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1. INTRODUCTION

The concept of asymptotic independence connects two central notions in
probability and statistics: asymptotics and independence. Suppose that X and Y
are identically distributed real-valued random variables, and that our interest is
in assessing the probability of a joint tail event (X > u, Y > u), where u denotes

a high threshold. We say that (X,Y ) is asymptotically independent, X
a. ind.∼ Y ,

if

(1.1) lim
u→∞

pr(X > u | Y > u) = lim
u→∞

pr(X > u, Y > u)

pr(Y > u)
= 0.

Intuitively, condition (1.1) implies that given that the decay of the joint distri-
bution is faster than the marginals, it is unlikely that the largest values of X
and Y happen simultaneously.1 Whereas independence is unrealistic for many
data applications, there has been a recent understanding that when modeling
extremes, asymptotic independence is often found in real data. It may seem sur-
prising that although the problem of testing asymptotic independence is an old
goal in statistics (Gumbel and Goldstein, 1964), only recently there has been an
understanding that classical models for multivariate extremes are unable to deal
with it.

In this paper we review the current state of statistical modeling of asymp-
totically independent data. Our discussion includes a list of important topics,
including necessary and sufficient conditions, results on the asymptotic indepen-
dence of statistics of interest, estimation and inference issues, and joint tail mod-
eling. We also provide our personal view on some directions we think could be
of interest to be explored in the coming years. Our discussion is not exhaustive,
and in particular there are many results of probabilistic interest, on asymptotic
independence of other statistics not relevant to extreme value analyses, which are
not discussed here.

The title of this paper is based on the seminal work of Sibuya (1960), en-
titled “Bivariate Extreme Statistics, I” which presents necessary and sufficient
conditions for the asymptotic independence of the two largest extremes in a
bivariate distribution. Sibuya mentions that a practical application should be
“considered in a subsequent paper” which to our knowledge never appeared.

Other recent surveys on asymptotic independence include Resnick (2002)
and Beirlant et al. (2004, §9). The former mostly explores connections with
hidden regular variation and multivariate second order regular variation.

1To be precise, the tentative definition in (1.1) corresponds simply to a particular instance
of the concept, i.e., asymptotic independence of the largest extremes in a bivariate distribution.
Although this is the version of the concept to which we devote most of our attention, the concept
of asymptotic independence is actually broader, and has also been studied for many other pairs of
statistics, other than bivariate extremes, even in the field of extremes; we revisit some examples
in §6.
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2. ASYMPTOTIC INDEPENDENCE—CHARACTERIZATIONS

2.1. Necessary and sufficient conditions for asymptotic independence

Early developments on asymptotic independence of the two largest ex-
tremes in a bivariate distribution, were mostly devoted to obtaining necessary
or sufficient characterizations for asymptotic independence (Finkelstein, 1953;
Geffroy, 1958, 1959; Sibuya, 1960; Berman, 1961; Ikeda, 1963; Mikhailov, 1974;
Galambos, 1975; de Haan and Resnick, 1977; Marshall and Olkin, 1983; Taka-
hashi, 1994).

Geffroy (1958) showed that the condition

(2.1) lim
x,y→∞

C{FX(x), FY (y)}
1− FX,Y (x, y)

= 0,

is sufficient for asymptotic independence, where the operator

C{FX(x), FY (y)} ≡ pr(X > x, Y > y)

= 1 + FX,Y (x, y)− FX(x)− FY (y), (x, y) ∈ R2,
(2.2)

maps a pair of marginal distribution functions to their joint tails. We prefer to
state results using a copula, i.e., a function C : [0, 1]2 → [0, 1], such that

C(p, q) = FX,Y {F−1
X (p), F−1

Y (q)}, (p, q) ∈ [0, 1]2.

Here F−1
· (·) = inf{x : F·(x) ≥ · ∈ [0, 1]}, and the uniqueness of the function C

for a given pair of joint and marginal distributions follows by Sklar’s theorem
(Sklar, 1959). Geffroy’s condition can then be rewritten as

(2.3) lim
p,q↑1

C(p, q)

1− C(p, q)
= lim

p,q↑1

1 + C(p, q)− p− q
1− C(p, q)

= 0.

Example 2.1. Examples of dependence structures obeying condition
(2.3) can be found in Johnson and Kotz (1972, §41), and include any member of
the Farlie–Gumbel–Morgenstern family of copulas

Cα(p, q) = pq{1 + α(1− p)(1− q)}, α ∈ [−1, 1],

and the copulas of the bivariate exponential and bivariate logistic distributions
(Gumbel, 1960, 1961), respectively given by

Cθ(p, q) = p+ q − 1 + (1− p)(1− q) exp{−θ log(1− p) log(1− q)}, θ ∈ [0, 1],

C(p, q) =
pq

p+ q − pq
, (p, q) ∈ [0, 1]2.
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Sibuya (1960) introduced a condition related to (2.1)

(2.4) lim
q↑1

C(q, q)

1− q
= 0,

and showed that this is necessary and sufficient for asymptotic independence.
Condition (2.4) is simply a reformulation of (1.1) which describes the rate at
which we start lacking observations in the joint tails, as we move towards higher
quantiles. Sibuya used condition (2.4) to observe that bivariate normal dis-
tributed vectors with correlation ρ < 1 are asymptotically independent, and simi-
lar results are also inherited by light-tailed elliptical densities (Hult and Lindskog,
2002).

Often the question arises on whether it is too restrictive to study asymp-
totic independence only for the bivariate case. This question was answered
long ago by Berman (1961), who showed that a d-dimensional random vector
Z = (Z1, . . . , Zd), with a regularly varying joint tail (Bingham et al., 1987), is
asymptotically independent if, and only if,

Zi
a.ind.∼ Zj , i 6= j.

Asymptotic independence in a d-vector is thus equivalent to pairwise asymptotic
independence.2 This can also be shown to be equivalent to having the exponent
measure put null mass on the interior of the first quadrant, and to concentrate
on the positive coordinate axes, or equivalently to having all the mass of the
spectral measure concentrated on 0 and 1; definitions of the spectral and exponent
measures are given in Beirlant et al. (2004, §8), and a formal statement of this
result can be found in Resnick (1987, Propositions 5.24–25). In theory, this allows
us to restrict the analysis to the bivariate case, so we confine the exposition to this
setting. Using the result of Berman (1961) we can also state a simple necessary
and sufficient condition, analogous to (2.4), for asymptotic independence of Z =
(Z1, . . . , Zd), i.e.,

lim
q↑1

d∑
i=1

d∑
j=1

(j 6=i)

Cij(q, q)

1− q
= 0, Cij(p, q) ≡ 1 + Cij(p, q)− p− q, (p, q) ∈ [0, 1]2,

with the obvious notations (Mikhailov, 1974, Theorem 2).

Example 2.2. Consider the copula of bivariate logistic distribution in
Example 2.1. Sibuya’s condition (2.4) follows directly:

lim
q↑1

C(q, q)

1− q
= lim

q↑1

2(q − 1)2

2− q
= 0.

2The pairwise structure is however insufficient to determine the higher order structure; e.g.,
in general not much can be infererred on pr(X > x, Y > y, Z > z), from the pairs.
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The characterizations in (1.1) and (2.1) are population-based, but a lim-
iting sample-based representation can also be given, using the random sample
{(Xi, Yi)}ni=1, so that asymptotic independence is equivalent to

(2.5) lim
n→∞

Cn(p1/n, q1/n) = pq, (p, q) ∈ [0, 1]2.

In words: the copula of the distribution function of the sample maximum Mn =
max{(X1, Y1), . . . , (Xn, Yn)}, where the maximum are taken componentwise, con-
verges to the product copula Cπ = pq; equivalently we can say that the extreme-
value copula, limn→∞C

n(p1/n, q1/n), is Cπ, or that C in the domain of attraction
of Cπ.

Srivastava (1967) and Mardia (1964) studied results on asymptotic inde-
pendence on bivariate samples, but for other order statistics, rather than the
maximum. Consider a random sample {(Xi, Yi)}ni=1 and the order statistics
X1:n ≤ · · · ≤ Xn:n and Y1:n ≤ · · · ≤ Yn:n. It can be shown that if (X1:n, Y1:n) is
asymptotically independent, then

Xi:n
a. ind.∼ Yj:n, i, j ∈ {1, . . . , n}.

See Srivastava (1967, Theorem 3).

The last characterization of asymptotic independence we discuss is due to
Takahashi (1994). According to Takahashi’s criterion, asymptotic independence
is equivalent to

(2.6) ∃ (a, b) ∈ (0,∞)2 : `(a, b) ≡ lim
q↑1

1− C{1− a(1− q), 1− b(1− q)}
1− q

= a+ b.

Example 2.3. A simple analytical example to verify Takahashi’s crite-
rion is given by taking the bivariate logistic copula and checking that `(1, 1) = 2.

Remark 2.1. The function `(a, b) is the so-called stable tail dependence
function, and as shown in Beirlant et al. (2004, p. 286), condition (2.6) is equiv-
alent to

`(a, b) = a+ b, (a, b) ∈ [0,∞).

2.2. Notes and comments

Some of the results obtained in Finkelstein (1953) were ‘rediscovered’ in
later papers. Some of these include results proved by Galambos (1975), who
claims that Finkelstein (1953) advanced his results without giving formal proofs.
Tiago de Oliveira (1962/63) is also acknowledged for pioneering work in sta-
tistical modeling of asymptotic independence of bivariate extremes. Mikhailov
(1974) and Galambos (1975) obtained a necessary and sufficient condition for
d-dimensional asymptotic independence of arbitrary extremes; a related charac-
terization can also be found in Marshall and Olkin (1983, Proposition 5.2)
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Most of the characterizations discussed above are directly based on distribu-
tion functions and copulas, but it seems natural to infer asymptotic independence
from contours of the joint density. Balkema and Nolde (2010) establish sufficient
conditions for asymptotic independence, for some homothetic densities, i.e., den-
sities whose level sets all have the same shape. In particular, they show that the
components of continuously differentiable homothetic light-tailed distributions
with convex levels sets are asymptotically independent; in their Corollary 2.1
Balkema and Nolde also show that asymptotic independence resists quite no-
table distortions in the joint distribution.

Measures of asymptotic dependence for further order statistics are studied
in Ferreira and Ferreira (2012).

2.3. Dual measures of extremal dependence: (χ, χ)

Many measures of dependence, such as the Pearson correlation coefficient,
Spearman rank correlation, and Kendall’s tau, can be written as functions of
copulae (Schweizer and Wolff, 1981, p. 879), and as we discuss below, measures
of extremal dependence can also be conceptualized as functions of copulae.

To measure extremal dependence we first need to convert the data (X ,Y)
to a common scale. The rescaled variables (X,Y ) are transformed to have unit
Fréchet margins, i.e., FX(z) = FY (z) = exp(−1/z), z > 0; this can be done with
the mapping

(2.7) (X ,Y) 7→ (X,Y ) = −
(
{logFX (X )}−1, {logFY(Y)}−1

)
.

Since the rescaled variables have the same marginal distribution, any remaining
differences between distributions can only be due to dependence features (Em-
brechts et al., 2002). A natural measure to assess the degree of dependence at an
arbitrary high level τ <∞, is the bivariate tail dependence index

(2.8) χ = lim
u→∞

pr(X > u | Y > u) = lim
q↑1

pr{X > F−1
X (q) | Y > F−1

Y (q)}.

This measure takes values in [0, 1], and can be used to assess the degree of de-
pendence that remains in the limit (Coles et al., 1999; Poon et al., 2003, 2004).
If dependence persists as u → ∞, then 0 < χ ≤ 1 and X and Y are said to
be asymptotically dependent; otherwise, the degree of dependence vanishes in
the limit, so that χ = 0 and the variables are asymptotically independent. The
measure χ can also be rewritten in terms of the limit of a function of the copula
C, by noticing that

(2.9) χ = lim
q↑1

χ(q), χ(q) = 2− logC(q, q)

log q
, 0 < q < 1.

Thus, the function C ‘couples’ the joint distribution function and its correspond-
ing marginals, and it also provides helpful information for modeling joint tail
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dependence. The function χ(q) can be understood as a quantile dependent mea-
sure of dependence, and the sign of χ(q) can be used to ascertain if the variables
are positively or negatively associated at the quantile q. As a consequence of
the Fréchet–Hoeffding bounds (Nelsen, 2006, §2.5), the level of dependence is
bounded,

(2.10) 2− log(2q − 1)+

log q
≤ χ(q) ≤ 1, 0 < q < 1,

where a+ = max(a, 0), a ∈ R. Extremal dependence should be measured ac-
cording to the dependence structure underlying the variables under analysis. If
the variables are asymptotically dependent, the measure χ is appropriate for as-
sessing the strength of dependence which links the variables at the extremes. If
however the variables are asymptotically independent then χ = 0, so that χ pools
cases where although dependence may not prevail in the limit, it may persist for
relatively large levels of the variables. To measure extremal dependence under
asymptotic independence, Coles et al. (1999) introduced the measure

(2.11) χ = lim
u→∞

2 log pr(X > u)

log pr(X > u, Y > u)
− 1,

which takes values on the interval (−1, 1]. The interpretation of χ is to a certain
extent analogous to that of the Pearson correlation: values of χ > 0, χ = 0 and
χ < 0, respectively correspond to positive association, exact independence and
negative association in the extremes, and if the dependence structure is Gaussian
then χ = ρ (Sibuya, 1960). This benchmark case is particularly helpful for
guiding how does the dependence in the tails, as measured by χ, compares with
that arising from fitting a Gaussian dependence model.

Asymptotic dependence and asymptotic independence can also be charac-
terized through χ. For asymptotically dependent variables, it holds that χ = 1,
while for asymptotically independent variables χ takes values in (−1, 1). Hence
χ and χ can be seen as dual measures of joint tail dependence: if χ = 1 and
0 < χ ≤ 1, the variables are asymptotically dependent, and χ assesses the de-
gree of dependence within the class of asymptotically dependent distributions;
if −1 ≤ χ < 1 and χ = 0, the variables are asymptotically independent, and χ
assesses the degree of dependence within the class of asymptotically independent
distributions. In a similar way to (2.9), the extremal measure χ can also be
written using copulas, viz.

(2.12) χ = lim
q↑1

χ(q), χ(q) =
2 log(1− q)
logC(q, q)

.

Hence, the function C can provide helpful information for assessing dependence
in extremes both under asymptotic dependence and asymptotic independence.
The function χ(q) has an analogous role to χ(q), in the case of asymptotic inde-
pendence, and it can also be used as quantile dependent measure of dependence,
with the following Fréchet–Hoeffding bounds,

(2.13)
2 log(1− q)
log(1− 2q)+

− 1 ≤ χ(q) ≤ 1, 0 < q < 1.
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For an inventory of the functional forms of the extremal measures χ and χ,
over several dependence models, see Heffernan (2000). We remark that the dual
measures (χ, χ) can be reparametrized as

(2.14) (χ, χ) = (2− θ, 2η − 1),

where θ = limq↑1 logC(q, q)/ log q is the so-called extremal coefficient, and η is
the coefficient of tail dependence to be discussed in §3–4.

3. ESTIMATION AND INFERENCE

3.1. Coefficient of tail dependence-based approaches

The coefficient of tail dependence η corresponds to the extreme value index
of the variable Z = min{X,Y }, which characterizes the joint tail behavior above
a high threshold u (Ledford and Tawn, 1996). The formal details are described
in §4, but the heuristic argument follows by the simple observation that

pr(Z > u) = pr(X > u, Y > u),

and hence we reduce a bivariate problem to a univariate one. This implies that
we can use the order statistics of the Zi = min{Xi, Yi}, Z(1) ≤ · · · ≤ Z(n), to
estimate η by applying univariate estimation methods, such as the Hill estimator

η̂k =
1

k

k∑
i=1

logZ(n−k+i) − logZ(n−k).

By estimating η directly with univariate methods we are however underestimating
its uncertainty, since we ignore the uncertainty from transforming the data to
equal margins, say by using (2.7). The estimators of Peng (1999), Draisma et al.
(2004), Beirlant and Vandewalle (2002), can be used to tackle this, and a review
of these methods can be found in Beirlant et al. (2004, p. 351–353).

3.2. Score-based tests

Tawn (1988) and Ledford and Tawn (1996) proposed score statistics for
examining independence within the class of multivariate extreme value distribu-
tions. Ramos and Ledford (2005) proposed modified versions of such tests which
solve the problem of slow rate of convergence of such tests, due to infinite variance
of the scores. Consider the following partition of the outcome space R2

+, given by

Rkl = {(x, y) : k = I(x > u), l = I(y > u)}, k, l ∈ {0, 1},
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where u denotes a high threshold and I denotes the indicator function. The
approach of Ramos and Ledford is based on censoring the upper tail R11 for
a high threshold u, so that, using the logistic dependence structure, the score
functions at independence of Tawn (1988) and Ledford and Tawn (1996) are
respectively given by

U1
n =

∑
(Xi,Yi)/∈R11

∆1(Xi, Yi) + Λ, U2
n =

∑
(Xi,Yi)/∈R11

∆2(Xi, Yi) + Λ,

where

∆1(Xi, Yi) = (1−X−1
i ) logXi + (1− Y −1

i ) log Yi

+ (2−X−1
i − Y

−1
i ) log(X−1

i + Y −1
i )− (X−1

i + Y −1
i )−1,

∆2(Xi, Yi) = I{(Xi, Yi) ∈ Rkl}Skl(Xi, Yi),

Λ =
2u−1 log 2 exp(−2u−1)N

2 exp(−u−1)− exp(−2u−1)− 1
.

with N denoting the number of observations in region R11, and

S00(x, y) = −2u−1 log 2,

S01(x, y) = −u−1 log u+ (1− y−1) log y + (1− u−1 − y−1) log(u−1 + y−1),

S10(x, y) = −u−1 log u+ (1− x−1) log x+ (1− x−1 − u−1) log(x−1 + u−1),

S11(x, y) = (1− x−1) log x+ (1− y−1) log y + (2− x−1 − y−1) log(x−1 + y−1)

− (x−1 + y−1)−1,

The modified score functions U1
n and U2

n have zero expectation and finite second
moments. The limit distributions under independence are then given as

−n−1/2U
i
n

σi

d−→ N(0, 1), n→∞, i = 1, 2,

where
d−→ denotes convergence in distribution and σi denotes the variance of the

corresponding modified score statistics; we remark that these score tests typically
reject independence when evaluated on asymptotically independent data.

3.3. Falk–Michel test

Falk and Michel (2006) proposed tests for asymptotic independence based
on the characterization
(3.1)

(X
a. ind.∼ Y ) ≡

{
Fδ(t) = pr(X−1+Y −1 < δt | X−1+Y −1 < δ) −→

δ→0
t2, t ∈ [0, 1]

}
.

Alternatively, under asymptotic dependence we have pointwise convergence of
Fδ(t)→ t, for t ∈ [0, 1], as δ → 0. Falk and Michel (2006) use condition (3.1) to
test for asymptotic independence of (X,Y ) using a battery of classical goodness-
of-fit tests. An extension of their method can be found in Frick et al. (2007).
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3.4. Gamma test

Zhang (2008) introduced the tail quotient correlation to assess extremal
dependence between random variables. If u is a positive high threshold, and W
and V are exceedance values over u of X and Y , then the tail quotient correlation
coefficient is defined as

(3.2) qu,n =
max{(u+Wi)/(u+ Vi)}ni=1 + max{(u+ Vi)/(u+Wi)}ni=1 − 2

max{(u+Wi)/(u+ Vi)}ni=1 max{(u+ Vi)/(u+Wi)}ni=1 − 1
.

Asymptotically, qu,n can take values between zero and one. If both max{(u +
Wi)/(u+Vi)}ni=1 and max{(u+Vi)/(u+Wi)}ni=1 are large, so that large values of
both variables tend to occur one at a time, qu,n will be close to zero. If the two
‘max’ are close to one, then qu,n approaches one, and hence large values of both
variables tend to occur together. There is a connection to the tail dependence
index χ in (2.8): if χ is zero, then qu,n converges to zero almost surely. So if
(X,Y ) is asymptotically independent, qu,n is close to zero, although, in practice,
the tail quotient correlation coefficient may never reach zero. This brings us to
the hypotheses

H0 : (X,Y ) is asymptotically independent,

H1 : (X,Y ) is asymptotically dependent.

The Gamma test for asymptotic independence says that as n→∞,

nqu,n
d−→ Γ{2, 1− exp(−1/u)},

A large value of qu,n is indicative of tail dependence and thus leads to a smaller
p-value. If H0 is rejected, we can use qu,n as measure of extremal dependence.
Although it might seem that the tail quotient correlation increases as u increases,
this is not the case as an increase in u leads to a decrease in the scale parameter
1− exp(−1/u), leading to a larger α-percentile.

The tail quotient correlation in (3.2) is an extension of another measure of
dependence—the quotient correlation—which is defined as

(3.3) qn =
max{Yi/Xi}ni=1 + max{Xi/Yi}ni=1 − 2

max{Yi/Xi}ni=1 ×max{Xi/Yi}ni=1 − 1
.

Zhang et al. (2011) shows that (3.3) is asymptotically independent of the Pearson
correlation ρn, meaning that qn and ρn measure different degrees of association
between random variables, in a large sample setting.

3.5. Madogram test

Bacro et al. (2010) propose to test for asymptotic independence using a
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madogram

W =
1

2
|FX(X)− FY (Y )|,

which is a tool often used in geostatistics to capture spatial structures. The ex-
pected value and the variance of the madogram depend on the extremal coefficient
as follows:

µW =
1

2

(
θ − 1

θ + 1

)
, σ2

W =
1

6
− µ2

W −
1

2

∫ 1

0

dt

{1 +A(t)}2
,

where A is the Pickands’ dependence function, which is related to the spectral
measure H, as follows

A(t) = 2

∫ 1

0
max{w(1− t), (1− w)t}dH(w).

Hence testing for asymptotic independence (θ = 2) is the same as testing if
µW = 1/6. Inference is made on the basis of the asymptotic result

n1/2

(
µ̂W − 1/6

σ̂W

)
d−→ N(0, 1)

where µ̂W and σ̂W are consistent estimators of µ and σ.

3.6. Notes and comments

Other tests of independence between marginal extremes include a Cramér–
von Mises-type statistic by Deheuvels and Martynov (1996), a dependence func-
tion based test by Deheuvels (1980), a test based on the number of points below
certain thresholds by Dorea and Miasaki (1993), the dependence function ap-
proaches of Capéraà et al. (1997). The behavior of Kendall’s-τ as a measure of
dependence within extremes has been also examined; see Capéraà et al. (2000)
and Genest and Rivest (2001). An alternative likelihood-based approach that
uses additional occurrence time information is given in Stephenson and Tawn
(2005), and Ramos and Ledford (2009) propose likelihood ratio-based tests for
asymptotic independence, asymmetry, and ray independence, resulting from a
joint tail modeling approach which we describe in §4.2.

The huge literature on inference for asymptotic independence itself requires
an entire survey. The criterion for selecting the methods presented above was
mainly their simplicity, but many other methods exist which would also meet
this criterion; see de Haan and de Ronde (1998), Husler and Li (2009), Tsai et al.
(2011), among others.
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4. JOINT TAIL MODELS

4.1. Joint tail specifications

We start by discussing three different regular variation-based specifications
that provide the basis for the joint tail models to be discussed. The idea is
to provide a chronological view on the different specifications considered on ex-
tremal dependence models that accommodate both asymptotic dependence and
asymptotic independence. Most of the emphasis is placed on the Ramos–Ledford
spectral model.

Let (X ,Y) be a bivariate random variable with joint distribution function
FX ,Y with margins FX and FY ; we apply (2.7) to obtain a pair of unit Fréchet
distributed random variables, X and Y . Ledford and Tawn (1996) proposed the
following specification for the joint survival function,

FX,Y (x, x) = pr(X > x, Y > x) =
`(x)

x1/η
,

where η ∈ (0, 1] is the coefficient of tail dependence and ` is a slowly varying
function, i.e., limx→∞ `(tx)/`(x) = 1, for all t > 0.

Ledford and Tawn (1997, 1998) proposed the more flexible joint asymptotic
expansion

(4.1) FX,Y (x, y) = pr(X > x, Y > x) =
L(x, y)

xc1yc2
, c1 + c2 = η,

where L is a bivariate slowly varying function, i.e., there is a function g, the
so-called limit function of L, such that for all x, y > 0 and c > 0

(4.2) g(x, y) ≡ lim
r→∞

{
L(rx, ry)

L(r, r)

}
, g(cx, cy) = g(x, y).

The so-called ray dependence function is then defined as

g∗(w) ≡ g(x, y), w = x/(x+ y) ∈ [0, 1].

If g∗(w) varies with w, we say that L(x, y) is ray dependent; if otherwise g∗(w) =
1, w ∈ (0, 1), we say that is ray independent.

Ramos and Ledford (2009) considered a particular case of specification (4.1)
where c1 = c2, i.e.,

(4.3) FX,Y (x, y) = pr(X > x, Y > x) =
L(x, y)

(xy)1/(2η)
.
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4.2. Ramos–Ledford spectral model

Ramos and Ledford (2009) base their analysis on the bivariate conditional
random variable (S, T ) = limu→∞{(X/u, Y/u) : (X > u, Y > u)}, for a high
threshold u. The joint survivor function of the conditional random variable (S, T )
is such that

FST (s, t) = pr(S > s, T > t)

= lim
u→∞

pr(X > su, Y > tu)

pr(X > u, Y > u)

= η

∫ 1

0

{
min

(
w

s
,
1− w
t

)}1/η

dHη(w),

(4.4)

where Hη is a non-negative measure on [0, 1] that should obey the normalization
constraint

(4.5)

∫ 1/2

0
w1/ηdHη(w) +

∫ 1

1/2
(1− w)1/ηdHη(w) =

1

η
.

The measure Hη is analogous to the spectral measure H in classical models
for multivariate extremes, which in turn must obey normalization and marginal
moment constraints, ∫ 1

0
dH(w) = 1,

∫ 1

0
wdH(w) =

1

2
.

The two measures can be related: for example, if η = 1, dH1(w) = χ× 2dH(w)
(Ramos and Ledford, 2009, p. 240), with χ = 2−

∫ 1
0 max(w, 1− w)dH(w). The

measure Hη is a particular case of the hidden angular measure, which has been
studied by Resnick (2002) and Maulik and Resnick (2004), but in these papers
the normalization constraint (4.5) has been omitted.

Using the joint tail specification (4.3) we can also relate the joint survivor
function of the conditional random variable (S, T ) with the ray dependence func-
tion g?, as follows,

FST (s, t) = lim
u→∞

{
L(us, ut)

L(u, u)(st)1/(2η)

}
=

g(s, t)

(st)1/(2η)
=
g∗{(s/(s+ t)}

(st)1/(2η)
.

Treating the limit in (4.4) as an approximation in the joint tail, we have that for
a sufficiently large threshold u

(4.6) FX,Y (x, y) ≈ FX,Y (u, u)FS,T (x/u, y/u), (x, y) ∈ (u,∞)2.

For an arbitrary (X ,Y) with joint distribution function FX ,Y , with margins FX
and FY , we apply (2.7) to obtain a pair of unit Fréchet distributed random
variables, X and Y . The joint survivor function of (X ,Y) can then be modelled
by

F (X ,Y)(x, y) = λFST

{
−1

u logFX (x)
,

−1

u logFY(y)

}
, (x, y) ∈ (u1,∞)× (u2,∞).
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where λ denotes the probability of falling in R11. Ramos and Ledford (2009) also
showed that for this approach to yield a complete joint tail characterization, the
marginal tails of the survivor function of S and T must satisfy certain mono-
tonicity conditions, implying that their marginal tails cannot be heavier than the
unit Fréchet survivor function. These conditions guarantee that a given function
FST can arise as a limit in equation (4.4).

Example 4.1. To exploit this in applications, Ramos and Ledford (2009)
propose a parametric model—the η-asymmetric logistic model—which is a modi-
fied version of the asymmetric logistic dependence structure for classical bivariate
extremes (Tawn, 1988), according to the model discussed above. The hidden an-
gular density for this model is

hη(w) =
η − α
αη2Nρ

{
(ρw)−1/α+

(
1− w
ρ

)−1/α}α/η−2

{w(1−w)}−(1+1/α), w ∈ [0, 1],

where

Nρ = ρ−1/η + ρ1/η − (ρ−1/α + ρ1/α)α/η, η, α ∈ (0, 1], ρ > 0.

Hence using (4.4) we obtain

FST (s, t) = N−1
ρ

[
(ρs)−1/η +

(
t

ρ

)−1/η

−
{

(ρs)−1/α +

(
t

ρ

)−1/α}α/η]
,

so that by (4.6) the joint survival model for (X,Y ) is

FX,Y (x, y) = FX,Y (u, u)×u
1/η

Nρ

[
(ρx)−1/η+

(
y

ρ

)−1/η

−
{

(ρx)−1/α+

(
y

ρ

)−1/α}α/η]
,

for (x, y) ∈ [u,∞)2.

4.3. Curse of dimensionality?

The model admits a d-dimensional generalization, where the hidden angular
measure now needs to obey the normalization constraint

(4.7)

∫
∆d

min{w1, . . . , wd}1/ηdHη(w) = 1/η,

where ∆d = {w ∈ Rd+ :
∑d

i=1wi = 1; w = (w1, . . . , wd)}. The corresponding
constraints that the angular measure needs to obey are

(4.8)

∫
∆d

wdH(w) = 1,

∫
∆d

wdH(w) = d−11d,

Hence, whereas in classical models for multivariate extremes d + 1 constraints
need to be fulfilled, in the d-dimensional version of the Ramos–Ledford model
only one constraint needs to be fulfilled.

A d-dimensional version of the η-asymmetric model discussed in Exam-
ple 4.1 can be found in Ramos and Ledford (2011, p. 2221).
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4.4. Notes and comments

Qin et al. (2008) discuss a device for obtaining further parametric specifi-
cations for the Ramos–Ledford model, using a construction similar to Coles and
Tawn (1991). Whereas Coles and Tawn (1991) propose a method that transforms
any positive measure on the simplex to satisfy the constraints (4.8), Qin et al.
(2008) propose a method that transforms any positive measure on the simplex, to
satisfy the Ramos–Ledford constraint (4.7). Qin et al. (2008) use their device to
produce a Dirichlet model for the hidden angular density hη. Ramos and Ledford
(2011) give a point process representation that supplements the model discussed
above.

Wadsworth and Tawn (2012a) propose a model based on a specification
on which the axis along which the extrapolation is performed is ‘tilted’ by as-
suming that the marginals grow at different rates. They also obtain analogues
of the Pickands and exponent functions for this setting, and propose the so-
called inverted multivariate extreme value distributions, which are models for
asymptotic independence, having a one-to-one correspondence with multivariate
extreme value distributions; any construction principle or model generator for a
multivariate extreme value distributed X can thus be readily adapted to create
a inverted multivariate extreme value distributed Y . The link between multi-
variate extreme value distributions and their inverted versions allows the use
of approaches which are amenable to non/semi-parametric methods for a mod-
erate number of dimensions, and it also convenient for parametric modeling of
high-dimensional extremes; for example, the max-mixture max{aX, (1 − a)Y },
a ∈ [0, 1], can then be used as a hybrid model, and this principle is adapted for
spatial modeling of extremes in Wadsworth and Tawn (2012b).

Maxima of moving maxima (M4) processes have been recently extended by
Heffernan et al. (2007) to produce models for asymptotic independence.

5. CONDITIONAL TAIL MODELS

5.1. Conditional tail specification

The models discussed in §4 focused on the joint tails, but under asymp-
totic independence it may be restrictive to confine the analysis to such region.
Heffernan and Tawn (2004) propose conditional tail models, where the focus is
on events where at least one component of (X,Y ) is extreme, where here we now
assume Gumbel marginal distributions. We thus need to model the distribution
of X | Y when Y is large, and of Y | X when X is large; for concreteness we
focus on the latter. Analogously to the joint tail modeling, a limiting specifica-
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tion is also needed here: we assume that there exist norming functions a(u) and
b(u) > 0, such that

(5.1) lim
u→∞

pr

{
Y − b(u)

a(u)
≤ e | X = u

}
= G(e).

To ensure that Y has no mass at ∞, G needs to satisfy

lim
z→∞

G(z) = 1.

We define the auxiliary variable ε = {Y − b(u)}/a(u), so that specification (5.1)
can be rewritten as limu→∞ pr(ε ≤ e | X = u) = G(e).

5.2. Heffernan–Tawn model

The starting point for modeling is the following approximation to specifi-
cation (5.1), which holds for a high threshold u:

pr(ε ≤ ε | X = x) ≈ G(ε) = pr(ε ≤ ε), x > u.

Hence, we have that ε ∼ G is (almost) independent of X, for u large. We
restrict our attention to a simplified version of the model where (X,Y ) are non-
negatively dependent, so that the norming functions are a(x) = αx and b(x) = xβ,
with α ∈ [0, 1], β ∈ (−∞, 1], and x > u. The model can be thus written as a
regression model

Y = a(X) + b(X)ε

= αX +Xβε, X > u,
(5.2)

where ε has mean µε and standard error σε. Since the distribution of ε is unspec-
ified, the model is semiparametric, with the estimation targets of interest being
α, β, and G. The variable ε is analogous to a standardized residual in a classical
regression context, but here µε need not equal zero in general, so the conditional
mean and standard errors of the responses Y are

µY |X=x = αx+ µεx
β, σY |X=x = σεx

β.

The interpretation for the α and β are the following: the larger the α the greater
the degree of extremal dependence; the larger the β the greater the conditional
variance of Y | X = x. Asymptotic dependence occurs when (α, β) = (1, 0),
whereas asymptotic independence holds whenever α ∈ [0, 1), regardless of the
value of β ∈ (−∞, 1). Inference is often made assuming normality of ε so that
maximum likelihood methods can be used for the parametric part of the model,
and the empirical distribution function is often used to estimate G. Estimation
can thus be based on the k =

∑n
i=1 I(xi > u) conditional exceedances using the

following two-stage method (Keef et al., 2009a):
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Step 1. Parametric block

(α̂, β̂) = arg max
(α,β)

−
n∑
i=1

{
log(σY |X=xi) +

1

2

(
yi − µY |X=xi

σY |X=xi

)2}
I(xi > u).

Step 2. Nonparametric block

Ĝ(e) =
1

k

n∑
i=1

I(yi ≤ exβ̂i + α̂xi)I(xi > u).

As an alterative to Step 2 we can also obtain a kernel estimate as follows

(5.3) G̃(e) =
1

k

n∑
i=1

K

(
e− yi − α̂xi

xβ̂

)
I(xi > u),

with K denoting a kernel and h > 0 its bandwidth. This procedure suffers
however from a weakness common to all two-stage approaches: uncertainty is
underestimated in the second step.

5.3. Notes and comments

Heffernan and Resnick (2007) provide a mathematical examination of a
modified Heffernan–Tawn model and its connections with hidden regular varia-
tion. A version of the model able to cope with missing data can be found in Keef
et al. (2009b). For applications see, for instance, Paulo et al. (2006), Keef et al.
(2009a), and Hilal et al. (2011).

6. REMARKS ON THE ONE-SAMPLE FRAMEWORK

6.1. Asymptotic independence of order statistics

The expression “asymptotic independence” did not appear for the first
time in the works of Geffroy (1958, 1959) and Sibuya (1960), in the context of
statistics of extremes. The concept was motivated by a conjecture that Gumbel
made on the joint limiting distribution of pairs of order statistics, in a one-sample
framework:

“In a previous article [1] the assumption was used that the mth observation
in ascending order (from the bottom) and the mth observation in descending
order (from the top) are independent variates, provided that the rank m is small
compared to the sample size n.”(Gumbel, 1946).
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While asymptotic independence, as described in §2, is a two-sample concept,
asymptotic independence as first described by Gumbel is a one-sample concept.
Although the expression “asymptotic independence” is not used in Gumbel’s
paper, the expression started to appear immediately thereafter (e.g. Homma,
1951).

Many papers that appeared after Gumbel (1946) focused on the analysis
of asymptotic independence of sets of order statistics (Ikeda, 1963; Ikeda and
Matsunawa, 1970; Falk and Kohne, 1986; Falk and Reiss, 1988).

6.2. Asymptotic independence of sum and maximum

Chow and Teugels (1978) studied the asymptotic joint limiting distribution
of the standardized sum and maximum

(S∗n,M
∗
n) =

(
Sn − nbn

an
,
Mn − dn

cn

)
, Sn =

n∑
i=1

Xi, Mn = max{Xi}ni=1,

for norming constants an, cn > 0 and bn, dn ∈ R. Their results, which only ap-
ply to the case where the Xi are independent and identically distributed, were
later extended to stationary strong mixing sequences by Anderson and Turkman
(1991, 1995), who showed that for such sequences, (Sn,Mn) is asymptotically
independent, under fairly mild conditions; these results also allow us to charac-
terize the joint limiting distribution of (Xn,Mn), with Xn = n−1Sn. Hsing (1995)
extended these results further, and showed that for stationary strong mixing se-
quences, asymptotic normality of Sn is sufficient for the asymptotic independence
of (Sn,Mn).

Assume that E(Xi) = 0 and E(X2
i ) = 1, so that the process of interest has

autocorrelation rn = E(Xi+nXi). Ho and Hsing (1996) obtained the asymptotic
joint limiting distribution of (Sn,Mn) for stationary normal random variables
under the condition

(6.1) lim
n→∞

rn log n = r ∈ [0,∞)

and showed that (Sn,Mn) is asymptotically independent only if r = 0. Related
results can be found in Peng and Nadarajah (2003), who obtain the asymptotic
joint distribution of (Sn,Mn) under a stronger dependence setting. Ho and Mc-
Cormick (1999) and McCormick and Qi (2000) showed that (Mn − Xn, Sn) is
asymptotically independent if

(6.2) lim
n→∞

n−1 log n

n∑
i=1

|ri − rn| = 0.

James et al. (2007) study multivariate stationary Gaussian sequences, and show,
under fairly mild conditions, that if the componentwise maximum has a limiting
distribution, then (S∗n,M

∗
n) is asymptotically independent.
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Hu et al. (2009) show that the point process of exceedances of a standard-
ized Gaussian sequence converges to a Poisson process, and that this process
is asymptotically independent of the partial sums; in addition, they obtain the
asymptotic joint distribution for the extreme order statistics and the partial sums.

6.3. Notes and comments

Related results on the asymptotic independence of sum and maximum are
also discussed in Tiago de Oliveira (1961). Condition (6.1) was introduced by
Berman (1964) and Mittal and Ylvisaker (1975), who studied the asymptotic
distribution of Mn in the cases of r = 0 and r > 0, respectively. Conditions (6.1),
was introduced by McCormick (1980), who studied the asymptotic distribution
of Mn −Xn.

From the statistical point of view, fewer estimation and inference tools
have been developed for asymptotic independence in the one-sample framework,
in comparison with the two-sample case, and many developments have been made
without any statistical applications being given, and mostly at the probabilistic
level.

7. CONCLUSION

We have reviewed key themes for statistical modeling of asymptotically in-
dependent data, with a focus on bivariate extremes. The inventory of approaches
is large, and there exists in the literature a wealth of different perspectives poten-
tially useful for modeling risk. Statistical and probabilistic issues are discussed,
providing a fresh view on the subject, by combining modern advances with a
historical perspective, and tools of theoretical and applied interest.
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