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Abstract

In Statistics of Extremes the estimation of parameters of extreme

or even rare events is usually done under a semi-parametric frame-

work. The estimators are based on the largest k ordered statistics in

the sample or on the excesses over a high level u and although showing

good asymptotic properties, most of them present a strong dependence

on k or u with high bias when the k increases or the level u decreases.

The use of resampling methodologies has revealed to be promising in

the reduction of the bias and in the choice of k or u. Different ap-

proaches for resampling need to be considered depending on whether

we are in an independent or in a dependent setup. A great amount of

investigation has been performed for the independent situation. The
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main objective of this paper is to use bootstrap and jackknife methods

in the context of dependence to obtain more stable estimators of a pa-

rameter that appears characterizing the degree of local dependence on

extremes, the so-called extremal index . A simulation study illustrates

the application of those methods.

Keywords. Bias reduction, bootstrap, jackknife, semi-parametric estima-

tion, statistics of extremes.

1 Introduction and Motivation

In many environmental situations we are concerned with the occurrence of

events more extremes than any that have already been observed.

Let us suppose now we want do study the behaviour of

Mn = max
(
X1, X2, · · · , Xn

)
(or mn = min

(
X1, X2, · · · , Xn

)
) where

X1, X2, · · · , Xn is a sequence of independent random variables having a

common distribution function (d.f.) F .

Whereas the d.f. of Mn may be written down exactly, P
{
Mn ≤ x

}
=

F n(x), it strongly depends on the form of F , so the interest relies on the

asymptotic distribution of Mn.

The central result of classical extreme value theory, due in varying degrees

of generality to Fréchet, Fisher and Tippet and Gnedenko, establishes that

the sequence of maximum values, Mn, linearly normalized, converges weakly

towards a nondegenerate random variable.

Theorem 1.1. (Extremal types theorem) Let Mn = max
(
X1, X2, · · · , Xn

)
,

where Xi are i.i.d. If

P
{(
Mn − bn

)
/an ≤ x

}
d

−→
n→∞

G(x),

holds for a non-degenerate d.f. G and an > 0 and bn normalizing constants,

then G belongs to one of the Gumbel, Fréchet or Weibull families that can be
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combined into a single family of models having d.f. of the form

G(x) =





exp
[
−

{
1 + γ

(
x−µ
σ

)}− 1

γ

]
; 1 + γ

(
x−µ
σ

)
> 0, γ 6= 0,

exp
[
− exp

(
−x−µ

σ

)]
; γ = 0,

with µ ∈ R and σ > 0. This is the extreme value, EV (µ, σ, γ), family of

distributions. This theorem considers an i.i.d. random sample, but it holds

true if the original scheme being no longer i.d. still remains independent.

However, in many practical situations, this assumption is not valid. For

example, for the amount of rain in a given location on consecutive days, it

is obvious that the chance of rain after a rainy day is much higher than the

chance of rain after a dry day. But now the complexity of situations that can

be considered is enormous, so some kind of dependence must be assumed.

Unlike in independent case, where only a limited family can arise as limit

distributions, in the dependent case any distribution can arise as the limit.

Some important dependent sequences have been studied and the limit distri-

butions of their order statistics under some dependence structures are then

known. Stationary sequences are examples of those sequences and are real-

istic for many real problems.

Dependence in stationary sequences can assume several forms, so some

conditions are needed to be imposed. The first condition, known as

the D(un) dependence condition makes precise the notion that extreme

events being sufficiently distant are nearly independent. Let us denote

Fi1,i2,··· ,ip(u1, u2, · · · , up) := P
{
Xi1 ≤ u1, Xi2 ≤ u1, · · · , Xip ≤ up

}
, the joint

d.f. of
(
Xi1 , Xi2 , · · · , Xip

)
for any arbitrary positive integers (i1, i2, · · · , ip).

Definition 1.1. (D(un) dependence condition, Leadbetter(1974)). Let {un}

be a real sequence. The condition D(un) is said to be hold if for any set of

integers ii < i2 < · · · < ip and ji < j2 < · · · < jq such that j1 − ip > ℓ, we
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have

∣∣Fi1,i2,··· ,ip,j1,j2,··· ,jq(un, un, · · · , un)

− Fi1,i2,··· ,ip(un, un, · · · , un)Fj1j2,··· ,jq(un, un, · · · , un)
∣∣ ≤ αn,ℓ, (1)

where αn,ℓ is nondecreasing and lim
n→∞

αn,ℓn = 0, for some sequence ℓn such

that ℓn/n→ 0 as n→ ∞.

For a specific sequence of thresholds un that increase with n, the D(un)

condition ensures that, for sets of variables that are far enough apart, the

difference of d.f., as in (1), while not zero, is sufficiently close to zero to have

no effect on the limit laws for extremes. This is summarized by the following

result.

Theorem 1.2. (Limit distributions of maxima under D(un) condition,

Leadbetter (1974)) Let {Xn} be a stationary sequence and define Mn =

max
(
X1, X2, · · · , Xn

)
. Then if {an > 0} and {bn} are sequences of con-

stants such that

P
{
Mn ≤ un

}
−→
n→∞

H(x)

where H is a non-degenerate distribution function, and the D(un) condition

is satisfied with un = anx+ bn for every real x, H is an EV distribution.

This result implies that, provided a sequence has limited long-range de-

pendence at extreme levels, maxima of stationary sequence follow the same

distributional limit laws as those of independent sequence. However, the

parameters of the limit distribution are affected by the dependence in the

sequence. A summary of the result is given in following Theorem.

Theorem 1.3. (Coles, 2001) Let {Xn} be a stationary sequence and {X̂n} be

a sequence of independent variables with the same marginal distribution. De-

fine Mn = max
(
X1, X2, · · · , Xn

)
and M̂n = max

(
X̂1, X̂2, · · · , X̂n

)
. Under

suitable regularity conditions,

P
{(
M̂n − bn

)
/an ≤ x

}
−→
n→∞

G(x),
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for normalizing sequences {an > 0} and {bn}, where G is a non-degenerate

distribution function, if only if

P
{(
Mn − bn

)
/an ≤ x

}
−→
n→∞

H(x),

where

H(x) = Gθ(x) (2)

for a constant θ such that 0 < θ ≤ 1.

Thus if G is an EV d.f. with parameters λ, δ, γ then so is H with

parameters (λθ, δθ, γθ), where

λθ = λ− δ
1− θγ

γ
(≤ λ), δθ = δθγ, γθ = γ.

The quantity θ, that appears in (2), is termed extremal index and is

a parameter that needs to be adequately estimated by itself and because

its influence in other parameters. In Section 2, the definition and some

characterizations of the extremal index will be provided as well as some of

the classical estimators and their properties. Despite of good asymptotic

properties, for finite samples the estimate depends crucially of the upper

level un. This section will end with an example showing the difficulties on

estimating θ.

As much as we know, in a dependent setup and specially for the extremal

index estimation, we have not found references regarding the application of

resampling methodologies for dealing with bias and the level un. In Section 3

we shall propose a methodology based on bootstrap and jackknife procedures

for the situation where observations are dependent and classical resampling

procedures cannot be applied.

In Section 4, some of the results of an extensive simulation study will be

presented. For the simulation study several examples of stationary sequences,

for which the extremal index is known, were considered.
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2 The extremal index

2.1 Definition and different characterizations

The extremal index, θ, measures the relationship between the dependence

structure of the data and the behaviour of the exceedances over a high thres-

hold un. This threshold un is such that, with τ fixed, the underlying d.f. F

verifies

F (un) = 1− τ/n+ o(1/n), n→ ∞. (3)

The notion of the extremal index was briefly mentioned in the introduction.

Let us see the definition:

Definition 2.1. (Definition of θ, Leadbetter et. al (1983)) Let {Xn} be a

strictly stationary sequence with marginal distribution function F and Mn =

max
(
X1, X2, · · · , Xn

)
. We say that the process has extremal index, θ ∈ [0, 1],

if for every τ > 0, there exists a sequence of thresholds {un(τ)}n≥1 such that

nP
{
Xn > un(τ)

}
→ τ and P

{
Mn ≤ un(τ)

}
→ exp(−θτ) as n→ ∞.

This definition does not involve any dependence restriction on the se-

quence {Xn}. If, however, {Xn} is a stationary sequence with D(un(τ))

holding for each τ > 0 (un(τ) satisfying (3)) it may be shown that, if P
{
Mn ≤

un(τ)
}
converges for some τ > 0, then P

{
Mn ≤ un(τ)

}
−→
n→∞

exp(−θτ), for

all τ > 0 and {Xn} has extremal index, θ ∈ [0, 1], (Leadbetter and Rootzén,

1988).

Several interpretations of the extremal index have appeared, leading to

several suggestions for its estimation. One way of interpreting the extremal

index of a stationary sequence is in terms of the tendency of the process

to cluster at extreme levels. Leadbetter (1983) interpreted θ as the inverse

of the limiting mean cluster size, where a cluster is defined as the set of

exceedances of the threshold un that occur in an arbitrary block of length

rn, with rn = o(n), given that at least one exceedance occurs in the block.
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With this definition of a cluster, the cluster size distribution πn at level un

is defined as

πn(j) = P

{ rn∑

i=1

I(Xi > un
)
= j|Mrn > un

}
, j ∈ N,

and if it exists, the limiting cluster size distribution is written as π(j) =

lim
n→∞

πn(j).

Given a sequence {un} and with rn = o(n), the extremal index can be

defined in terms of exceedances in a block of length rn through θ = lim
n→∞

θn,

where θn, can have several interpretations. One of them is:

(
θBn

)−1
=

rn
(
1− F (un)

)

P
{
Mrn > un

}

= E

( rn∑

i=1

I(Xi > un)|Mrn > un

)
(4)

=
rn∑

j=1

jπn(j).

The clusters of exceedances may be identified asymptotically as runs of

consecutive exceedances and cluster sizes as run lengths. Under regularity

conditions the conditional expected run length is approximately equal to 1/θ

(Nandagopalan, 1990). Thus the extremal index can also be defined as the

limit of runs of exceedances over un, θ
R
n , defined by

θRn = P
{
max(X2, · · · , Xrn) ≤ un|X1 > un

}
,

i.e, as the probability that a high threshold exceedance is the last in a cluster

of exceedances (O’ Brien, 1987).

Now, identifying clusters by the occurrence of downcrossings or upper-

crossings we can write, respectively,

θDC
n = P

{
X2 ≤ un|X1 > un

}
or θUC

n = P
{
X2 > un|X1 ≤ un

}
.

Under mild conditions one can show that lim
n→∞

θBn = lim
n→∞

θRn = θ. Cluster-

ing increases the mean distance between clusters at high thresholds by factor

1/θ, relative to an independent sequence with the same marginal distribution.
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There is statistical consequences of clustering. Let us see that if we

estimate the tail of marginal distribution F by fitting, for example, to

block maxima, then P
{
Mn ≤ x

}
≈ F (x)nθ ≈ H(x), where H is EV

with parameters (λθ, δθ, γθ). The marginal quantiles are approximately

F−1(p) ≈ H−1(pnθ) ≥ H−1(pn) so they may be much larger than would

be the case with θ = 1. Then ignoring θ can lead to under-estimating a

return level computed from F .

These results suggest that identifying independent clusters and estimate

θ is fundamentally important for statistical applications of stationary se-

quences.

2.2 Extremal index estimation

Classical estimators of θ have been developed based on the characterizations

for θ of Leadbetter (1983) and O’Brien (1987). A general form for those

estimators is given by

Θ̂n ∼
Cn(un)

Nn(un)
, as n→ ∞,

where Nn(un) is the number of exceedances of a high threshold un and Cn(un)

is the number of independent clusters above un. Thus, estimating θ is equiva-

lent to identify independent clusters.

As a first attempt to identify clusters, Cn(un) can be considered as the

number of down-crossing of un (or up-crossing of un ), what gives the naive

estimators,

Θ̂DC
n (un) :=

∑n
i=1 I (Xi > un, Xi+1 ≤ un)∑n

i=1 I (Xi > un)
, (5)

Θ̂UC
n (un) :=

∑n
i=1 I (Xi ≤ un < Xi+1)∑n

i=1 I (Xi > un)
, (6)

called Down-Crossing estimator (or Up-Crossing estimator), (Nandagopalan,

1990), (Gomes,1990, 1992, 1993).
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Nandagopalan showed that un must verify condition (5) in order to have

consistency of estimators (5) and (6). Given the sample Xn := (X1, . . . , Xn)

and the associated ascending order statistics, X1:n ≤ · · · ≤ Xn:n, we shall

consider the level un as a deterministic level u ∈ [Xn−k:n, Xn−k+1:n[. The

Up-Crossing estimator can now be written as a function of k, the number of

top order statistics above the chosen threshold,

Θ̂UC
n (k) :=

1

k

∑n−1

i=1
I (Xi ≤ Xn−k:n < Xi+1).

For many dependent structures, the bias of Θ̂UC(k) (or of Θ̂DC(k)) has

two dominant components of orders k/n and 1/k, i.e.

Bias
(
Θ̂UC

n (k)
)
= ϕ1(θ)

(
k

n

)
+ ϕ2(θ)

(
1

k

)
+ o

(
k

n

)
+ o

(
1

k

)

The Generalized Jackknife methodology has the property of estimating

the bias and the variance of estimators and so of allowing to build estimators

with bias and mean squared error smaller than those of an initial set of

estimators.

The Generalized Jackknife methodology states that if the bias has two

main terms we would like to reduce, we need to have access to three estima-

tors, with the same type of bias.

Definition 2.2. (Gray and Schucany, 1972) Given three biased estimators

of θ T
(1)
n , T

(2)
n and T

(3)
n such that

E[T (i)
n − θ] = b1(θ)ϕ

(i)
1 (n) + b2(θ)ϕ

(i)
2 (n) i = 1, 2, 3,

the generalized jackknife statistic (of order 2) is given by

TGJ
n :=

∥∥∥∥∥∥∥∥

T
(1)
n T

(2)
n T

(3)
n

ϕ
(1)
1 (n) ϕ

(2)
1 (n) ϕ

(3)
1 (n)

ϕ
(1)
2 (n) ϕ

(2)
2 (n) ϕ

(3)
2 (n)

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥∥

1 2 3

ϕ
(1)
1 (n) ϕ

(2)
1 (n) ϕ

(3)
1 (n)

ϕ
(1)
2 (n) ϕ

(2)
2 (n) ϕ

(3)
2 (n)

∥∥∥∥∥∥∥∥

.
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Using this methodology Gomes et al. (2008) studied a reduced-bias Gen-

eralized Jackknife estimator of order 2, Θ̂GJ
n , based on the estimator Θ̂UC

computed at the three levels, k, ⌊k/2⌋+ 1 and ⌊k/4⌋+ 1, (⌊x⌋ denotes, as

usual, the integer part of x), given by

Θ̂GJ
n := 5Θ̂UC(⌊k/2⌋+ 1)− 2

(
Θ̂UC(⌊k/4⌋+ 1) + Θ̂UC(k)

)
. (7)

Other estimators were defined depending on the way that clusters are

defined. Two common methods used to define clusters are the blocks and

the runs declustering schemes.

A complete description, as well as the study of the asymptotic properties,

such as consistency and normality of the blocks and runs estimators can be

seen in Hsing (1991, 1993), Smith and Weissman (1994) and Weissman and

Novak (1998). These estimators are consistent under certain conditions, and

asymptotically normal if θ < 1. Where comparisons have been made, the

runs method is generally found to be preferable because is less biased than

the blocks estimator.

In addition to the runs and blocks estimators of θ, more estimators have

recently been proposed: maximum likelihood estimator (Ancona-Navarrete

and Tawn, 2000), two-threshold estimator (Laurini and Tawn, 2003), inter-

vals estimator (Ferro and Segers, 2003) and K-gaps estimator (Süveges and

Davison, 2010), among others.

Although several estimators of the extremal index θ have been proposed,

most of them require the choice of a threshold un or a block length, because

they show a high variance for high levels and a high bias when the level

decreases. Regarding the compromise between these two measures given

by the mean squared error, MSE, a resampling scheme and an adaptive

procedure have revealed to perform quite well for estimating the optimal

number of ordered statistics to be used in the estimation of parameters of

rare events. However as much as we know no work has been done regarding

θ estimation.
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This paper tries to use resampling techniques for stabilizing the estimates

when un increases. The adaptive choice of k or un is out of the scope of the

paper.

For illustrating what we are claiming, let us consider the simplest moving-

maximum process - the two-dependent model (hereafter referred to as the

Model MB1), defined by

Model MB1 – Xi = max
{
Zi, Zi+1

}
, i ∈ N, where {Zi} are i.i.d. random

variables with standard exponential distribution, F (z) = exp(−z), z >

0. {Xn} is stationary with d.f. defined by P
{
Xi ≤ x

}
=

(
P
{
Zi ≤

x
})2

= F 2(x).

Choose un(τ) such that nP (X1 > un) −→
n→∞

τ , then nP (Z1 >

un) −→
n→∞

τ/2 and P
{
Mn ≤ un(τ)

}
= P

{
max

(
Z1, Z2, · · · , Zn

)
≤

un(τ)
}
P
{
Zn+1 ≤ un(τ)

}
−→
n→∞

exp(−τ/2), so {Xn} has extremal index

θ = 1/2.

Figure 1 shows a realization of model MB1 and a realization of i.i.d.

random variables Yi with the same d.f as the marginal of that model.
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Figure 1: A realization of model MB1 {Xn} (left) with d.f. F (x) = (1−exp(−x))2

and a sequence of i.i.d. random variables {Yn} (rigth) with the same d.f. F (y) =

(1− exp(−y))2.

In Figure 2 illustrates the behaviour of Θ̂UC and Θ̂JG, for 1000 replicas

of a sample of size n = 1000 from model MB1. All quantities are plotted
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against k.
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Figure 2: Simulated mean values (left) and MSE, Var and Bias2 (right) of the

estimators Θ̂UC and Θ̂JG, for a sample of size n = 1000 from model MB1.

3 Resampling-based methods in the estima-

tion of θ

Computer-intensive methods, that emerged when computers became more

powerful, have been developed in the last decades. The most well known are

perhaps the jackknife (Quenouille, 1949, 1956; Tukey, 1958) and the boot-

strap (Efron, 1979; Efron and Tibshirani, 1993) methodologies. Recently,

these two methodologies have been used with success in Extreme Value The-

ory overcoming the difficulties that appear in the semi-parametric estimation

of parameters of extreme events.

In their classical form, as first proposed by Efron (1979), bootstrap meth-

ods are designed for being used in samples collected under an independent

set-up. In context of dependent data, the situation is more complicated since

population is not characterized entirely by the one-dimensional marginal dis-

tribution F alone, but requires the knowledge of the joint distribution of the

whole sequence X1, · · · , Xn. Singh (1981) presented an example on the inad-

equacy of the classical bootstrap under dependence. Several attempts have
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been made to extend the bootstrap method to the dependent case. A break-

through was achieved when resampling of single observations was replaced

by block resampling, an idea that was put forward by Hall (1985), Carlstein

(1986), Künsch (1989), Liu and Singh (1992) and others in various forms and

in different inference problems. Several ways of blocking appeared. Here we

briefly describe the moving block bootstrap method.

3.1 Nonparametric Resampling Schemes for Depen-

dent Data: The Moving Block Bootstrap

Different block bootstrap methods that have been proposed attempt to re-

produce different aspects of the dependence structure of the observed data

in the resampled data. Künsch (1989), Liu and Singh (1992) independently

formulated a substantially new resampling scheme, called the moving block

bootstrap (MBB), applicable to dependent data. In contrast to resampling

a single observation at a time, the MBB resamples blocks of (consecutive)

observations at a time. This method can be described briefly as follows:

Given the sample xn =
(
x1, · · · , xn

)
and with b ≡ bn ∈ [1, n] denoting the

block length to be resampled from xn and nb = n− b+ 1, the MBB method

resamples blocks randomly, with replacement, from the overlapping blocks
{
B(i, b) =

(
Xi, · · · , Xi+b−1

)
, i = 1, · · · , nb

}
.

From the I1, · · · , I⌊n/b⌋ conditionally i.i.d. random variables with discrete

uniform distribution on
{
1, · · · , nb

}
, a random sample is drawn with replace-

ment. Arranging the elements in all ⌊n/b⌋ blocks in a sequence, we get the

bootstrap sample x∗n =
(
x∗1, · · · x

∗
⌊n/b⌋×b

)
.

The accuracy of block bootstrap estimators, critically depending on the

block length, must be supplied by the user.
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3.2 Empirical choice of the block length

The orders of magnitude of the optimal block sizes are known in some in-

ference problems (Bühlmann and Künsch, 1999, Hall et. al., 1995, Künsch,

1989, Lahiri, 1999 and Lahiri et. al., 2007). It turns out that optimal block

length depends very much on the context. According to those authors three

different settings of practical importance can be identified: estimation of the

bias or variance, estimation of a one-sided distribution function and estima-

tion of a two-sided distribution function.

The optimal block length in the above situations are of different size,

being b ∼ Cn1/k, k = 3, 4 or 5, respectively where n is the sample size.

This result, of practical and theoretical interest, will be used here as the

basis for choosing the “optimal” block length. Two main approaches can be

pointed out: a cross validation method proposed by Hall et. al. (1995) and

a plug-in method based on a recent work of Lahiri et. al. (2007).

3.2.1 The nonparametric plug-in method in the estimation of θ

As it was said before, extremal index estimators show usually a high bias

that is, in most cases, the main component of the MSE. There is then a

need for bias reduction. Based on a recent work of Lahiri et. al. (2007), a

nonparametric plug-in (denoted here NPPI) method for selecting the “op-

timal” block length in order to reduce the bias, will be considered. Unlike

traditional plug-in rules, this method employs nonparametric resampling pro-

cedures to estimate the relevant constants in the leading term of the optimal

block length and, hence, does not require the knowledge and/or derivation

of explicit analytical expressions for the constants.

Given the sample Xn = (X1, X2, . . . , Xn) from an unknown model F , let

us consider Θ̂n, any estimator of θ and Θ̂∗
n(b). the corresponding bootstrap

estimator based on blocks of size b.

Let us denote by φn ≡ Bias
(
Θ̂n

)
= E

(
Θ̂n

)
−θ, the bias of Θ̂n and φ̂

∗
n(b) ≡
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B̂ias(b) = E∗

(
Θ̂∗

n(b)
)
− Θ̂n the corresponding block bootstrap estimator,

based on blocks of length b, where E∗ denotes the conditional expected value

given the data.

It is known (Hall et. al., 1995) that the variance of block bootstrap

estimator is an increasing function of the block length b while its bias is a

decreasing function of b. As a result, for each block bootstrap estimator, there

is a critical value, b0n, that minimizes MSE. The value of b that minimizes the

leading term in the expansion of the MSE is denominated MSE-optimal block

length. Under suitable regularity conditions, the variance and the bias of a

block bootstrap estimator admit expansions of the form, see Lahiri (1999),

n2aV ar
(
φ̂∗
n(b)

)
= C1n

−1br + o
(
n−1br

)
as n→ ∞, (8)

naBias
(
φ̂∗
n(b)

)
= C2b

−1 + o
(
b−1

)
as n→ ∞, (9)

over a suitable set of possible block lengths b ∈ {2, · · · , n}, where C1, C2

are population parameters, r ≥ 1 is an integer, and a ∈ [0,∞[ is a known

constant. For φn ≡ Bias, Hall et. al. (1995) consider that (8) and (9) hold

with r = 1 and a = 1. From (8) and (9) an expansion for MSE(φ̂∗
n(b)) is

obtained and leads to the asymptotic MSE-optimal block length, b0 ≡ b0n:

b0n =

(
2C2

2

C1

)1/(r+2)

n1/(r+2)(1 + o(1)). (10)

In (10) C1 and C2 need to be estimated. That estimation, under the NPPI

method, is done considering the leading part of (8) and (9):

C1 ∼ nb−rn2aV ar
(
φ̂∗
n(b)

)
and C2 ∼ bnaBias

(
φ̂∗
n(b)

)
.

This suggests the use of consistent estimators of V ar
(
φ̂∗
n(b)

)
and

Bias
(
φ̂∗
n(b)

)
and define estimators of the parameters C1 and C2 as

Ĉ1 = nb−rn2aV̂ arn and Ĉ2 = bnaB̂iasn. (11)

15



The NPPI estimator b̂0n of the optimal block length b0n is then obtained from

(10) and (11) as

b̂0n =

(
2Ĉ2

2

Ĉ1

)1/(r+2)

n1/(r+2)(1 + o(1)). (12)

In the next subsections we describe the plug-in method of Lahiri et.

al. (2007) who used the Jackknife-After-Bootstrap (JAB) method of Efron

(1992) and Lahiri (2002) for estimating V ar
(
φ̂∗
n(b)

)
and constructed an es-

timator of Bias
(
φ̂∗
n(b)

)
by combining two block bootstrap estimators of φn,

(Lahiri et. al., 2007).

3.2.2 The JAB estimator of the Variance

Efron (1992) showed that for an i.i.d. setup the jackknife estimate of standard

error of bootstrap values can be computed from the original bootstrap repli-

cations, with no further resampling requirement. The procedure is called the

JAB method of Efron (1992) and particularly attractive for deriving variance

estimators of bootstrap quantities in the i.i.d. case.

A modified version of the method for block bootstrap estimators in the

case of dependent data was proposed by Lahiri (2002). The JAB method for

dependent data applies a version of the block jackknife method (see Lahiri,

2002) to a block bootstrap estimator and can be described as follows:

Let φ̂∗
n(b) be the MBB estimator of the φn based on (overlapping) blocks

of length b from Xn =
(
X1, . . . , Xn

)
, where φn ≡ Bias

(
Θ̂n

)
and

{
B(i, b) =

(Xi, · · · , Xi+b−1), i = 1, · · · , nb

}
(with nb = n− b+ 1) denote the collection

of all overlapping blocks contained in Xn.

Let m ≡ mn be a sequence of integers such that

m−1 + n−1m = o(1) as n→ ∞,

and let M ≡ nb −m + 1. Here, m denotes the number of bootstrap blocks

to be deleted. Since there are nb observed blocks of length b, the first step
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of JAB method is to define a jackknife version, φ̂
(i)∗
n (b), for φ̂∗

n(b), for each

i ∈ {1, · · · ,M} by deleting the m blocks
{
B(i, b), · · · ,B(i+m− 1, b)

}
.

For i = 1, · · · ,M , let Ii = {1, · · · , nb}\{i, · · · , i+m−1} denote the index

set of all blocks of length b obtained by deleting the m blocks. Then, the ith

block deleted jackknife point value φ̂
(i)∗
n (b) is obtained by resampling ⌊n/b⌋

blocks randomly, with replacement from the reduced collection
{
B(j, b) : j ∈

Ii
}
.

The JAB estimator of the variance of φ̂∗
n(b) is defined as

V̂ ARJAB(φ̂
∗
n(b)) =

m

(nb −m)M

M∑

i=1

(
φ̃(i)∗
n (b)− φ̂∗

n(b)
)2

(13)

where φ̃
(i)∗
n (b) = m−1

(
nbφ̂

∗
n(b)−(nb−m)φ̂

(i)∗
n (b)

)
denotes the ith JAB pseudo-

value corresponding to φ̂∗
n(b).

3.2.3 The Bias estimator

As a motivation to the definition of the bias estimator, B̂iasn, we consider

the relation (9) that may be rewritten as

E
(
φ̂∗
n(b)

)
= φn +

C2

nab
+ o

(
n−ab−1

)
as n→ ∞. (14)

If (14) holds for the sequences {b1} ≡ {b1n}n≥1 and {2b1} ≡ {2b1n}n≥1 and

considering the corresponding expansion of E
(
φ̂∗
n(b1)

)
and E

(
φ̂∗
n(2b1)

)
, we

have, as n→ ∞

2E
[
φ̂∗
n(b1)− φ̂∗

n(2b1)
]

= 2

[(
φn +

C2

nab1
+ o

(
n−ab−1

1

) )
−

−
(
φn

C2

2nab1
+ o

(
n−ab−1

1

) )]
=

=
C2

nab1
= Bias

(
φ̂∗
n(b1)

)
+ o

(
n−ab−1

1

)
.

This suggests the consistent estimator of Bias
(
φ̂∗
n(b1)

)
as

B̂iasn ≡ B̂iasn(b1) = 2
(
φ̂∗
n(b1)− φ̂∗

n(2b1)
)
. (15)
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3.2.4 The Optimal block length estimator

The nonparametric plug-in method, described in Section 3.2.1 suggests (12)

as an estimator of the optimal block length, where Ĉ1 = nb−rn2aV̂ arn and

Ĉ2 = bnaB̂iasn are estimators of parameters C1 and C2, respectively and

V̂ arn ≡ V̂ arn(b1) and B̂iasn ≡ B̂iasn(b1) are some consistent estimators of

the variance and bias of the block bootstrap estimator φ̂∗
n(b) based on some

suitable initial block length b1.

Lahiri et. al. (2007) suggest using the JAB variance estimator

V̂ ARJAB(φ̂
∗
n(b1)) in (13) for estimating C1 and using the bias estimator B̂iasn

of (15) to estimate C2 and then obtain the plug-in estimator of the optimal

block length b0n.

Although the nonparametric plug-in method produces a consistent esti-

mator of the optimal block length, finite sample performance of the estimator

depends on the choice of the smoothing parameter b1 and on the JAB block-

ing parameter m. Lahiri et. al. (2007) show that the optimal choice of b1 is

of the form, b1 = C3n
1/(r+4), where r ≥ 1 is an integer and C3 is a population

parameter. As for the other smoothing parameter, an heuristic argument in

Lahiri (2002) suggests that a reasonable choice of the JAB parameter m is

given by m = C4n
1/3b

2/3
1 , for some constant C4. Numerical results of Lahiri

et. al. (2007) show that the choice C3 = 1 for the initial block length b1 gives

the best result for different functionals of interest, while the value of C4 for

calculating m is C4 = 1 for the bias and variance functionals.

4 Monte-Carlo simulations

A Monte-Carlo simulation of the mean value (E), the mean squared error

(MSE), the variance (VAR) and the squared bias (BIAS2) of several esti-

mators was performed. Here we only present results for the Up-crossing

estimator, Θ̂UC , and the Generalized-Jackknife estimator, Θ̂JG, for two of
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the models (MA1 and MB1, see description below) and a few values of θ.

The simulations were also done for several sample sizes and 1000 replicas,

but we only present plots for n = 1000.

The following stationary sequences were considered in our study, however

only results from two models will be showed in this paper - model MA1

and the two-dependent model, model MB1.

A. Max-autoregressive processes

We consider a first-order max-autoregressive processes (ARMAX pro-

cesses), ARMAX(1), which are a special case of the general ARMAX-

MAX(p,q) processes introduced by Davis and Resnick (1989). ARMAX pro-

cesses became quite popular in extreme value theory, specially because their

nice treatment in what concerns extremal behavior. In literature ARMAX

processes appear formulated in different ways.

Model MA1 – X0 = Z0, Xi = max
{
βXi−1, (1− β)Zi

}
, i = 1, · · · , n,

where 0 ≤ β < 1 and {Zi} is an i.i.d. sequence of random variables,

which we assume having d.f. F (z) = exp(−z−1), z > 0. So the marginal

distribution of the process {Xi} is unit Fréchet and for 0 < x <∞ and

un = nx, P
{
Mn ≤ un

}
−→
n→∞

exp
(
−(1−β)/x

)
, for example, see Beirlant

et. al. (2004). The extremal index is then θ = 1− β.

Model MA2 – X0 = Z0, Xi = max
{
αXi−1, Zi

}
, i = 1, · · · , n, where

0 ≤ α < 1 and {Zi} is an i.i.d. sequence of random variables with d.f.

F (z) = exp
(
− (1 − α)z−1

)
for z > 0. The marginal distribution of

the process {Xi} is unit Fréchet. The extremal index of this process is

easily shown to be θ = 1− α, for example, see Leadbetter (1983).

Model MA3 – X0 = Z0, Xi = βmax
{
Xi−1, Zi

}
, i = 1, · · · , n, where

0 < β < 1 and {Zi} is an i.i.d. sequence of random variables with

d.f. F (z) = exp
(
− z−α

)
and X0 a random variable with dd.f. H0(x) =
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exp
(
−x−α(β−α−1)

)
. The extremal index of this process is θ = 1−βα,

see, for example, see Alpuim (1989) and Canto e Castro (1992).

B. Moving-maximum processes

These models, developed by Newell (1964) and Deheuvels (1983), are

defined by

Xi = max
{
Zi, ψ1Zi−1, · · · , ψqZi−q

}
, i ∈ Z,

where ψj ≥ 0, (1 ≤ j ≤ q) and {Zi} is an i.i.d. sequence of random variables

with d.f. F . Details on the behaviour of these extremal models for various

cases can be found in Weissman and Cohen (1995).

Model MB1 – see Section 2.2.

Model MB2 – X0 = Z0, Xi = (a+1)−1 max
{
aZi−1, Zi

}
, i = 1, · · · , n,

where a ≥ 0 and {Zi} is an i.i.d. sequence of random variables with

d.f. F (z) = exp
(
− z−1

)
, z > 0. The extremal index of this process is

θ = max{1, a}/(a+ 1) and lies in interval [1/2, 1], see Davison (2011).

Model MB3 – X0 = Z0, Xi = max
{
aZi−1, Zi

}
, i = 1, · · · , n, where

0 ≤ a ≤ 1 and {Zi} is an i.i.d. sequence of random variables with d.f.

F (z) = exp
(
− 1/(a + 1)z

)
, z > 0. The marginal distribution of {Xi}

is standard Fréchet. It is easy to check that the sequence is stationary

and the extremal index is θ = 1/(a+ 1), see Coles (2001).

4.1 The simulation study

Here we will use simulated samples, generated from our models and for some

values of parameter θ. If we know the true value of θ, we can illustrate

the behavior of our estimators and we can control the performance of the

resampling techniques explained in Section 3. All the aforementioned models

were included in an extensive simulation study for checking the properties

of the estimators as well as for controlling the application of resampling
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techniques. Figure 3 shows the mean values of Θ̂UC and Θ̂GJ , for model MA1,

with three values of θ and a sample of size n = 1000. For each simulated

case, MSE, Var and Bias2 are plotted in Figure 4.
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Figure 3: Simulated mean values of the estimators Θ̂UC and Θ̂JG, for a sample

of size n = 1000 from model MA1.
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Figure 4: Simulated MSE, Var and Bias2 of the estimators Θ̂UC and Θ̂JG, for a

sample of size n = 1000 from model MA1.

For one of the samples generated, a simple path of the estimators Θ̂UC

and Θ̂JG is calculated, see Figure 5 (top). Those samples are then used

to obtain the optimal block length for the moving block bootstrap. For the

sample coming from model MA1, we saw that if θ = 0.9 (near independence)

the optimal block size was 2 ou 3 and for θ = 0.1 we obtained b̂0n = 10.

Block bootstrap estimates are plotted in Figure 5. A more stable path

was obtained for the Θ̂JG estimator, although our results claim for a more

complete simulation study for the optimal block size, possibly jointly with

alternative adaptive estimation methods.
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Figure 5: One sample path of the estimators Θ̂UC and Θ̂JG, for a sample of size

n = 1000 from model MA1 (top); block bootstrap estimates using b̂0n = 2 for

θ = 0.9 and b̂0n = 10 for θ = 0.1 and θ = 0.5 (bottom).

5 Concluding remarks

In this paper, a general method for estimating the optimal block size for boot-

strap estimation in situation of dependence was presented. It was applied

to two estimators of the extremal index. Generalized Jackknife estimator

presented promising results, showing a more stable path. However more es-

timators should be compared and procedures for an adaptive choice of the

high level need to be considered.
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