − 1√
2

0

0 0 1√
2

0 0 − 1√
2


.

Then, from (2.6) we get our calculated value for Λ as 0.0227794. Using the near-exact distri-
butions developed in Section 3, we obtain for this calculated value of Λ the p-values in Table 2.

Table 2: p−values from the near-exact approximations for different
values of m∗ (the number of exact moments matched)

for the hypothesis test on bone mineral data

m∗ p−value

1 0.2792

2 0.2792168

4 0.2792168718

6 0.279216871862

10 0.279216871862222

Table 2 gives the p−values for different values of m∗ up to the decimal places which exactly
match the decimal places of the p−value corresponding to the next m∗. If we just compare the
p−value for m∗ = 1 and m∗ = 2 we see that the p−value for m∗ = 1 is exact up to four decimal places.
According to the way the near-exact distributions are built, the p−values have better precision for
increasing values of m∗, the number of exact moments matched by the corresponding near-exact
distribution. Thus, we should not reject the null hypothesis that the covariance structure is of the
BCS type, with a p−value = 0.2792, which is much lower than the p−value = 0.5786 obtained when
we use the asymptotic χ2

ν approximation for −2 log Λ with ν = mu(mu+1)
2 −m(m+ 1) = 9 degrees

of freedom. See (Roy and Leiva, 2011) for detail.
In Figure 1 we have, for W = − log Λ, the plots of the p.d.f.’s and c.d.f.’s for the near-exact

distribution for m∗ = 1 and for the asymptotic Gamma distribution with shape parameter 9/2 and
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rate parameter 1, which corresponds to the chi-square asymptotic distribution with nine degrees of
freedom for −2 log Λ.

Chi - square pdf

Near - exact pdf

5 10 15 20
w

0.05

0.10

0.15

0.20

Near - exact cdf

Chi - square cdf

5 10 15 20
w

0.2

0.4

0.6

0.8

1.0

Figure 1: Plots of the p.d.f.’s and c.d.f.’s of the asymptotic Γ(9/2, 1) distribution and the near-exact

distribution (m∗ = 1), for W = − log Λ.

A simulation study was conducted where 100 000 pseudo-random samples with BCS structure
for u = 2, m = 3 and n = 25 were generated. The p-value obtained from this simulation for
Λ was 0.28163, which shows that p-values obtained from simulation, even when using quite large
simulations, may be not that precise.

6. Conclusions

We have shown that using the approach based on Lemma 3.1 in Roy and Fonseca (2012) and
on a decomposition of the null BCS hypothesis we were able to build quite easily the l.r.t. for this
hypothesis, as well as to obtain the corresponding test statistic and its moments. From these we
were able to obtain the characteristic function for the logarithm of the l.r.t. statistic in a form
which is much adequate for developing near-exact distributions both for the l.r.t. statistic itself
and its logarithm. With the help of some numerical studies we were able to show that these near-
exact distributions yield very good approximations to the exact distribution. These approximations
exhibit very good asymptotic behaviors not only in terms of increasing sample sizes, but also in
terms of increasing values of the number of variables, and locations or time points. This asymptotic
behavior for increasing number of variables is a much desirable feature which common asymptotic
distributions do not have. Moreover, by using a measure that gives an upper-bound on the difference
between the cumulative distribution functions of the exact and any approximate distribution we
were able to show that the common chi-square asymptotic approximation for −2 log Λ may only
work in practice for very large sample sizes and when the number of variables involved is rather
small, or it may indeed not even work at all when the number of variables involved is rather
large. An illustration with real data shows the applicability and manageability of the near-exact
distributions obtained.
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Furthermore, the approach followed in this paper may be extended in order to address more
complicated covariance structures arising for multi-level multivariate data.
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Appendix A. Shape parameters in the moment expressions for Λb

According to Coelho and Marques (2012a) and Marques et al. (2011) the shape parameters sj
in (2.11) are given by

sj =


s∗j−1 for j = 2, . . . ,m,

except for j = m−2α1

s∗j−1+(m⊥⊥2)(α2 − α1)
(

(u− 1)−m−1
2 + (u− 1)

⌊
m

2(u−1)

⌋)
for j = m− 2α1

(A.1)
with

s∗j =



γj for j = 1, . . . , α+ 1

(u− 1)
(⌊

m
2

⌋
−
⌊
j
2

⌋)
for j = α+ 2, ... ,min(m− 2α1,m− 1)

and j = 2+m−2α1, ... , 2
⌊
m
2

⌋
−1, by steps of 2

(u− 1)
(⌊

m+1
2

⌋
−
⌊
j
2

⌋)
for j = 1+m−2α1, ... ,m−1, by steps of 2 ,

(A.2)

and

α =

⌊
m− 1

u− 1

⌋
, α1 =

⌊
u− 2

u− 1

m− 1

2

⌋
, α2 =

⌊
u− 2

u− 1

m+ 1

2

⌋
, (A.3)

where, for j = 1, . . . , α,

γj =

⌊
u− 1

2

⌋(
(j−1)(u−1)−2 (u⊥⊥2)

⌊
j

2

⌋)
+

⌊
u− 1

2

⌋⌊
u− 1 + j ⊥⊥ 2

2

⌋
(A.4)

and

γα+1 = −
(⌊m

2

⌋
− α

⌊
u− 1

2

⌋)2

+ (u− 1)

(⌊m
2

⌋
−
⌊
α+ 1

2

⌋)
+((u− 1)⊥⊥2)

(
α
⌊m

2

⌋
+
α ⊥⊥ 2

4
− α2

4
− α2

⌊
u− 1

2

⌋)
.

(A.5)
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Appendix B. Gamma distribution and related results

We say that the r.v. X follows a Gamma distribution with shape parameter r > 0 and rate
parameter λ > 0, if the p.d.f. of X is

fX(x) =
λr

Γ(r)
e−λx xr−1, (x > 0)

and we will denote this fact by X ∼ Γ(r, λ). Then we know that the moment generating function
of X is

MX(t) = λr(λ− t)−r ,

so that if we define Z = e−X we will have

E(Zh) = E
(
e−hX

)
= MX(−h) = λr(λ+ h)−r .

References

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New
Jersey.

Arnold, B. C., Coelho, C. A., Marques, F. J. (2013). The distribution of the product of powers of
independent uniform random variables – a simple but useful tool to address and better understand
the structure of some distributions. Journal of Multivariate Analysis, 113, 19–36.

Coelho, C. A. (1998). The Generalized Integer Gamma distribution – a basis for distribution in
Multivariate Statistics. Journal of Multivariate Analysis, 64, 86-102.

Coelho, C. A. (2004). The Generalized Near-Integer Gamma distribution: a basis for ‘near-exact’
approximations to the distribution of statistics which are the product of an odd number of
independent Beta random variables. Journal of Multivariate Analysis, 89, 191–218.

Coelho, C. A., Marques, F. J. (2012a). Near-exact distributions for the likelihood ratio test statistic
to test equality of several variance-covariance matrices in elliptically contoured distributions.
Computational Statistics, 27, 627–659.

Coelho, C. A., Marques, F. J. (2012b). The multi-sample block-scalar sphericity test – exact and
near-exact distributions for its likelihood ratio test statistic. Comm. Statist. Theory Methods (in
print).

Johnson, R. A., Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, 6th ed., Pearson
Prentice Hall, Englewood Cliffs, New Jersey.

Marques, F. J., Coelho, C. A., Arnold, B. C. (2011). A general near-exact distribution theory for
the most common likelihood ratio test statistics used in multivariate analysis. Test, 20, 180–203.

14



Marques, F. J., Coelho, C. A. (2012). Near-exact distributions for the likelihood ratio test statistic
of the multi-sample block-matrix sphericity test. Appl. Math. Comput., 219, 2861-2874.

Rao, C.R. (1945). Familial correlations or the multivariate generalizations of the intraclass corre-
lation. Current Science, 14, 66-67.

Rao, C.R. (1953). Discriminant functions for genetic differentiation and selection. Sankhyā, 12,
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