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Abstract

We address the identification and reconstruction of source functions in inverse bound-
ary value problems for the Helmholtz and Laplace problems. We introduce particular
affine/linear classes of sources and address the identification and reconstruction is such
classes. In order to solve these inverse problems we propose a new numerical method
that relies on solving several Helmholtz/Laplace boundary value problems. We establish
a connection between these particular classes and full identification results using many
boundary measurements. The developed methods are theoretically justified and illus-
trated with several numerical examples.
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1. Introduction

Inverse source problems for boundary value problems arises quite often in non destruc-
tive engineering problems (eg. [18]). In this paper, we address the inverse source problem
of, given a pair of Cauchy boundary data (g, gn), find the source function f : Ω ⊂ R2 → R,
such that, for some u, we have

(∆ + κ2)u = f in Ω
u = g on ∂Ω
∂nu = gn on ∂Ω

, (1)

where the frequency κ belongs to R+
0 (and thus, we address both Laplace problems

and Helmholtz problems). This inverse source problem is known to be ill posed, in the
sense of Hadamard. In particular, it is well known (eg. [5]) that the source term f cannot
be fully identified from a pair of boundary data. Usually, one has to consider some sort
of extra source information. For instance, we may know a priori that the sources we are
looking for are characteristic functions on some domain ω ⊂⊂ Ω (eg. [12], [6],[16]), or
point sources (eg. [9], [13]) or sources in linear/affine classes (eg. [4]). We refer the papers
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[10] and [11] where several classes of heat and acoustic sources that can be retrieved from
one boundary measurements are presented.

In this paper, we focus on the numerical reconstruction of sources in some linear/affine
classes. We show that these classes play an important role on full source identification. In
particular, any good reconstruction method for this linear/affine particular setting should
provide a good numerical method for full source reconstruction.

The reconstruction of sources in the above class have been addressed by several authors
(cf. [14] and [4]). The available methods rely on solving a Bilaplace (or the corresponding
eigenvalue problem) fourth order boundary value (direct) problem. Once the solution is
computed, say ũ, the source is recovered as ∆ũ (or (∆+κ2)ũ). Since, for some situations
(eg. [14]), the arising fourth order problem is homogeneous and the differential operators
are linear, elliptic (with constant coefficients), meshfree methods such as the method
of fundamental solutions provide good approximation results with small computational
effort. This approach was implemented and tested in, for instance, [15]. The more general
case that corresponds to a fourth order non homogeneous problem was addressed in [4]
and [3]. However, such passage to a higher order direct problem may be very affected by
the ill posedness of the inverse problem. Moreover, the aring 4th order problem may be
difficult to solve numerically.

We propose a reconstruction method that does not require a higher order direct prob-
lem. Instead, the method relies on several non homogeneous direct problems for the same
operator. Since the problem is linear, we approximate the source by fitting the response
(Neumann data) obtained from properly chosen basis functions to the available source
response.

The paper is organized as follows: We start by describing the addressed inverse prob-
lem and the corresponding direct problem. In section three, the affine classes of sources
are introduced and some related identification results (from one and several boundary
measurements) are presented. Section four is devoted to the numerical methods. Here,
we provide some theoretical results and discussion concerning the proposed numerical
method. We finish with some numerical simulations and concluding remarks.

2. Direct and inverse problems formulation

Let Ω ⊂ R2 be an open, bounded and simply connected C2 domain, which we shall
call a regular domain. Denote the boundary of Ω by Γ, ie., Γ := ∂Ω.

Direct problem.
The direct problem consists in, given the source f , compute the normal derivative

(Neumann data)
gκn := ∂nuκ|Γ

where uκ solves
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{
(∆ + κ2)uκ = f in Ω
uκ = 0 on Γ

, (2)

with κ ≥ 0. The usual functional framework for the above boundary value problem (BVP)
is f ∈ L2(Ω). In this case, if κ is not an eigenfrequency, (2) is well posed, with u ∈ H2(Ω)
(eg. [17]). We recall that κ > 0 is not an eigenfrequency for the Helmholtz-Dirichlet
problem in Ω if the problem {

(∆ + κ2)uκ = 0 in Ω
uκ = 0 on Γ

has an unique solution. In the following we shall always consider this non resonance
condition.

Inverse problem.
The inverse source problem consists in, given a pair of Cauchy boundary data (0, gn)

for some frequency κ, determine f ∈ L2(Ω) such that, for some u, it holds
(∆ + κ2)uκ = f in Ω
uκ = 0 on Γ
∂nuκ = gn on Γ

.

Of great importance, is the source to Neumann map, Λκ : L2(Ω) −→ H−1/2(Γ) defined
by

Λκ(f) = ∂nuκ|Γ,

where uκ ∈ H2(Ω) solves (2). This map allows to formulate the inverse source problem
as the following equation:

Given gn determine f ∈ L2(Ω) such that

Λκ(f) = gn.

The map Λκ is linear and continuous. Is not invertible because (eg. [5])

ker Λκ =
(
∆+ k2

)
(H2

0 (Ω)),

where H2
0 (Ω) is the space of functions u ∈ H2(Ω) such that u|Γ = ∂nu|Γ = 0. The range

of Λκ is characterized in the following result.

Lemma 1. We have
Λκ(L

2(Ω)) = H1/2(Γ)

hence the space of compatible Neumann data is H1/2(Γ).
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Proof. Notice that in the considered functional framework, the normal trace ∂nuκ belongs
to H1/2(Γ). Reciprocally, for gn ∈ H1/2(Γ), exists uκ ∈ H2(Ω) satisfying the 4th order
boundary value problem (eg. [8])

(∆2 − κ4)uκ = 0 in Ω
uκ = 0 on Γ
∂nuκ = gn on Γ

.

Taking
f := (∆ + κ2)uκ ∈ L2(Ω)

then
gn = Λκ(f) ∈ RangeΛκ.

3. Linear/affine classes of sources

Basic Hilbert spaces theory yields the orthogonal decomposition

L2(Ω) = kerΛκ
⊥ ⊕ kerΛκ.

Given F ∈ L2(Ω) we define the linear/affine class Cκ
F as the level set

Cκ
F := π−1

κ (F ) (3)

where πκ is the orthogonal projection of L2(Ω) onto ker Λκ. In other words,

Cκ
F =

{
f = fH + F ∈ L2(Ω) : πκ(f) = F = (∆ + κ2)u, u ∈ H2

0 (Ω)
}
.

In order to analyse identification properties in these sets, we start by determine the
orthogonal complement of ker Λκ. Let

Hκ :=
{
u ∈ H1(Ω) : (∆ + κ2)u = 0

}
.

Lemma 2. We have
H⊥

κ = kerΛκ

hence
L2(Ω) = Hκ

L2

⊕ kerΛκ. (4)

Proof. Let v ∈ H⊥
κ . Then, ∫

Ω

vwdx = 0, ∀w ∈ Hκ.
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Let u be the unique element in H2(Ω) ∩ H1
0 (Ω) such that (∆ + κ2)u = v. Notice

that ∂nu|Γ ∈ H1/2(Γ) and, in particular we can take the test function w ∈ Hκ such that
w|Γ = ∂nu|Γ. Thus, substituting and integrating by parts yields

0 =

∫
Ω

vwdx =

∫
Ω

(∆ + κ2)uwdx =

∫
Γ

∂nu∂nudσ = ||∂nu||2L2(Γ)

hence v ∈ (∆ + κ2)(H2
0 (Ω)) = kerΛκ and the inclusion H⊥

κ ⊂ kerΛκ follows.
To see the other inclusion, take v = (∆ + κ2)u ∈ kerΛκ. Given w ∈ Hκ we have∫

Ω

vwdx =

∫
Ω

(∆ + κ2)uwdx =

∫
Ω

u(∆ + κ2)wdx = 0

and the result follows.

It follows from the above Lemmas, that HL2

κ can be identified with H1/2(Γ). We now
show that, in some cases, these spaces are in fact homeomorphic.

Consider the Bihelmholtz boundary value problem
(∆ + κ)2u = F in Ω
u = g on Γ
∂nu = gn on Γ

. (5)

Definition 3. We say that κ ≥ 0 is an admissible frequency for the Bihelmholtz BVP if,
given a triplet

(F, g, gn) ∈ L2(Ω)×H3/2(Γ)×H1/2(Γ),

the above Bihelmholtz problem (5) is well posed, with u ∈ H2(Ω).

Notice that κ = 0 is an admissible frequency. In this case the above problem reduces
to a BVP for the bilaplacian for which, the above well posedness condition holds true (eg.
[8]).

Theorem 4. If κ is an admissible frequency then Hκ
L2

is homeomorphic to H1/2(Γ).

Proof. Let ηκ : Hκ
L2

→ H1/2(Γ), be the linear map defined by

ηκ ◦ Πκ = Λκ (6)

where Πκ is the projection of L2(Ω) onto Hκ
L2

. The map ηκ is clearly a continuous
isomorphism. It remains to see that η−1

κ is also continuous.
Notice that η−1

κ is defined by η−1
κ (gn) = Πκ(f), where f ∈ L2(Ω) is such that Λκ(f) =

gn. Hence, given a sequence (gn)k = Λκ(fk) converging to 0 in H1/2(Γ) we have, by well
posedness of (5), the convergence of a sequence vk to 0, in H2(Ω). Each function vk is the
unique solution of (5), for input data (0, 0,Λκ(fk)). In particular,

(∆ + κ2)vk → 0 in L2(Ω)

and the result follows from the fact that (∆ + κ2)vk = Πκ(fk).
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3.1. Identification results from one single measurement

In this section, we shall assume that κ is arbitrarily fixed. We start with the following
identification result for sources in Cκ

F .

Theorem 5. Let fi ∈ L2(Ω) be two source functions in Cκ
F such that Λκ(f1) = Λκ(f2).

Then
f1 = f2

in the L2 sense.

Proof. It is sufficient to show that ker Λκ∩Cκ
0 = {0}. But this is an immediate consequence

of the identity
Cκ
0 = kerΛκ

⊥.

In some particular cases, it is possible to identify sources from the knowledge of the
corresponding level set Cκ

F .

Theorem 6. The set Cκ
F ∩H1

0 (Ω) has at most one element. In particular, H1(Ω) sources
with support strictly contained in Ω can be identified from F .

Proof. Since Cκ
0 = kerΛκ

⊥ = Hκ then

Cκ
0 ∩H1

0 (Ω) = Hκ ∩H1
0 (Ω) = {0} .

Other affine classes can also be considered. For instance, in [14] and [5] the considered
classes were

DF =
{
f ∈ L2(Ω) : (∆− κ2)f = F

}
. (7)

As proved in [5], the decomposition (as linear spaces)

L2(Ω) =
{
f ∈ L2(Ω) : (∆− κ2)f = 0

}
⊕ (∆ + κ2)(H2

0 (Ω))

holds when κ4 is not an eigenvalue for the bilaplacian. In particular, sources in DF can
be identified from one single boundary measurement.

However, orthogonal decomposition (4) provides the natural setting for full identifica-
tion results.
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3.2. Identification results - many boundary measurements

So far, we have considered only identification from one boundary measurement. In this
section, we study identification taking many boundary measurements. It is well known
that changing the input Dirichlet data and measuring the corresponding Neumann data,
that is, having the Dirichlet to Neumann map, does not increase information regarding
the source. Instead, as showed in [5], we have to consider measurements arising from
several frequencies.

Let κ ∈ Υ ⊆ R+
0 and consider the (eventually infinite) set of measurements

Mf = {Λκ(f) : κ ∈ Υ} .

Now define the following collections

H :=
∪
κ∈Υ

Hκ and K :=
∩
κ∈Υ

kerΛκ. (8)

Notice that, since H⊥
κ = kerΛκ then

H⊥ =
∩

H⊥
κ = K

hence,

K⊥ = spanHL2

.

Denote by π the orthogonal projection of L2(Ω) = K⊥ ⊕ K onto K. Following above
notation we write

CF := π−1(F ).

The level set CF is thus given by

CF =
{
f ∈ L2(Ω) : (∀κ ∈ Υ)

(
∃vκ ∈ H2

0 (Ω)
)

s.t. (∆ + κ2)vκ = F
}
.

Next result generalizes Theorem 5 to any number of measurements. The proof can be
established following the same ideas contained in the one measurement version and will
be omitted.

Theorem 7. If f1, f2 ∈ L2(Ω) are such that

Λκ(f1) = Λκ(f2), ∀κ ∈ Υ

and f1, f2 ∈ CF then
f1 = f2 in the L2 sense .

In particular, a source f ∈ CF can be fully identified from the boundary data Mf .
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Notice that, if Υ1 ⊂ Υ2 then the corresponding spaces K1, K2 satisfy

K2 ⊂ K1

This means, intuitively, that there is an information gain (regarding identification of
f) by increasing the number of measurements. The limit case Υ = R+ is of particular
theoretical interest. In this case

K = {0}

(cf. [5]). In other words, there is only one level set, namely C0. Hence,

Theorem 8. An L2(Ω) function can be fully identified from the set of measurements Mf ,
for all frequencies κ ∈ R+.

4. Numerical source reconstruction

We present two numerical methods for one measurement reconstructions. First, using
an higher order problem, already implemented and tested in some previous papers (eg.
[15], [14], [3]). The second, proposed by us, exploits directly the linearity of the problem
and can be easily generalized for several measurements.

4.1. Reconstruction from one measurement using an higher order direct problem

Let f ∈ Cκ
F with F ∈ L2(Ω) such that

G := (∆− κ2)F ∈ L2(Ω)

and consider the 4th order direct problem
(∆2 − κ4)w = G in Ω
w = 0 on Γ
∂nw = Λκ(f) on Γ

. (9)

It is well known that (cf. [5])

f = (∆ + κ2)w.

Consider the following two cases:

First case: G = 0.
Suppose f ∈ Cκ

0 , ie., the 4th order equation (9) is homogeneous. As proposed in [3],
the method of fundamental solutions is an efficient numerical method for this boundary
value problem.

Recall that a fundamental solution for the operator ∆2 − κ4 satisfies the equation

(∆2 − κ4)Ψκ = −δ,
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where δ is the Dirac delta distribution, centered at the origin. For κ ̸= 0, we consider

Ψκ(x) =
i

8κ2

(
H

(1)
0 (iκ|x|) +H

(2)
0 (κ|x|)

)
and for κ = 0,

Ψ0(x) = − 1

8π
|x|2 log |x|.

Given y ∈ R2 \Ω, we consider the point source function Ψκ,y(x) := Ψκ(x− y). Notice
that

(∆2 − κ4)Ψκ(x− y) = −δy.

Let Γ̂ be an artificial boundary enclosing the domain Ω. The MFS approximation
for problem (9) consists in taking (see [1] for other MFS choice of basis functions and
theoretical results)

w̃(x) ≈
m0∑
j=1

αjΨκ(x− yj) +
m∑

j=m0+1

αj(∆− κ2)Ψκ(x− yj), yj ∈ Γ̂.

The coefficients, αj, are computed in order to fit both boundary conditions at some
collocation points xi ∈ Γ.

The source f can now be approximated by

f(x) ≈ (∆ + κ2)w̃ =

m0∑
j=1

αj(∆ + κ2)Ψκ(x− yj).

Notice that the sum
∑m

j=m0+1 αj(∆− κ2)Ψκ(x− yj) vanishes when we apply ∆ + κ2.
This may lead to some undesired oscillations, as discussed in [3]. Moreover, the 4th
order problem is well posed, with w ∈ H2(Ω), so that w ∈ H3/2(Γ) and ∂nw = Λκ(f) ∈
H1/2(Γ). However, in practise, measurement errors are expected to occur. In particular,
the measured data Λκ(f) may not be in the appropriate functional framework.

Second case: G ̸= 0.
In this nonhomogeneous framework, we can apply the domain method of fundamental

solutions (MFS-D) (cf. [2]). This consists in taking as basis functions, fundamental
solutions for Helmholtz equations. A fundamental solution for Helmholtz operator is

Φκ(x) =
i

4
H

(1)
0 (κ|x|), κ > 0,

where H
(1)
0 is the Hankel function of first kind and zero order.

For Laplace (κ = 0),

Φ0(x) = − 1

2π
log(|x|).
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We consider the approximation

w̃(x) =
∑
λk,yj

αλk,yjΦλk
(x− yj), yj ∈ Γ̂

and compute the coefficients by fitting both boundary conditions at some points and the
differential equation at some domain points, ie.,

(∆2 − κ4)w̃(xi) =
∑
λk,yj

αλk,yj(λ
4
k − κ4)Φλk

(xi − yj) = G(xi), xi ∈ Ω.

The source is approximated by

f(x) ≈
∑
λk,yj

αλk,yj(−λ2
k + κ2)Φλk

(x− yj).

4.2. Reconstruction from one measurement using a direct approach

Due to the orthogonal decomposition (4), we can write, for sources in Cκ
F ,

f = fκ + F.

Hence fκ = f − F = (∆ + κ2)(u− v) which gives, for w := u− v ∈ H2(Ω),
(∆ + κ2)w = fκ in Ω
fκ ∈ Hκ

w = 0 on Γ
∂nw = Λκ(f) on Γ

(10)

We start with the representation of fκ. It is well known that, under some non resonance
assumptions on the artificial bounded domain Ω̂ ⊃ Ω such that Γ̂ = ∂Ω̂ (eg. [7]), the set
of fundamental basis functions

Sκ
Γ =

{
Φκ,y|Γ : y ∈ Γ̂

}
spans a dense subspace in H3/2(Γ). By well posedness, the set

Sκ
Ω =

{
Φκ,y|Ω : y ∈ Γ̂

}
(11)

spans a dense subspace in Hκ. This justifies the approximation

fκ ≈
∑
yj

αjΦκ,yj . (12)

Now, for each Φκ,yj , we solve
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{
(∆ + κ2)wj = Φκ,yj in Ω
wj = 0 on Γ

from where we get
R = {Λκ(Φκ,y1), . . . ,Λκ(Φκ,yn)} .

We can now find the coefficients in (12) by computing the best fit∑
yj

αjΛκ(Φκ,yj) ∈ spanR

to the available data Λκ(f). Finally, the source can be retrieved by

f ≈
∑
yj

αjΦκ,yj + F.

In order to justify the proposed method, we establish the following properties.

Lemma 9. The set of responses R is linearly independent in Γ \ {y1, . . . , yn}, (yi ̸= yj,
i ̸= j).

Proof. Suppose that
α1Λκ(Φκ,y1) + . . .+ αnΛκ(Φκ,yn) = 0.

Then,
u := α1Φκ,y1 + . . .+ αnΦκ,yn

belongs to ker Λκ. On the other hand, u ∈ Hκ and follows u ∈ Hκ ∩ Hκ
⊥
. We conclude

that u = 0 in R2 \ {y1, . . . , yn} and the result is a consequence of the independence of Sκ
Ω

in R2 \ {y1, . . . , yn}.

Next result shows that, for some frequencies, any H1/2(Γ) function can be well ap-
proximated using basis functions

R∞ :=
{
Λκ(Φκ,y) : y ∈ Γ̂

}
.

Theorem 10. Suppose κ is an admissible frequency for the bihelmholtz and that κ2 is not
an eigenvalue for the Helmholtz-Dirichlet problem in a bounded regular domain Ω̂, with
Ω ⊂ Ω̂. Then, the set R∞ spans a dense subspace in H1/2(Γ).

Proof. The density result follows from Theorem 4 and density of fundamental solutions
in Hκ. In fact, given gn ∈ H1/2(Γ), let f be the unique element in Hκ such that

gn = ηκ(f),
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where ηκ is the homeomorphism defined in (6). Since Sκ
Ω is dense in Hκ, there exists a

sequence of fundamental solutions Φκ,yk ∈ Hκ, with yk ∈ Γ̂ such that

n∑
j=0

αjΦκ,yj → f in L2(Ω).

Notice that, on one hand

ηκ

(
n∑

j=0

αjΦκ,yj

)
=

n∑
j=0

αjΛκ

(
Φκ,yj

)
and on the other,

ηκ(
n∑

j=0

αjΦκ,yj) → ηκ(f) in H1/2(Γ).

This concludes the proof.

We finish this section with a stability result. We show that our numerical method
applied to the reconstruction of admissible sources is stable in the H1/2(Γ) sense.

Theorem 11. Suppose that κ is an admissible frequency and let gn = Λκ(f) ∈ H1/2(Γ)
with f ∈ Cκ

0 . Suppose that exists a sequence

vk :=
k∑

j=1

αjΦκ,yj ∈ Hκ

such that Λκ(vk) converges to gn in H1/2(Γ). Then, the sequence vk converges to f in
L2(Ω).

Proof. The above convergence condition, implies, by continuity of η−1
κ ,

η−1
κ (Λκ(vk)) → η−1

κ (gn) in L2(Ω).

The result follows from the identities (recall that vk, f ∈ Hκ)

η−1
κ (Λκ(vk)) = vk and η−1

κ (gn) = f.

Remark 12. The above results rely on density results concerning fundamental solutions
basis functions. Similar results can be obtain by considering other basis functions with
similar density properties. For instance, one can take plane waves as basis functions.
Recall that a plane wave function is defined by

Φκ,d(x) := eiκx.d, d ∈ S1
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and that Φκ,d ∈ Hκ. The following density results are well known

span {Φκ,d|Γ : d ∈ S1}
L2

= L2(Γ)

and

span {Φκ,d|Ω : κ ∈ R+, d ∈ S1}
L2

= L2(Ω).

This makes plane waves basis functions also suited for the proposed method. The main
advantage of these basis functions is that they are much faster to evaluate than Hankel
basis functions H

(1)
0 .

4.3. Several boundary measurements

Proposition 8 states that a source can be fully identified from the infinite set of bound-
ary data

Mf =
{
Λµ(f) : µ ∈ R+

0

}
.

On the other hand, the set (see (11) for definition)∪
κ∈R+

0

Sκ
Ω

spans a dense subspace in L2(Ω). In particular, we can consider the approximation

f ≈ f̃ :=
∑
κ,y

ακ,yΦκ,y. (13)

Each basis function Φκ,y generates the boundary data Λµ(Φκ,y) and, as in the previous
section, the coefficients can be computed by fitting the available data.

In practise, however, is not feasible to have access to all this measured data. Therefore,
we have to consider a finite set of measurements

Mf = {Λκ1(f), . . . ,Λκn(f)}
and the approximation (13) taking only a finite set of basis functions. As in remark

12, we can also consider

f̃(x) =
l∑

p=1

m∑
q=1

αp,qe
iκpx·dq .

5. Numerical Examples

In this section we present some numerical results in order to illustrate the feasibility
of the proposed method. In the following, we considered the domain of propagation

Ω =
{
(x, y) ∈ R2 : x2 + y2 < 4

}
and used plane waves as basis functions.
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Example 1. In this example we retrieved the fH ∈ Hκ part of a source function, from one
single measurement. We considered the source function (see Fig. 1)

f = fH + fH⊥

where

fH(X) =
i

4
H

(1)
0 (1.3|X + (0, 2.2)|) + 2

i

4
H

(1)
0 (1.3|X − (2.1, 0)|) + 3e

− 1.3√
2
iX·(1,1) ∈ H1.3

and
fH⊥(X) = −1.3 (X ·X)2 − 5.6X ·X + 11.2 ∈ kerΛ1.3.

Notice that the imaginary part of fH is the imaginary part of f . The real part of fH
is plotted in Fig. 2. The corresponding boundary velocity (measured data), Λ1.3(f), was
considered at 80 uniformly distributed boundary points. For the approximation, we took

f̃H(X) =
n∑

j=1

αke
1.3iX.dj

with d1, . . . , dn uniformly distributed points over the two dimensional unit sphere S1. The
coefficients αk ∈ C were computed by fitting, in a least squares sense, the set of responses

R =
{
Λ1.3(e

1.3iX.d1), . . . ,Λ1.3(e
1.3iX.dn)

}
to the measured data, that is, by minimizing

∣∣∣∣∣
∣∣∣∣∣
(
Λ1.3(f)(x1)−

n∑
j=1

αjΛ1.3(e
1.3iX.dj)(x1), . . . ,Λ1.3(f)(x80)−

n∑
j=1

αjΛ1.3(e
1.3iX.dj)(x80)

)∣∣∣∣∣
∣∣∣∣∣
2

where x1, . . . , x80 are the observation points.
We start by reconstructing fH using n = 5 basis functions and assuming no noise in

the measured data. In this case we obtained a reconstruction result with L2 norm error
of 6.2, that corresponds to a relative error of 5.9%. By increasing the number of basis
functions to 10 and then 20 we obtained better results. The evolution of the corresponding
L2 norm errors are summarized in Table 5. The absolute componentwise error for n = 10
basis functions is plotted in Fig. 3.

The robustness of the method was also tested by retrieving the source from data with
noise. We considered data with up to 5 %, 10% and 15 % of noise. Table 5 summarizes
the evolution of the relative error for these levels of noise and in Fig. 4 we present the
reconstruction for 10 % of noise.
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Figure 1: Source function considered in Example 1.
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Figure 2: Real part of fH (Example 1).

Number of basis functions L2 error
5 6.16
10 0.062
20 0.031

Table 1: Evolution of the L2 norm error with the number of basis functions (Example 1).

Noise L2 relative error
5% 4.4%
10% 7.6%
15% 14.1%

Table 2: Evolution of the relative error with the noise in the data using 10 basis functions (Example 1).
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Figure 3: Pointwise error with 10 basis functions.
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Figure 4: Reconstruction with 10 basis functions for data with 10% of random noise.

Example 2. In this example we tested full source reconstruction. We considered the
compactly supported source (see Fig. 5)

f(X) = −0.5h(1− ||X − (−0.3, 1)||2) + 2h1(1− ||X − (1.1,−0.2)||1)

where

h(x) =
ct(x)

ct(x) + ct(1.1− x)
, h1(x) =

ct(x)

ct(x) + ct(1.5− x)

and ct is the smooth cut-off function ct(x) = e−1/x if x > 0 and ct(x) = 0, otherwise.
The source was approximated by

f(X) ≈
6∑

j=1

15∑
k=1

αj,ke
i(2j−1)X.dk , dk ∈ S1

and the coefficients were computed by fitting the measured data at 80 boundary (obser-
vation) points. We tested with m = 1, 2, 3 and 7 measurements. The associated frequen-
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Figure 5: Source considered in Example 2.

cies were κ = 1.5, κ = 1.5, 3.5, κ = 1.5, 3.5, 5.5 and κ = 1.5, 3.5, 5.5, 7.5, 9.5, 11.5, 13.5,
respectively. Numerical results, for data without noise, are presented in Fig. 6.

We can observe that the number and location of the source peaks are detected with
three measurements (see also the contour plot in Fig. 8). Taking seven measurements the
shape of the peaks is also retrieved.

Last test concerns numerical reconstruction from noisy data. In Fig. 7 we considered
data with up to 5 % of noise and several measurements (two and three).

6. Conclusions

In this work we proposed a direct method for the reconstruction of heat/acoustic
sources from boundary measurements. The main advantage of the proposed method
over other higher order approaches is that it only needs to collect responses from certain
source basis functions. This process is independent of the source that we are recovering.
Hence, once the library of data is computed, it can be used to retrieve any source, for
instance, by data fitting. The method was theoretically justified and tested for several
examples. Numerical results shows that the method is feasible and robust. Possible
extensions to source reconstruction from partial data are straightforward. In particular,
the reconstruction of sources with support strictly contained in Ω with many (partial)
boundary measurements does not requires any a priori data completion method. This is
also an advantage over several reconstruction methods based on Green’s formula (cf. [5]).
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