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Abstract

In this paper the authors first obtain the exact distribution of the logarithm of the product of independent gen-
eralized Gamma r.v.’s (random variables) in the form of a Generalized Integer Gamma distribution of infinite
depth, where all the rate and shape parameters are well identified. Then, by a routine transformation, simple
and manageable expressions for the exact distribution of the product of independent generalized Gamma r.v.’s are
derived. The method used also enables us to obtain quite easily very accurate, manageable and simple near-exact
distributions in the form of Generalized Near-Integer Gamma distributions. Numerical studies are carried out to
assess the precision of different approximations to the exact distribution and they show the high accuracy of the
approximations provided by the near-exact distributions. As particular cases of the exact distributions obtained we
have the distribution of the product of independent Gamma, Weibull, Frechet, Maxwell-Boltzman, Half-Normal,
Raleigh and Exponential distributions, as well as the exact distribution of the generalized variance, the exact dis-
tribution of discriminants or Vandermonde determinants and the exact distribution of any linear combination of
generalized Gumbel distributions, as well as yet the distribution of the product of any power of the absolute value
of independent Normal r.v.’s.

Keywords: Characteristic functions, Generalized Integer Gamma distribution, Generalized Near-Integer Gamma
distribution, Infinite sums, Near-exact distributions.

1. Introduction

There is a vast literature on the distribution of the product of independent Gamma and generalized Gamma
r.v.’s and on the distribution of the product of independent chi-square r.v.’s. However, we think that these problems
are still amenable to a different approach which may (i) lead to a simple and more manageable form for the
exact distribution, (ii) enable an easy development of very well-fitting approximate distributions and (iii) yield an
adequate unified approach for the distribution of the product of r.v.’s whose distribution may be seen as a particular
case of the generalized Gamma distribution, as well as the distribution of linear combinations of generalized
Gumbel r.v.’s.

Since the generalized Gamma distribution (Stacy, 1962; Amoroso, 1925; D’Addario, 1932) has as particular
cases the Gamma, Chi-square, Exponential, Hal-Normal, Weibull, Frechet, Rayleigh, Maxwell-Boltzman distri-
butions, as well as the distribution of any power of the absolute value of Normal r.v.’s (see App. A), the importance
of the distribution of the product of independent generalized Gamma r.v.’s is due in part to the facts that:

i) if obtained in a general setting, it will have as particular cases the distribution of the product of any combi-
nation of independent r.v.’s with the above mentioned distributions which are particular cases of the gener-
alized Gamma distribution, among which are the powers of the absolute value of Normal r.v.’s;
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ii) the distribution of the discriminant, or square of the Vandermonde determinant, when sampling from Nor-
mal or Gamma populations, is the same as the distribution of the product of particular independent Gamma
r.v.’s (Lu and Richards, 1993);

iii) the distribution of the generalized variance, which has been given considerable attention in the literature, is
the distribution of the product of particular independent chi-squared r.v.’s;

iv) in its negative logarithm form, it yields

i) the distribution of linear combinations of independent generalized Gumbel r.v.’s, which are the nega-
tive logarithm of a generalized Gamma r.v.;

ii) as well as the distribution of the complete sufficient statistic for the shape parameter (r) in a Gamma
distribution with unit or known rate parameter and the distribution of the maximum likelihood and the
UMVU estimator of Ψ(r), where Ψ(·) is the digamma function (see App. B).

Apart from the case that is usually referred to as ’the stochastic analog of the Gauss multiplication theorem’
(see Theorem 2 of Gordon (1989) and Lemma 4.3 of Lu and Richards (1993)), in which case the product of
particular independent Gamma r.v.’s has a Gamma distribution, the exact distribution of the product of independent
Gamma or related r.v.’s does not have a simple representation.

Wells et al. (1962) obtained the exact distribution for the product of two central or non-central Chi-square
r.v.’s, expressing the p.d.f. and c.d.f. through the use of modified Bessel functions of the second kind. Malik
(1968) obtained expressions for the p.d.f. (and c.d.f. for a particular case) of the product of two independent
generalized Gamma r.v.’s, both with the same power parameter, also in terms of modified Bessel functions of the
second kind. Lomnicki (1967) obtained rather complicated expressions for the p.d.f. of the product of any num-
ber of independent standard Exponential or Weibull r.v.’s. However, for the product of Gamma r.v.’s the author
only indicates a possible way to obtain the expressions for the p.d.f. saying that “for the Gamma distribution the
situation is not so simple”. Springer and Thompson (1970) obtained expressions for the p.d.f. of the product of
independent Gamma r.v.’s in terms of the Meijer G function and Podolski (1972) obtained the distribution of the
product of independent generalized Gamma r.v.’s all with the same power parameter also in terms of the Meijer G
function. Mathai (1972a) obtains the distribution of the ratio of two products of independent generalized Gamma
r.v.’s in terms of the Meijer G function. A particular case of this is the distribution of the product of independent
generalized Gamma r.v.’s. This distribution assumes in this case the same form as that of the one obtained by
Springer and Thompson (1970). Carter and Springer (1977) obtained the distribution of the product of indepen-
dent H-function r.v.’s as H-functions. The H-function (Fox, 1961) alluded to here is a further generalization of the
Meijer G function. Particular cases of H-function r.v.’s are, among others, the Gamma, Exponential, Chi-square,
Weibull and Half-normal r.v.’s. More recently, Salo et al. (2006) obtained the exact p.d.f. and c.d.f. for the product
of any number of independent Rayleigh r.v.’s in the form of Meijer G functions, providing series representations
for the cases of three, four or five r.v.’s.

The representations and approaches using the Meijer G function and especially those involving the H function
although very general, are not very helpful for obtaining a representation of the distribution which may be applied
in practice to compute p-values or quantiles. This is because the G and H functions are indeed only alternative
representations for Barnes type integrals, which then have to be solved numerically. One may argue that also the
commonly used Gamma function is just a representation for an integral, which is indeed true. However, nowadays
most available software packages capable of performing symbolic computations, are able to easily compute the
Gamma function with a very high precision. This is not the case for the Meijer G function. This function is, at
best, computable with moderate precision only for small values of its arguments, while the H function is usually
not even implemented in such software.

The distribution of the generalized variance, which is a particular case of the distribution of the product of in-
dependent Gamma r.v.’s, has deserved some particular attention. Bagai (1965) obtained the exact distribution for
the generalized variance for 5 through 10 variables involved, both for the non-central and central cases. However,
the results are obtained case by case and not under a general formulation, even for the central case. Moreover the
expressions obtained, besides involving infinite sums, also involve the generalized Gauss hypergeometric func-
tion. Mathai (1972b) obtained the exact non-central distribution of the generalized variance in terms of zonal
polynomials, Psi functions, and Zeta functions. Hoel (1937) seems to have been the first to address the problem of
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approximating the exact distribution of the generalized variance. He suggests two approximations, one for cases
where, in his own words, samples “are not too small”, more precisely for cases where the sample size “is fairly
large compared with” the square of the number of variables. In such a case he suggests approximating the distri-
bution of the p-th root of the generalized variance by a Gamma distribution, where p is the number of variables
in the multivariate Normal distribution that we are sampling from. This actually amounts to approximating the
distribution of the generalized variance by a generalized Gamma distribution with power parameter equal to 1/p.
The other approximation Hoel suggests is a Normal approximation, for even larger samples. Gnanadesikan and
Gupta (1970) studied Hoel’s Gamma approximation and concluded that it worsens for increasing p. These authors
then suggest a Normal approximation based on the Normal approximation to the distribution of the logarithm of a
Chi-squared r.v. suggested by Bartlett and Kendall (1946). This approach is also followed by Regier (1976). Fu-
jikoshi (1968) obtained a Normal distribution as the limit distribution for a normalized version of the non-central
generalized variance when the non-centrality matrix is O(n), where n represents the sample size. The same author
also obtained a limit and an asymptotic expansion for the cumulative distribution function of a normalized version
of the logarithm of the non-central generalized variance when the non-centrality matrix is constant up to terms of
order n−3/2, based on powers of the Normal c.d.f.. Sugiura and Nagao (1971) obtained an asymptotic expansion
for the distribution of the generalized variance in the non-central case, when the non-centrality matrix is O(n).
Steyn (1978) suggests approximating the p.d.f. of a linear transformation of the generalized variance in the cen-
tral case by the p.d.f. of a mixture of two standard Gamma distributions. However, this approximation does not
perform appropriately since its supposed p.d.f. although integrating to one, when integrated from zero to infinity,
only assumes positive values for values of the running variable larger than a given threshold. Consequently the
integral between this threshold and infinity is much larger than one. Gordon (1989) obtained bounds, based on
chi-square distributions, for the distribution of the generalized variance. Butler et al. (1992) obtained saddle-
point approximations for the distribution of the generalized variance. Hao and Krishnamoorthy (2001) obtained a
Normal approximation to the exact distribution of the logarithm of the generalized variance and another approx-
imation similar to Hoel’s approximation for the power 1/p of the generalized variance for the case of monotone
missing data.

Concerning the generalized Gumbel distribution, a common application of this distribution is as the limit dis-
tribution of order statistics of distributions for which the p.d.f. decreases faster than any power law, for large values
in the support of the r.v.. There is a wide range of areas where the distribution of the sum or linear combination
of independent Gumbel r.v.’s finds applications (Loaiciga and Leipnik, 1999; Cetinkaya et al., 2001). Cetinkaya
et al. (2001) approximate the distribution of the sum of two independent Gumbel r.v.’s by a single Gumbel dis-
tribution. Loaiciga and Leipnik (1999) obtained the exact c.d.f. for a linear combination of only two independent
Gumbel r.v.’s as an infinite series. Nadarajah (2007) obtained the c.d.f. for a similar linear combination, where
some restrictions are placed on the parameters, in terms of generalized hypergeometric functions and Nadarajah
and Kotz (2008) obtain the exact p.d.f. and c.d.f. also in terms of generalized hypergeometric functions.

In this paper, by using a decomposition of the c.f. (characteristic function) of the logarithm of the product
of independently distributed generalized Gamma r.v.’s induced by the use of a product representation for the
Gamma function (see (4) ahead), the authors obtain a decomposition of the product of the r.v.’s. The bases of
this decomposition are similar to the ones obtained by Kaluska and Krysicki (1997) for the generalized Gamma
distribution and by Gordon (1989) and Bondesson (1978) for the common Gamma r.v.’s. However, by taking a
completely different approach from the ones followed by other authors we are able to obtain expressions for both
the p.d.f. and the c.d.f. of the distribution of the product of independent generalized Gamma r.v.’s which are quite
simple and highly manageable. Furthermore these may be used to develop near-exact approximations.

Since the negative logarithm of a generalized Gamma r.v. is indeed a r.v. with a generalized Gumbel distribu-
tion, the approach followed will actually also enable us to obtain the distribution of linear combinations of any
number of independent generalized Gumbel r.v.’s in a manageable form. This will allow the development of very
well-fitting approximations, since this distribution is that of the negative logarithm of the product of independent
generalized Gamma r.v.’s.

We defer discussion of the non-central case to a future paper. However, we remark that many of the results to
be established in the present paper will be useful when considering the non-central case.
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2. A different look at the distribution of the product of independent generalized Gamma r.v.’s

Let (see App. A for notation)
X j ∼ Γ(r j, λ j; β j) j = 1, . . . , p (1)

be p independent r.v.’s and let

W =

p∏
j=1

X j . (2)

Then the h-th moment of W will be

E
(
Wh

)
=

p∏
j=1

E
(
Xh

j

)
=

p∏
j=1

Γ(r j + h/β j)
Γ(r j)

λ
−h/β j

j ,

and thus the c.f. of
Z = − log W ,

using the notation Λ =
p∏

j=1
λ

1/β j

j , is given by (for t ∈ R)

ΦZ(t) = E
(
exp(itZ)

)
= E

(
exp(−it log W)

)
= E

(
W−it

)
=

p∏
j=1

Γ(r j − it/β j)
Γ(r j)

λ
it/β j

j = Λit
p∏

j=1

Γ(r j − it/β j)
Γ(r j)

. (3)

Then, using the relation

Γ(z) = lim
K→∞

exp(−γz)
z

K∏
k=1

k
k + z

exp(z/k) , (4)

which is valid for any z ∈ C\{0,−1,−2, . . .} (Alfors, 1979, § 2.4; Lang, 1999, Chap. XV, § 2), where γ is the Euler
gamma constant, we may write

ΦZ(t) = Λit
p∏

j=1

 r j

r j − it/β j
exp

{
−γ(r j − it/β j − r j)

}
lim

K→∞

K∏
k=1

r j + k
r j + k − it/β j

exp
(

r j − it/β j − r j

k

)
=

Λ exp

γ p∑
j=1

1/β j




it

lim
K→∞

 exp

−it
p∑

j=1

K∑
k=1

1
kβ j

 p∏
j=1

 K∏
k=0

β j(r j + k)
β j(r j + k) − it


 .

(5)

This shows that Z has the same distribution as

log Λ + γ

p∑
j=1

1
β j

+

∞∑
k=0

p∑
j=1

Y∗jk

where (see App. C for notation), for j = 1, . . . , p, Y j0 ∼ Exp
(
β jr j

)
, for β j > 0

−Y j0 ∼ Exp
(
−β jr j

)
, for β j < 0

and, for j = 1, . . . , p and k = 1, 2, . . .,
Y jk ∼ Exp

(
β j(r j + k)| − 1

kβ j

)
, for β j > 0

−Y jk ∼ Exp
(
−β j(r j + k)| − 1

kβ j

)
, for β j < 0 .
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We may note that this decomposition is actually similar to the one obtained in Theorem 6 of Kaluska and Krysicki
(1997) and to the one in Theorem 1 of Gordon (1989). A similar construction, in the context of ordinary Gamma
r.v.’s, was described by Bondesson (1978).

We may note that if we take, for K = 0, 1, 2, . . .,

ZK = log Λ + γ

p∑
j=1

1
β j

+

K∑
k=0

p∑
j=1

Y∗jk ,

then as K → ∞, we will have
ZK

d
−→ Z .

Since the cases where we allow β j’s with different signs would pose problems that would increase the length
of the paper to unreasonable limits, we prefer to address this problem in a future paper and consider here only the
cases where all β j’s have the same sign, either positive or negative. As we will see in the sections ahead, even
these simpler cases will cover a multitude of situations and distributions of major interest.

If all β j are positive, the exact distribution of Z is thus a shifted GIG (Generalized Integer Gamma) distribution
(see App. C) of infinite depth, i.e., the distribution of the sum of infinitely many independent shifted Gamma r.v.’s
with integer shape parameters. We should note that the GIG distribution is still a legitimate distribution even when
in (23) and (24) we let p→ ∞, since the p.d.f. and the c.d.f. in (23) and (24) are legitimate p.d.f.’s and c.d.f.’s for
any positive integer value of p and as such still yield legitimate p.d.f.’s and c.d.f.’s even when we let p → ∞. In
the case in which all the β j are negative, the r.v. −Z will have the distribution described above.

In most cases the exact p.d.f. and c.d.f. of Z and W will actually have quite simple expressions in the form
of a series (see the subsections ahead). In the subsections ahead we will analyze in more detail several particular
cases that arise for different sets of values for the parameters involved.

2.1. The “simple” case
If all β j(r j + k) ( j = 1, . . . , p; k = 0, 1, 2, . . .) are different, we will be facing what we call the “simple” case

since then the exact distribution of Z = − log W will be a GIG distribution of infinite depth but with all the shape
parameters equal to one and rate parameters β j(r j+k) ( j = 1, . . . , p; k = 0, 1, 2, . . .). This distribution has relatively
simple expressions for both the p.d.f. and the c.d.f., since if we take

h = kp + j , h = 1, 2, . . . ; for k = 0, 1, 2, . . . ; j = 1, . . . , p ,

and define
sh = β j(r j + k) , (6)

then, from (23) and (24) in App. C, the exact p.d.f. of Z = − log W will be given by

fZ(z) = lim
K→∞

C
p(K+1)∑

h=1

ch exp(−sh(z − a)) , (7)

where

C =

p(K+1)∏
h=1

sh , ch =

p(K+1)∏
j=1
j,h

1
sh − s j

, a = log Λ + γ

p∑
j=1

1
β j

+ p
K∑

k=1

1
k
. (8)

The exact c.d.f. of Z = − log W will be given by

FZ(z) = 1 − lim
K→∞

C
p(K+1)∑

h=1

ch

sh
exp(−sh(z − a)) , (9)

Thus, the r.v. W = exp(−Z) will have p.d.f. and c.d.f. respectively given by

fW (w) = lim
K→∞

C
p(K+1)∑

h=1

ch
(
w exp(a)

)sh
1
w
, and FW (w) = lim

K→∞
C

p(K+1)∑
h=1

ch

sh

(
w exp(a)

)sh .

In practice we will use for K some positive integer value.
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2.2. The “multiple” case

By the “multiple” case we mean the case where some of the sh’s in (6) are equal. In this case we will have to
gather all the sh that are equal to a given value as one only sh and use the corresponding shape parameter equal
to the number of occurrences of the value sh (instead of being just equal to one as was the case with all the shape
parameters in the previous subsection).

The fact that some of the shape parameters will be larger than one, will then force us to use for the p.d.f. and
c.d.f. of both Z and W not just the expressions in the previous section but rather the general expressions in App.
C for the GIG distribution.

2.3. The case of all equal power parameters

If all the power parameters β j ( j = 1, . . . , p) in (1) are equal, with β j = β ( j = 1, . . . , p), the shift parameter a
in (8) will then have a slightly simpler expression. In this case it is given by

a = log Λ + γ
p
β

+ p
K∑

k=1

1
k
. (10)

2.4. The case of all β j = 1 and all r j = r

In this case W is the product of regular Gamma r.v.’s all with the same shape parameter r > 0 and the c.f. of Z
may be written as

ΦZ(t) =
{
Λ exp(γp)

}it lim
K→∞

exp

−it p
K∑

k=1

1
k


 K∏

k=0

(
r + k

r + k − it

)p



which shows that the distribution of Z is the same as the distribution of

log Λ + γ p + Y0 + lim
K→∞

K∑
k=1

(
Yk +

1
k

)
where all the r.v.’s are independent, with

Yk ∼ Γ(p, r + k) , k = 0, . . . ,K .

Thus the exact p.d.f. and c.d.f. of Z may be respectively written as

fZ(z) = lim
K→∞

f GIG
(
z − a

∣∣∣ p, . . . , p︸   ︷︷   ︸
K+1

; r, . . . , r + K; K + 1
)

and
FZ(z) = lim

K→∞
FGIG

(
z − a

∣∣∣ p, . . . , p︸   ︷︷   ︸
K+1

; r, . . . , r + K; K + 1
)

where the shift parameter a is given by (10) above, for β = 1. The exact p.d.f. and c.d.f. of W are then, respectively

fW (w) = lim
K→∞

f GIG
(
− log w − a

∣∣∣ p, . . . , p︸   ︷︷   ︸
K+1

; r, . . . , r + K; K + 1
) 1

w

and
FW (w) = 1 − lim

K→∞
FGIG

(
− log w − a

∣∣∣ p, . . . , p︸   ︷︷   ︸
K+1

; r, . . . , r + K; K + 1
)
.

If in this case we take all λ j equal then W will be the product of i.i.d. Gamma r.v.’s.
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2.5. The case of all β j = 1 and all r j differing by an integer quantity

Without any loss of generality let us suppose that

r1 ≤ r2 ≤ . . . ≤ rp . (11)

Then, if we suppose that all r j ( j = 1, . . . , p) differ by an integer quantity, we will have, for any complex number
c,

Γ(r j + c) = Γ(rp + c)
rp−r j−1∏

h=0

(r j + c + h)−1 , j = 1, . . . , p − 1 ,

where any empty product is to be taken to be equal to 1.
Consequently, with all β j = 1 ( j = 1, . . . , p), the c.f. of Z may be written as

ΦZ(t) = Λit
(
Γ(rp − it)

Γ(rp)

)p p−1∏
j=1

rp−r j−1∏
h=0

r j + h
r j + h − it

,

where, taking into account (11), we may write

p−1∏
j=1

rp−r j−1∏
h=0

r j + h
r j + h − it

=

rp−r1−1∏
h=0

(
r1 + h

r1 + h − it

)uh

with
uh = # r j

′s ≤ r1 + h , h = 0, . . . , rp − r1 − 1 . (12)

We may thus write

ΦZ(t) =
{
Λ exp(γp)

}it


rp−r1−1∏

h=0

(
r1 + h

r1 + h − it

)uh

 lim
K→∞

exp

−it p
K∑

k=1

1
k


 K∏

k=0

(
rp + k

rp + k − it

)p

 ,

which shows that in this case the distribution of Z is the same as the distribution of

log Λ + γ p +

rp−r1−1∑
h=0

Y∗h

 + Y0 + lim
K→∞

K∑
k=1

(
Yk +

1
k

)
where all the r.v.’s are independent, with

Y∗h ∼ Γ(uh, r1 + h) , h = 0, . . . , rp − r1 − 1

and
Yk ∼ Γ(p, rp) , k = 0, . . . ,K .

The exact p.d.f. and c.d.f. of Z may thus be respectively written as

fZ(z) = lim
K→∞

f GIG

(
z − a

∣∣∣ u0, . . . , urp−r1−1︸            ︷︷            ︸
rp−r1

, p, . . . , p︸   ︷︷   ︸
K+1

; r1, . . . , rp − 1︸          ︷︷          ︸
rp−r1

, rp, . . . , rp + K︸           ︷︷           ︸
K+1

; rp − r1 + K + 1
)

and

FZ(z) = lim
K→∞

F GIG

(
z − a

∣∣∣ u0, . . . , urp−r1−1︸            ︷︷            ︸
rp−r1

, p, . . . , p︸   ︷︷   ︸
K+1

; r1, . . . , rp − 1︸          ︷︷          ︸
rp−r1

, rp, . . . , rp + K︸           ︷︷           ︸
K+1

; rp − r1 + K + 1
)

with a given by (10) and u0, . . . , urp−r1−1 given by (12).
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The exact p.d.f. and c.d.f. of W will then be respectively given by

fW (w) = lim
K→∞

f GIG

(
− log w − a

∣∣∣ u0, . . . , urp−r1−1︸            ︷︷            ︸
rp−r1

, p, . . . , p︸   ︷︷   ︸
K+1

;

r1, . . . , rp − 1︸          ︷︷          ︸
rp−r1

, rp, . . . , rp + K︸           ︷︷           ︸
K+1

; rp − r1 + K + 1
) 1

w

and

FW (w) = 1 − lim
K→∞

FGIG
(
− log w − a

∣∣∣ u0, . . . , urp−r1−1︸            ︷︷            ︸
rp−r1

, p, . . . , p︸   ︷︷   ︸
K+1

;

r1, . . . , rp − 1︸          ︷︷          ︸
rp−r1

, rp, . . . , rp + K︸           ︷︷           ︸
K+1

; rp − r1 + K + 1
)
.

2.6. The exact distribution of the generalized variance
The generalized variance is the determinant of the sample variance-covariance matrix, which when sampling

from the p-multivariate Normal distribution with mean vector µ ∈ Rp and p×p variance-covariance matrix Σ has,
for a sample of size n, the same distribution as

W =
|Σ|

(n − 1)p

p∏
j=1

X j (13)

where the X j’s are independent with distributions given by

X j ∼ χ
2
n− j ≡ Γ

(
n − j

2
,

1
2

)
, j = 1, . . . , p . (14)

The distribution of the generalized variance has been studied by several authors who have obtained it in a
variety of more or less complicated forms. Bagai (1965) obtained the distribution for some values of p in the form
of expressions involving hypergeometric functions.

What we propose here is to obtain expressions for the p.d.f. and the c.d.f. of the logarithm of the generalized
variance in the form of GIG distributions of infinite depth and from these to obtain the expressions for the exact
distribution of the generalized variance itself.

We have to note that we are in the situation remarked in subsection 2.2. In this case, for a given value of
K = 0, 1, 2, . . ., we will have 2K + p different values for sh, with

sh =
n − p + h − 1

2
, h = 1, . . . , 2K + p ,

with corresponding shape parameters uh given by

uh =

 uh = gh h = 1, 2

uh = gh + uh−2 h = 3, . . . , 2K + p

with

gh =


1 j = 1, . . . ,min (2(K + 1), p)

0 j = 1 + min (2(K + 1), p) , . . . ,max (2(K + 1), p)

−1 j = 1 + max (2(K + 1), p) , . . . , 2K + p

or
gh = (# of elements in {2(K + 1), p} ≥ h) − 1 , h = 1, . . . , 2K + p .

8



Then, according to the notation in App. C, for W in (13), the exact p.d.f. and c.d.f. of Z = − log W are
respectively

f ∗Z (z) = lim
K→∞

f GIG

(
z − a|u1, . . . , u2K+p;

n − p
2

, . . . ,
n − 1 + 2K

2
; 2K + p

)
, (15)

and

F∗Z(z) = lim
K→∞

FGIG

(
z − a|u1, . . . , u2K+p;

n − p
2

, . . . ,
n − 1 + 2K

2
; 2K + p

)
,

for

a = − log |Σ| + p

log(n − 1) + γ − log 2 −
K∑

k=1

1
k

 . (16)

The exact p.d.f. and c.d.f. of W = exp(−Z) will then be

fW (w) = lim
K→∞

f GIG

(
− log w − a

∣∣∣ u1, . . . , u2K+p;
n−p

2
, . . . ,

n−1+2K
2

; 2K+p
)

1
w
,

and

FW (w) = 1 − lim
K→∞

FGIG

(
− log w − a

∣∣∣ u1, . . . , u2K+p;
n−p

2
, . . . ,

n−1+2K
2

; 2K+p
)
.

3. Near-exact distributions

Given the somewhat complicated structure of the exact distributions obtained, both for Z = − log W as well
as for the r.v. W in (2), the development of near-exact distributions which will be simpler in structure but will still
provide a good approximation to the distributions of interest becomes a worhtwhile goal.

Near-exact distributions for Z = − log W will be developed in the form of a shifted GNIG distribution (see
App. C), by keeping, for a given value of n∗ ∈ N, unchanged the part of the c.f. of Z corresponding to the first
p ∗ (n∗ + 1) terms (which correspond to a shifted GIG distribution of depth p(n∗ + 1)) and replacing the remaining
part by the c.f. of a shifted Gamma r.v., in such a way that this near-exact distribution will match the first three
exact moments of Z.

More precisely, since we may write, from (5),

ΦZ(t) =


exp

pγ + log Λ − p
p(n∗+1)∑

k=1

1
k



it p∏

j=1

p(n∗+1)∏
k=0

(r j + k) (r j + k − it)−1


︸                                                                                         ︷︷                                                                                         ︸

Φ1(t)

×


exp

pγ + log Λ − p
∞∑

k=1+ν

1
k



it p∏

j=1

 ∞∏
k=1+ν

(r j + k) (r j + k − it)−1


︸                                                                                      ︷︷                                                                                      ︸

Φ2(t)

,

(17)

where ν = p(n∗+1) and where Φ1(t) will be left unchanged and Φ2(t), given its structure, will be suitably replaced
by

Φ∗2(t) = exp(ita∗)λr (λ − it)−r ,

which is the c.f. of a shifted Gamma distribution with shift parameter a∗, shape parameter r and rate parameter λ,
in such a way that

dh

dth Φ∗2(t)

∣∣∣∣∣∣
t=0

=
dh

dth Φ2(t)

∣∣∣∣∣∣
t=0

, for h = 1, 2, 3 . (18)

However, given the infinite product representation of Φ2(t) in (17), which would make difficult the computation of
its numerical derivatives, we will use instead ΦZ(t)/Φ1(t), with ΦZ(t) given by (3). Then the system of equations
in (18) has the solutions

r =
−4(µ2

1 − µ2)3

(µ∗)2 , λ =
−2(µ2

1 − µ2)
µ∗

, a∗ =
µ2

1µ2 − 2µ2
2 + µ1µ3

µ∗
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where

µh = i−h dh

dth Φ2(t)

∣∣∣∣∣∣
t=0

(h = 1, 2, 3) and µ∗ = 2µ3
1 − 3µ1µ2 + µ3 .

In this way the near-exact distribution obtained for Z will be a shifted GNIG distribution, which in the ’simple
case’ treated in subsection 2.1, will have depth 1 + p(n∗ + 1) with p.d.f. and c.d.f. respectively given by (see App.
C for notation)

f GNIG

(
z − a∗∗

∣∣∣ 1, . . . , 1︸  ︷︷  ︸
p(n∗+1)

, r; s1, . . . , sp(n∗+1), λ; 1 + p(n∗ + 1)
)

= C λr
p(n∗+1)∑

h=1

exp(−sh(z − a∗∗)) ch
Γ (r, (λ−sh)(z−a∗∗))

Γ(r)

and

F GNIG

(
z − a∗∗

∣∣∣ 1, . . . , 1︸  ︷︷  ︸
p(n∗+1)

, r; s1, . . . , sp(n∗+1), λ; 1 + p(n∗ + 1)
)

= λr Γ (r, λ(z−a∗∗))
Γ(r)

−C λr
p(n∗+1)∑

h=1

exp(−sh(z − a∗∗)) ch
Γ (r, (λ−sh)(z−a∗∗))

Γ(r)

where z (> 0) represents the running value of Z, sh are given by (6), C and ch (h = 1, . . . , p(n∗ + 1)) are given by
(8), with K replaced by n∗, and a∗∗ = a + a∗ where a is given by (8), with K replaced by n∗, and where we used
the relation

1F1(r, r + 1;−z) =
r
zr Γ(r, z) ,

between the Kummer hypergeometric function and the incomplete Gamma function, with

Γ(r, z) =

∫ z

0
exp(−x) xr−1 dx .

Consequently W = exp(−Z) will have near-exact p.d.f. and c.d.f. respectively given by

f GNIG

(
− log w − a∗∗

∣∣∣ 1, . . . , 1︸  ︷︷  ︸
p(n∗+1)

, r; s1, . . . , sp(n∗+1), λ; 1 + p(n∗ + 1)
) 1
w

= C λr
p(n∗+1)∑

h=1

wsh−1 exp(sha∗∗) ch
Γ
(
r, (λ−sh)(− log w−a∗∗)

)
Γ(r)

and

1 − F GNIG

(
− log w − a∗∗

∣∣∣ 1, . . . , 1︸  ︷︷  ︸
p(n∗+1)

, r; s1, . . . , sp(n∗+1), λ; 1 + p(n∗ + 1)
)

= 1 − λr Γ
(
r, λ(− log w−a∗∗)

)
Γ(r)

+ C λr
p(n∗+1)∑

h=1

wsh−1 exp(sha∗∗) ch
Γ
(
r, (λ−sh)(− log w−a∗∗)

)
Γ(r)

For the general case, where some of the rate parameters may be equal, the near-exact distributions for Z =

− log W will be GNIG distributions with depth smaller or equal to 1 + p(n∗ + 1), with some of the integer shape
parameters being larger than one.

For the negative logarithm of the generalized variance we will have as a near-exact distribution a shifted GNIG
distribution of depth 1 + 2n∗ + p with p.d.f.

f GNIG

(
z − a∗∗

∣∣∣ u1, . . . , u2n∗+p, r;
n − p

2
, . . . ,

n − 1 + 2n∗

2
, λ; 1 + 2n∗ + p

)
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and c.d.f.

F GNIG

(
z − a∗∗

∣∣∣ u1, . . . , u2n∗+p, r;
n − p

2
, . . . ,

n − 1 + 2n∗

2
, λ; 1 + 2n∗ + p

)
while the generalized variance itself will have as its near-exact p.d.f.

f GNIG

(
− log w − a∗∗

∣∣∣ u1, . . . , u2n∗+p, r;
n − p

2
, . . . ,

n − 1 + 2n∗

2
, λ; 1 + 2n∗ + p

)
1
w

and c.d.f.

1 − F GNIG

(
− log w − a∗∗

∣∣∣ u1, . . . , u2n∗+p, r;
n − p

2
, . . . ,

n − 1 + 2n∗

2
, λ; 1 + 2n∗ + p

)
.

4. Numerical Studies

The aim of this section is to show, through some simple examples, the behavior of different truncations of the
exact distribution and to compare it with the behavior of the near-exact distributions. This will show the usefulness
of these near-exact distributions in terms of precision. Moreover they also end up being simpler and more efficient
in terms of computing time, given the fact that in order to attain a given precision they need to use less terms.

A precise assessment of the closeness of each of the approximations presented to the exact distribution may
be done through the use of the measures

∆1 =
1

2π

∫ +∞

−∞

|ΦZ(t) − Φn(t)| dt and ∆2 =
1

2π

∫ +∞

−∞

∣∣∣∣∣ΦZ(t) − Φn(t)
t

∣∣∣∣∣ dt , (19)

where ΦZ(t) and Φn(t) represent respectively the exact c.f. of Z and the c.f. corresponding to the approximation
being considered. We should note that we have

∆1 ≥ max
z∈R
| fZ(t) − fn(t)| and ∆2 ≥ max

z∈R
|FZ(t) − Fn(t)| (20)

where fZ(t) and FZ(t) represent respectively the exact p.d.f. and c.d.f. of Z and fn(t) and Fn(t) represent the p.d.f.
and c.d.f. that corresponds to the c.f. Φn(t). We should note that for ∆2 it is possible to write for W = exp(−Z) a
similar inequality to the one found in (20).

Further, if in (19) we take n ≡ K and ZK as the r.v. with c.f. ΦK(t), we also have

∆1 −−→K→∞
0 ⇐⇒ ∆2 −−→K→∞

0 ⇐⇒ ZK −−→K→∞

d Z .

4.1. A first example
In this first example we consider the product of three generalized Gamma distributions which are (see App. A

for notation) respectively:

Γ

(
5
6
,

10
67

;
1
5

)
, Γ

(
5
2
,

5
28

; 1
)

and Γ

(
19
5
,

5
17

; 3
)
.

In Table 1 we have the values of ∆1 and ∆2 for different truncations of the exact distribution and also near-exact
distributions corresponding also to different numbers of exact terms kept in the distribution.

Table 1 – Values of ∆1 and ∆2 for different truncations of the exact distribution for Example 1,
and also near-exact distributions with different numbers of exact terms kept.

∆1 ∆2

truncation of exact, K = 10 1.70×10−2 6.84×10−2

truncation of exact, K = 20 8.58×10−3 7.95×10−2

truncation of exact, K = 50 3.45×10−3 1.70×10−2

truncation of exact, K = 100 1.73×10−3 8.58×10−3

truncation of exact, K = 200 8.64×10−4 4.31×10−3

near-exact, n∗ = 0 1.59×10−3 3.17×10−3

near-exact, n∗ = 1 5.76×10−4 1.11×10−3

near-exact, n∗ = 2 2.68×10−4 5.01×10−4

near-exact, n∗ = 5 5.51×10−5 9.92×10−5

near-exact, n∗ = 10 1.12×10−5 1.98×10−5

near-exact, n∗ = 20 1.81×10−6 3.18×10−6

near-exact, n∗ = 50 1.36×10−7 2.38×10−7
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We may see that the near-exact distributions using truncations of the exact distribution with just a few terms,
display a consistently high closeness to the exact distribution even higher than truncations of the exact distribution
based on a few hundred terms. This may be easily seen by comparing for example the values of the measures ∆1
and ∆2 for the near-exact distribution with n∗ = 5, where 6 exact terms are kept, and values of the same measures
for the truncation of the exact with K = 200, where 201 exact terms are kept, with smaller values of ∆1 and ∆2
indicating a better performance, that is, a higher closeness to the exact distribution.

4.2. A second example
In this second example we consider the distribution of the product of only two generalized Gamma r.v.’s, both

with a negative power parameter. The two r.v.’s considered have distributions

Γ

(
6
5
,

5
17

;−1
)

and Γ

(
3

10
,

5
28

;−1
)
.

As it was done in Example 1, in Table 2 we have the values of ∆1 and ∆2 for different truncations of the exact
distribution and also near-exact distributions corresponding also to different numbers of exact terms kept in the
distribution.

Table 2 – Values of ∆1 and ∆2 for different truncations of the exact distribution for Example 2,
and also near-exact distributions with different numbers of exact terms kept.

∆1 ∆2

truncation of exact, K = 5 2.01×10−2 4.36×10−2

truncation of exact, K = 10 1.05×10−2 2.34×10−2

truncation of exact, K = 20 5.35×10−3 1.22×10−2

truncation of exact, K = 50 2.17×10−3 4.98×10−3

near-exact, n∗ = 0 1.27×10−3 1.02×10−3

near-exact, n∗ = 2 8.43×10−5 6.20×10−5

near-exact, n∗ = 5 1.22×10−5 8.72×10−6

near-exact, n∗ = 10 2.10×10−6 1.49×10−6

near-exact, n∗ = 20 3.12×10−7 2.21×10−7

near-exact, n∗ = 50 2.22×10−8 1.58×10−8

Similar conclusions to those drawn for Example 1, may be drawn from the values in Table 2. Once again the
near-exact distributions, using truncations of the exact distribution with just a few terms, display a consistently
much higher closeness to the exact distribution. For example, the near-exact distribution based on just one exact
term kept (n∗ = 0) displays a better performance than the truncation with K = 50, where 51 exact terms are kept.

4.3. Generalized Variance
The aim of this subsection is to compare the performance of the near-exact distributions for the generalized

variance, with that of other available approximations, namely Hoel’s (1937) generalized gamma approximation,
the Normal approximation from Gnanadesikan and Gupta (1970), Steyn (1978) Gamma approximation and the
saddle-point approximation from Butler et al. (1992).

Since the saddle-point approximations only produce approximations for probabilities but do not yield an
explicit distribution, we will not be able to use the measures ∆1 and ∆2. Instead we consider the computed
quantiles for the different distributions. Then, by observing the evolution of these quantiles for different values of
n∗ for the near-exact distributions, we will be able to draw our conclusions.

In order to keep the values in Tables 3-5 within more conformable ranges, we decided to report the quantiles
for the logarithm of the generalized variance, instead of for the generalized variance itself. All cases refer to
situations where Σ = Ip.

From the results in Tables 3-5 we may see that Steyn’s approximation has the poorest performance among
all approximations. This is mainly due to the fact that it does not even yield a legitimate distribution for most
situations. Although the function used to approximate the exact p.d.f. integrates to one, this function yields
negative values for values of the running variable smaller than (p − 1)(p − 2)(p/2(n − p) − 1)/(4 + (p − 1)(p − 2))
and the values it gives for the approximate quantiles illustrate well the dangers we run when using approximations
which may have not been well enough tested.
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Table 3 – Quantiles for the logarithm of the generalized variance from the saddlepoint approximation
and the near-exact distributions, for p = 3 different values of n.

quantile
0.01 0.05 0.95 0.99

p = 3, n = 5
near-exact, n∗ = 0 -3.0521739 -1.2479211 4.5815460 5.3958398
near-exact, n∗ = 5 -3.0587769 -1.2478629 4.5813646 5.4110883
near-exact, n∗ = 10 -3.0588701 -1.2478867 4.5812834 5.4113506
near-exact, n∗ = 20 -3.0588883 -1.2478920 4.5812628 5.4114002
Hoel approx. -3.4832801 -1.5970624 4.5263934 5.3935665
GG approx. -2.2160081 -0.9922239 4.9152242 6.1390085
Steyn approx. -0.7061300 -0.1590762 4.5010365 5.3177167
saddlepoint approx. -3.0288383 -1.2220124 4.5837180 5.4129775

p = 3, n = 15
near-exact, n∗ = 0 5.6811710 6.2416809 8.5663441 8.9760832
near-exact, n∗ = 5 5.6792558 6.2421076 8.5664171 8.9788287
near-exact, n∗ = 10 5.6789338 6.2421355 8.5663906 8.9792881
near-exact, n∗ = 20 5.6788034 6.2421396 8.5663699 8.9794757
near-exact, n∗ = 50 5.6787652 6.2421392 8.5663608 8.9795309
Hoel approx. 5.6429881 6.2144716 8.5685423 8.9863436
GG approx. 5.8043835 6.2868278 8.6156819 9.0981263
Steyn approx. 5.7597470 6.2866272 8.5533775 8.9633926
saddlepoint approx. 5.6792283 6.2425018 8.5664826 8.9796382

p = 3, n = 50
near-exact, n∗ = 0 10.6877414 10.9506393 12.1256135 12.3501266
near-exact, n∗ = 5 10.6875428 10.9506779 12.1256137 12.3503674
near-exact, n∗ = 10 10.6874412 10.9506940 12.1256111 12.3504898
near-exact, n∗ = 20 10.6873498 10.9507056 12.1256062 12.3505997
near-exact, n∗ = 50 10.6872867 10.9507113 12.1256005 12.3506755
Hoel approx. 10.6832619 10.9476895 12.1266612 12.3524838
GG approx. 10.7189618 10.9624745 12.1379585 12.3814712
Steyn approx. 10.6940280 10.9549954 12.1233216 12.3477147
saddlepoint approx. 10.6872896 10.9507300 12.1256085 12.3507054

Hoel’s approximation, although yielding the exact distribution for p = 1 and p = 2, has for p > 5 the problem
of being only defined for values of n larger than (p−1)(p−2)/2 and has a much poorer performance than the near-
exact and the saddle-point approximations. Its performance, although improving for larger sample sizes, worsens
as p increases, exactly as Gnanadesikan and Gupta (1970) noticed. The Normal approximation suggested by these
authors, seems to only start to show a better performance than Hoel’s approximation for values of p larger than
10, as the authors admit in their paper.

The saddle-point approximations have very good performances, but they fall quite short of the near-exact
approximations in situations with very low sample sizes, namely when the number of variables involved gets
larger and larger.

13



Table 4 – Quantiles for the logarithm of the generalized variance from the saddlepoint approximation
and the near-exact distributions, for p = 5 different values of n.

quantile
0.01 0.05 0.95 0.99

p = 5, n = 7
near-exact, n∗ = 0 -0.4801207 1.4091537 8.0218560 9.0409234
near-exact, n∗ = 5 -0.4862904 1.4094239 8.0213513 9.0524435
near-exact, n∗ = 10 -0.4863935 1.4094062 8.0212971 9.0526637
near-exact, n∗ = 20 -0.4864151 1.4094018 8.0212827 9.0527095
Hoel approx. -1.4047362 0.7550038 8.4351485 9.6214754
GG approx. 0.2575208 1.6391169 8.3083541 9.6899502
Steyn approx. 3.3823721 3.5253914 7.3439747 8.3334331
saddlepoint approx. -0.4525408 1.4352117 8.0233086 9.0540166

p = 5, n = 17
near-exact, n∗ = 0 10.6338788 11.3072078 14.2038712 14.7357653
near-exact, n∗ = 5 10.6324108 11.3074896 14.2038788 14.7376994
near-exact, n∗ = 10 10.6321564 11.3075132 14.2038576 14.7380329
near-exact, n∗ = 20 10.6320497 11.3075185 14.2038430 14.7381732
Hoel approx. 10.5078130 11.2159371 14.2405514 14.7963241
GG approx. 10.7494529 11.3501372 14.2497592 14.8504435
Steyn approx. 11.4471621 11.6938959 14.0706173 14.5855840
saddlepoint approx. 10.6322552 11.3077130 14.2039141 14.7382874

p = 5, n = 52
near-exact, n∗ = 0 18.2613579 18.5914905 20.0931899 20.3856881
near-exact, n∗ = 5 18.2612049 18.5915161 20.0931867 20.3858654
near-exact, n∗ = 10 18.2611264 18.5915272 20.0931835 20.3859560
near-exact, n∗ = 20 18.2610555 18.5915356 20.0931792 20.3860379
near-exact, n∗ = 50 18.2610059 18.5915401 20.0931747 20.3860949
Hoel approx. 18.2449403 18.5798109 20.1000075 20.3963598
GG approx. 18.2919839 18.6031546 20.1052371 20.4164078
Steyn approx. 18.3620914 18.6444261 20.0674678 20.3545597
saddlepoint approx. 18.2610030 18.5915507 20.0931794 20.3861165

Table 5 – Quantiles for the logarithm of the generalized variance from the saddlepoint approximation
and the near-exact distributions, for p = 10 different values of n.

quantile
0.01 0.05 0.95 0.99

p = 10, n = 12
near-exact, n∗ = 0 9.2827165 11.2891907 18.8907271 20.1713578
near-exact, n∗ = 5 9.2769860 11.2896137 18.8905533 20.1801930
near-exact, n∗ = 10 9.2768743 11.2896027 18.8905181 20.1803805
near-exact, n∗ = 20 9.2768485 11.2895996 18.8905081 20.1804240
Hoel approx. —— —— —— ——
GG approx. 9.9021214 11.4848224 19.1248326 20.7075336
Steyn approx. 10.2389009 10.3198104 13.9855127 15.2587289
saddlepoint approx. 9.3117863 11.3132303 18.8921875 20.1815137

p = 10, n = 22
near-exact, n∗ = 0 24.4487928 25.2998417 29.0995616 29.8259320
near-exact, n∗ = 5 24.4477940 25.3000060 29.0995401 29.8271375
near-exact, n∗ = 10 24.4476107 25.3000240 29.0995254 29.8273577
near-exact, n∗ = 20 24.4475294 25.3000296 29.0995161 29.8274555
Hoel approx. —— —— —— ——
GG approx. 24.5506559 25.3381685 29.1396473 29.9271599
Steyn approx. 25.5936768 25.6532168 27.7571480 28.4201865
saddlepoint approx. 24.4476093 25.3001215 29.0995533 29.8275278

p = 10, n = 57
near-exact, n∗ = 0 37.7086118 38.1562247 40.2294673 40.6411330
near-exact, n∗ = 5 37.7085088 38.1562393 40.2294630 40.6412470
near-exact, n∗ = 10 37.7084553 38.1562460 40.2294601 40.6413062
near-exact, n∗ = 20 37.7084060 38.1562514 40.2294567 40.6413606
Hoel approx. 37.9279652 38.3926408 40.5405651 40.9667876
GG approx. 37.7378794 38.1674238 40.2409193 40.6704637
Steyn approx. 38.4533016 38.5158801 39.8996139 40.2776343
saddlepoint approx. 37.7083652 38.1562596 40.2294556 40.6414137
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5. Conclusions

The exact distribution of the product of independent generalized Gamma r.v.’s was obtained in a form which
not only embraces the distribution of the product of any r.v.’s whose distributions are particular cases of the
generalized Gamma distribution, as well as any possible combination of such r.v.’s. Moreover, its form enabled
us to be able to develop very well-performing near-exact approximations. Indeed, by considering negative or
symmetric power parameters for the generalized Gamma r.v.’s we will also have the distribution of ratios of
generalized Gamma r.v.’s.

Since simple truncations of the exact distribution, even when a very large number of terms is retained, do not
usually exhibit adequate precision, these near-exact distributions emerge as very good approximations to the exact
distribution. They are particularly suited for the computation of near-exact quantiles, to be used as replacement
of the exact quantiles. Moreover, the near-exact distributions are easier to compute than simple truncations of the
exact distribution, since for a considerably reduced number of terms they provide much better approximations.
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Appendix A

The generalized Gamma distribution

Let X be a r.v. with a Gamma distribution with shape parameter r and rate parameter λ, that is, let X be a r.v.
as in (22) and let

Y = X1/β , for β ∈ R \ {0} .

We will say that the r.v. Y has a generalized Gamma distribution, with shape parameter r, rate parameter λ and
power parameter β and we will denote this fact by

Y ∼ Γ(r, λ; β) . (21)

The r.v. Y has p.d.f

fY (y) =
|β| λr

Γ(r)
exp(−λyβ) yβr−1 , (y > 0)

and its h-th moment is given by

E
(
Yh

)
= E

(
Xh/β

)
=

Γ(r + h/β)
Γ(r)

λ−h/β , (h > −βr) .

This distribution has as particular cases several well-known distributions, which are listed in Table A.1.
A r.v. with a similar distribution was studied by Stacy (1962).
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Table A.1 – Particular cases of the generalized Gamma distribution

parameters values distribution p.d.f.

β > 0, r = 1 Weibull f (x) = βλ e−λxβ xβ−1

β = 2, r = 1 λ = 1/n (n ∈ N) Rayleigh f (x) = 2
n e−

x2
n x

β = 2, r = 1 generalized Rayleigh f (x) = 2λ e−λx2
x

β = 2, r = 3/2 Maxwell-Boltzmann f (x) = 4 λ3/2
√
π

e−λx3/2
x2

β = 2, r = 1/2 Half-Normal f (x) = 2
√

λ
π

e−λx2

β = 2, λ = 1/2, r = k/2 (k ∈ N) Chi f (x) =
(

1
2

)k/2−1 e−
1
2 x2

√
π

xk−1

β < 0, r = 1 Fréchet f (x) = −βλ e−λxβ xβ−1

β < 0, r = n (∈ N) generalized Fréchet f (x) =
−βλn

(n−1)! e−λxβ xnβ−1

β = −1 inverse Gamma f (x) = λr

Γ(r) e−
λ
x x−r−1

β = −1, r = 1/2 Lévy≡Stable(1/2, 1, 2λ, 0) f (x) = λ1/2
√
π

e−
λ
x x−3/2

β = 1 Gamma f (x) = λr

Γ(r) e−λx xr−1

β = 1, λ = 1/2, r = k/2 (k ∈ N) Chi-square f (x) =
( 1

2 )k/2

Γ(k/2) e−
x
2 xk/2−1

β = 1, r = 1 Exponential f (x) = λ e−λx

We should note that the Generalized Gamma distribution has some very interesting relations with other im-
portant distributions.

For α ∈ R \ {0}, any α-power of the absolute value of a Normal random variable with null expected value has
a Generalized Gamma distribution. More precisely,

Y ∼ N(0, σ2) =⇒ |Y |α ∼ Γ

(
1
2
,

1
2σ2 ,

2
α

)
, for α ∈ R \ {0} ,

which for α = 1 yields the Half-Normal distribution (see Table A.1).
Also, there is an important relation between the Generalized Gamma distribution and the Gumbel distribution.

Let Y have a Generalized Gamma distribution as in (21) and consider the r.v.

W = a − log(Y) .

The r.v. W has p.d.f.

fW (w) =
|β|λr

Γ(r)
exp

{
−λ exp (−β(w − a))

}
exp {−βr(w − a)} , w ∈ R, β ∈ R \ {0}; r, λ > 0

which shows that W has a Generalized Gumbel distribution, since for r = 1 and λ = 1 we have

fW (w) = |β| exp
{
− exp {−β(w − a)}

}
exp {−β(w − a)} , w ∈ R

which for β > 0 is the p.d.f. of a Gumbel distribution with c.d.f.

FW (w) = exp
{
− exp {−β(w − a)}

}
, w ∈ R .

16



Appendix B

The complete sufficient statistic for the shape parameter (r) in a Gamma distribution with unit or known
rate parameter and the UMVU estimator of Ψ(r)

Let X1, . . . , Xn be i.i.d. r.v.’s with Xi ∼ Γ(r, λ), that is, let Xi (i = 1, . . . , n) have p.d.f.

fXi (x) =
λr

Γ(r)
exp(−λx) xr−1 ,

where λ is assumed known.
Then the likelihood function is

L(r; x1, x2, . . . , xn) =
λrn

(Γ(r))n exp

−λ n∑
i=1

xi

  n∏
i=1

xi

r−1

and the log-likelihood is

L(r; x1, x2, . . . , xn) = nr log λ − n log Γ(r) − λ
n∑

i=1

xi + (r − 1)
n∑

i=1

log xi ,

with
∂L

∂r
= n log λ − nΨ(r) +

n∑
i=1

log xi ,

where Ψ( · ) is the digamma function. Consequently the MLE of Ψ(r) is given by

Ψ̂(r) =
1
n

n∑
i=1

log Xi + log λ ,

and the MLE of exp (Ψ(r)) is ̂exp (Ψ(r)) = λ

n∏
i=1

X1/n
i .

On the other hand we may write

fXi (x) = exp
(
−λx + (r − 1) log x

) λr

Γ(r)
,

which shows that
∑n

i=1 log Xi is the complete sufficient statistic for r.
Since E(log Xi) = Ψ(r) − log λ, we have E

[
Ψ̂(r)

]
= Ψ(r), so that the MLE, being unbiased and a function of

the complete sufficient statistic is also UMVU.

Appendix C

The shifted Gamma, GIG (Generalized Integer Gamma) and GNIG (Generalized Near-Integer Gamma)
distributions

We will use this Appendix to establish some notation concerning distributions used in the paper, as well as to
give the expressions for the p.d.f.’s (probability density functions) and c.d.f.’s (cumulative distribution functions)
of the GIG (Generalized Integer Gamma) and GNIG (Generalized Near-Integer Gamma) distributions.
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C.1 Unshifted versions

We will say that the r.v. X has a Gamma distribution with rate parameter λ > 0 and shape parameter r > 0, if
its p.d.f. may be written as

fX(x) =
λr

Γ(r)
exp(−λx) xr−1 , (x > 0)

and we will denote this fact by
X ∼ Γ(r, λ) . (22)

We may note that the c.f. (characteristic function) of X is

ΦX(t) = λr (λ − it)−r ,

and that
Γ(1, λ) ≡ Exp(λ) .

Let
X j ∼ Γ(r j, λ j) j = 1, . . . , p

be p independent r.v.’s with Gamma distributions with shape parameters r j ∈ N and rate parameters λ j > 0, with
λ j , λ j′ , for all j, j′ ∈ {1, . . . , p}. We will say then that the r.v.

Y =

p∑
j=1

X j

has a GIG (Generalized Integer Gamma) distribution of depth p, with shape parameters r j and rate parameters λ j,
( j = 1, . . . , p), and we will denote this fact by

Y ∼ GIG(r j, λ j; p) .

The p.d.f. and c.d.f. (cumulative distribution function) of Y are respectively given by (Coelho, 1998)

fY (y) = f GIG(y|r1, . . . , rp; λ1, . . . , λp; p) = C
p∑

j=1

P j(y) exp(−λ j y) ,

(y > 0)

(23)

and

FY (y) = FGIG(y|r1, . . . , r j; λ1, . . . , λp; p) = 1 −C
p∑

j=1

P∗j(y) exp(−λ j y) ,

(y > 0)

(24)

where

C =

p∏
j=1

λ
r j

j , P j(y) =

r j∑
k=1

c j,k yk−1 (25)

and

P∗j(y) =

r j∑
k=1

c j,k (k − 1)!
k−1∑
i=0

yi

i! λk−i
j

with

c j,r j =
1

(r j − 1)!

p∏
i=1
i, j

(λi − λ j)−ri , j = 1, . . . , p , (26)

and

c j,r j−k =
1
k

k∑
i=1

(r j − k + i − 1)!
(r j − k − 1)!

R(i, j, p) c j,r j−(k−i) , (k = 1, . . . , r j − 1; j = 1, . . . , p) (27)
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where

R(i, j, p) =

p∑
k=1
k, j

rk

(
λ j − λk

)−i
(i = 1, . . . , r j − 1) . (28)

The GNIG (Generalized Near-Integer Gamma) distribution of depth p + 1 (Coelho, 2004) is the distribution
of the r.v.

Z = Y1 + Y2

where Y1 and Y2 are independent, Y1 having a GIG distribution of depth p and Y2 with a Gamma distributionwith a non-integer shape parameter r and a rate parameter λ , λ j ( j = 1, . . . , p). The p.d.f. (probability density
function) of Z is given by

f GNIG(z|r1, . . . , rp, r; λ1, . . . , λp, λ; p + 1) =

Cλr
p∑

j=1

exp(−λ jz)
r j∑

k=1

{
c j,k

Γ(k)
Γ(k+r)

zk+r−1
1F1(r, k+r,−(λ−λ j)z)

}
, (z > 0)

(29)

and the c.d.f. (cumulative distribution function) given by

FGNIG(z|r1, ... , rp, r; λ1, ... , λp, λ; p+1) =
λr zr

Γ(r+1) 1F1(r, r+1,−λz)

−Cλr
p∑

j=1

exp(−λ jz)
r j∑

k=1

c∗j,k

k−1∑
i=0

zr+iλi
j

Γ(r+1+i) 1F1(r, r+1+i,−(λ − λ j)z) (z > 0)
(30)

where C is still given by (25) and

c∗j,k =
c j,k

λk
j

Γ(k)

with c j,k given by (26) through (28) above. In the above expressions 1F1(a, b; z) is the Kummer confluent hyper-
geometric function. This function has usually very good convergence properties and is nowadays easily handled
by a number of software packages.

C.2 Shifted versions

We will say that the r.v. X∗ = X+a has a shifted Gamma distribution (or a three parameter Gamma distribution)
if the r.v. X has the Gamma distribution in (22). The r.v. X∗ has p.d.f.

fX∗ (x) =
λr

Γ(r)
exp (−λ(x − a)) (x − a)r−1 , (x > a)

and c.f.

ΦX∗ (t) = E
(
exp {it(X + a)}

)
= exp (ita) E

(
exp (itX)

)
= exp (ita) ΦX(t) = exp (ita) λr (λ − it)−r .

We will denote the fact that X∗ has this shifted Gamma distribution by

X∗ ∼ Γ(r, λ | a) ,

with
Γ(1, λ | a) ≡ Exp(λ | a) .

Let
X∗j ∼ Γ(r j, λ j | a j) j = 1, . . . , p

be p independent r.v.’s with shifted Gamma distributions with shape parameters r j ∈ N and rate parameters λ j > 0,
with λ j , λ j′ , for all j, j′ ∈ {1, . . . , p}, and let

Y∗ =

p∑
j=1

X∗j .
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Then the c.f. of Y∗ will be, for a =
p∑

j=1
a j,

ΦY∗ (y) =

p∏
j=1

exp(ita j) λ
r j

j (λ j − it)−r j = exp(ita)
p∏

j=1

λ
r j

j (λ j − it)−r j ,

so that the distribution of Y∗ will be what we call a shifted GIG distribution of depth p, with shape parameters r j,

rate parameters λ j, ( j = 1, . . . , p) and shift parameter a =
p∑

j=1
a j, and we will denote this fact by

Y∗ ∼ GIG(r j, λ j; p | a) .

The p.d.f. and c.d.f. of Y∗ are respectively given by

fY∗ (y) = f GIG(y − a | r1, . . . , rp; λ1, . . . , λp; p)

and
FY∗ (y) = FGIG(y − a | r1, . . . , rp; λ1, . . . , λp; p) .

If Y∗1 and Y∗2 are two independent r.v.’s, with

Y∗1 ∼ GIG(r j, λ j; p | a1) and Y∗2 ∼ Γ(r, λ | a2) ,

then the distribution of
Z∗ = Y∗1 + Y∗2

will be what we call a shifted GNIG distribution of depth p + 1, with rate parameters λ1, . . . , λp and λ, shape
parameters r1, . . . , rp and r and shift parameter a = a1 + a2. The r.v. Z∗ will have c.f.

ΦZ∗ (t) = exp {it(a1 + a2)} λr (λ − it)−r
p∏

j=1

λ
r j

j (λ j − it)−r j ,

and p.d.f. and c.d.f. respectively given by

fZ∗ (z) = f GNIG(z − a | r1, . . . , rp, r; λ1, . . . , λp, λ; p + 1)

and
FZ∗ (z) = FGNIG(z − a | r1, . . . , rp, r; λ1, . . . , λp, λ; p + 1) .

20



References

Amoroso, L. (1925). Ricerche intorno alla curva dei redditi. Ann. Mat. Pura Appl., Ser. 4, 21:123-159.

Bagai, O. P. (1965). The Distribution of the Generalized Variance. The Annals of Mathematical Statistics
36:120-130.

Bartlett, M. S., Kendall, D. G. (1946). The statistical analysis of variance heterogeneity and the logarithmic
transformation. J. Roy. Stat. Soc. Suppl. 8:128-138.

Bondesson, L. (1978). On infinite divisibility of powers of a gamma variable. Scand. Actuar. J. 61:48-61.

Butler, R. W., Huzurbazar, S., Booth, J. G. (1992). Saddlepoint approximations for the generalized variance and
Wilks’ statistic. Biometrka 79:157-169.

Carter, B. D., Springer, M. D. (1977). The Distribution of Products, Quotients and Powers of Independent
H-Function Variates. SIAM Journal on Applied Mathematics 33:542-558.

Cetinkaya, C., Kanodia, V., Knightly, E. W. (2001). Scalable services via egress admission control. IEEE
Transactions on Multimedia 3:69-81.

Coelho, C. A. (1998). The Generalized Integer Gamma distribution – a basis for distributions in Multivariate
Statistics. J. Multivariate Analysis 64:86-102.

Coelho, C. A. (2004). The Generalized Near-Integer Gamma distribution: a basis for ’near-exact’ approxima-
tions to the distributions of statistics which are the product of an odd number of independent Beta random
variables. Journal of Multivariate analysis 89:191-218.

D’Addario, R. (1932). Intorno alla curva dei redditi di Amoroso. Riv. Italiana Statist. Econ. Fnanza, anno 4,
No. 1.

Fox, C. (1961). The G and H-functions as symmetrical Fourier kernels. Transactions of the American Mathe-
matical Society 98:395-429.

Gnanadesikan, M., Gupta, S. S. (1970). A selection procedure for multivariate Normal distributions in terms of
the generalized variances. Technometrics 12:103-117.

Gordon, L. (1989). Bounds for the distribution of the generalized variance. Annals of Statistics 17:1684-1692.

Hao, J., Krishnamoorty, K. (2001). Inferences on a Normal covariance matrix and generalized variance with
monotone missing data. Journal of Multivariate Analysis 78:62-82.

Hoel, P. G. (1937). A significance test for component analysis. Annals of Mathematical Statistics 8:149-158.

Kaluska, M., Krysicki, W. (1997). On decompositions of some random variables. Metrika 46:159-175.

Lang, S. (1999). Complex Analysis, 4th ed., Springer-Verlag, New York.

Loiaciga, H. A., Leipnik, R. B. (1999). Analysis of extreme hydrologic events with Gumbel distributions:
marginal and additive cases. Stochastic Environmental Research and Risk Environment 13:251-259.

Lomnicki, Z. A. (1967). On the distribution of products of random variables. Journal of the Royal Statistical
Society, Ser. B 29:51-524.

Lu,I.-L., Richards, D. (1993). Random discriminants. The Annals of Statistics 21:1982-2000.

Malik, H. J. (1968). Exact distribution of the product of independent generalized Gamma variables with the
same shape parameter. Annals of Mathematical Statistics 39:1751-1752.

Mathai, A. M. (1972a). Products and ratios of generalized Gamma variates. Skandinavisk Aktuarietidskrift,
1972:193-198.

21



Mathai, A. M. (1972b). The exact non-central distribution of the generalized variance. Annals of the Institute of
Mathematical Statistics 24:53-65.

Nadarajah, S. (2005). On the product and ratio of Laplace and Bessel random variables. Journal of Applied
Mathematics 4:393-402.

Nadarajah, S. (2007). Linear combination of Gumbel random variables. Stochastic Envirnmental Research and
Rik Assessment 21:283-286.

Nadarajah, S., Kotz, S. (2008). Comments on ”Scalable services via egress admission control”. IEEE Transac-
tions on Multimedia 10:160-161.

Podolski, H. (1972). The distribution of a product of n independent random variables with generalized Gamma
distribution. Demonstratio Mathematica IV:119-123.

Regier, M. H. (1976). Simplified selection procedures for multivariate Normal populations. Technometrics
18:483-489.

Salo, J., El-Sallabi, H. M., Vainikainen, P. (2006). The distribution of the product of independent Rayleigh
random variables. IEEE Transactions on Antennas and Propagation 54:639-643.

Springer, M. D., Thompson, W. E. (1970). The Distribution of Products of Beta, Gamma and Gaussian Random
Variables. SIAM Journal on Applied Mathematics 18:721-737.

Stacy, E. W. (1962). A generalization of the Gamma distribution. Annals of Mathematical Statistics 33:1187-
1192.

Steyn, H. S. (1978). On approximations for the central and noncentral distribution of the generalized variance.
Journal of the American Statistical Association 73:670-675.

Sugiura, N., Nagao, H. (1971). Asymptotic expansion of the distribution of the generalized variance for noncen-
tral Wishart matrix, when Ω = O(n). Annals of the Institute of Statistical Mathematics 23:469-475.

Wells, W. T., Anderson, R. L., Cell, J. W. (1962). The Distribution of the Product of Two Central or Non-Central
Chi-Square Variates. The Annals of Mathematical Statistics 33: 1016-1020.

22


	Introduction
	A different look at the distribution of the product of independent generalized Gamma r.v.'s
	The ``simple" case
	The ``multiple" case
	The case of all equal power parameters
	The case of all j=1 and all rj=r
	The case of all j=1 and all rj differing by an integer quantity
	The exact distribution of the generalized variance

	Near-exact distributions
	Numerical Studies
	A first example
	A second example
	Generalized Variance

	Conclusions

