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Abstract

We study optimal control problems of systems describing the flow of incompressible shear-
thinning fluids. Taking advantage of regularity properties of the flows, we derive necessary
optimality conditions under a restriction on the optimal control.
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1 Introduction

This paper deals with optimal control problems associated with a viscous, incompressible fluid
described by the following partial differential equations that generalize the Navier-Stokes system

−∇ · (τ(Dy)) + y · ∇y +∇π = u in Ω,

∇ · y = 0 in Ω,

y = 0 on Γ,

(1.1)

where y is the velocity field, π is the pressure, τ is the extra stress tensor, Dy = 1
2

(
∇y + (∇y)T

)
is the symmetric part of the velocity gradient ∇y, u is the given body force and Ω ⊂ Rn (n = 2
or n = 3) is a bounded domain with boundary Γ. We assume that τ : S −→ S is a classical power
law stress tensor of the form

τR(η) = 2ν
(
1 + |η|2

)α−2
2 η or τL(η) = 2ν (1 + |η|)α−2

η

where ν and α are positive constants. (Here S consists of all symetric n×n-matrices.) We recall
that a fluid is called shear-thickening if α > 2 and shear-thinning if 1 < α < 2. For the special
case τ(η) = 2νη (α = 2), we recover the Navier-Stokes equation with viscosity coeficient ν > 0.

The paper is concerned with the following optimal control problem

Minimize J(u, y) = 1
2

∫
Ω

|y − yd|2 dx+ λ
2

∫
Ω

|u|2 dx

Subject to (u, y) ∈ Uad ×W 1,α
0 (Ω) satisfies (1.1) for some π ∈ Lα(Ω)

where yd is some desired velocity field, λ is a positive constant, the set of admissible controls
Uad is a nonempty convex closed subset of Lq(Ω) with q > n and 3n

n+2 ≤ α < 2. Although
the analysis of several results can be more general, in order to simplify the redaction, we will
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assume that Uad ⊂ {v ∈ Lq(Ω) | ‖v‖q ≤ U} for some U > 0. Throughout the paper, the optimal
control problem corresponding to τR will be denoted by (PR) and the optimal control problem
corresponding to τL will be denoted by (PL).

The partial differential equations describing the considered class of fluids were first proposed in
[8], [9] and [10] as a modification of the Navier-Stokes system, and were similarly suggested in
[11]. Existence of weak solutions in W 1,α

0 (Ω) was proved by both authors using compactness
arguments and the theory of monotone operators for α ≥ 3n

n+2 .

This basic regularity may prove insufficient for deriving the necessary optimality conditions for
control problems governed by these equations, especially when considering shear-thinning fluids.
As a consequence of the combined effect of the convective term and the nonlinear stress tensor,
the lack of regularity of the state variable creates some difficulties in connection with the local
Lipschitz continuity (and thus with the Gâteaux differentiability) in adequate functional spaces of
the control-to-state mapping and with the natural setting for the associated linearized equation
and the adjoint state equation. These issues were overcome in the case of shear-thickening
fluids treated in [2] and [4] by using a suitable functional setting involving weighted Sobolev
spaces. The optimality conditions are obtained in both two-dimensional and three-dimensional
cases, without assuming any further regularity on the state and without restraining the set of
admissible controls. The only constraint concerns the optimal control.

The case of shear-thinning fluids is more delicate and the techniques in [2] and [4] do not apply.
In [3], these difficulties were handled by introducing a family of smooth approximate control
problems falling into the case α = 2 and whose solutions converge towards a solution of the
original problem. The properties of the approximate control-to-state mapping were carefully
studied and the approximate optimality conditions established. Under a constraint concerning
the size of the optimal control, the same that guarantees uniqueness of the corresponding state,
the optimality conditions for the original problem were then established by passing to the limit.
As expected, because of the reduced regularity of the corresponding state variable, the adjoint
equation is to be understood in the sense of distribution and uniqueness of the adjoint state is
not guaranteed.

These issues can be more easily managed if the velocity gradient is bounded. Nevertheless, despite
the fact that system (1.1) was widely studied, higher global regularity of solutions is difficult to
obtain in general and there are only few such results known up to nowadays. In the case of
steady shear-thinning fluids and C1 extra stress tensors, the most significant global regularity
results up to the boundary have been obtained in [12] in the two-dimensional framework enabling
the derivation of some optimality conditions in [14], though restricting all the admissible set of
controls to guarantee uniqueness of the corresponding solution and differentiability of the control-
to-state mapping.

In the present work we follow [1], where both two-dimensional and three-dimensional cases for C1

and Lipschitz continuous extra stress tensors were treated, and identify a condition under which
uniqueness and regularity of weak solutions are both guaranteed. Observing that the optimality
conditions established in [3] apply to problem (PR), we take advantage of the regularity results
in [1] to prove that the corresponding adjoint equation can be interpreted in the weak sense and
that the adjoint state is unique and more regular. This result is obtained under a restriction
involving the Lq-norm of the optimal control, similar to the one imposed in [3].

Concerning problem (PL), besides the difficulties induced by the nonlinearity of the extra stress
tensor and the convective term, the non-regularity of the model has to be managed. Since τL is
not differentiable at the origin, the optimality conditions of [3] cannot be used. To overcome this
difficulty, we introduce a family of regularized problems that fall into the case of C1 extra stress
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tensors. By exploiting some results of existence, uniqueness and regularity of solutions for the
corresponding regularized state equation already established in [1], we derive the corresponding
optimality systems and the optimality conditions for (PL) are obtained by passing to the limit. A
similar regularization approach was successfully used in [5] to study optimal control problems of
systems governed by quasiliear elliptic equations with non differentiable coefficients at the origin
and more recently in [6], for the treatment of a problem governed by the Bingham nonlinear
mixed variational inequality.

The plan is as follows. Notation and some preliminary results are given in Section 2. Section 3 is
devoted to existence, uniqueness and regularity results for the state equation and to the derivation
of corresponding estimates. Section 4 deals with existence and uniqueness of weak solutions for
the adjoint equation. In Section 5, we state and prove the necessary optimality conditions for
problem (PR). Section 6 is dedicated to the treatment of the control problem (PL): we introduce
a family of regularized control problems and derive the corresponding optimality conditions.
Next, we establish some convergence results and by passing to the limit, we prove the optimality
conditions for (PL).

2 Notation and auxiliary algebraic lemmas

For η, ζ ∈ Rn×n, we define the scalar product and the corresponding norm by

η : ζ =

n∑
i,j=1

ηijζij and |η| = (η : η)
1
2 .

For η ∈ Rn×n×n×n and ζ ∈ Rn×n, the scalar product η : ζ ∈ Rn×n is defined by

(η : ζ)ij =

n∑
k,`=1

ηijk`ζk` i, j = 1, · · · , n,

and we can verify that for η ∈ Rn×n×n×n, ζ, ξ ∈ Rn×n, we have

(η : ζ) : ξ = (ξ : η) : ζ,

where ξ : η ∈ Rn×n is given by (ξ : η)ij =

n∑
k,`=1

ηk`ijξk`.

As already referred in the introduction, the extra stress tensor takes the regular form τR(η) =

2ν
(
1 + |η|2

)α−2
2 η or the Lipschitz continuous form τL(η) = 2ν (1 + |η|)α−2

η. Standard argu-
ments show that τR ∈ C1 (S) and τL ∈ C1 (S \ {0}) with

∂(τR(η))k`
∂ηij

= 2ν(α− 2)
(
1 + |η|2

)α−4
2 ηijηk` + 2ν

(
1 + |η|2

)α−2
2 δikδj`, (2.1)

∂(τL(η))k`
∂ηij

= 2ν(α− 2) (1 + |η|)α−3 ηijηk`
|η| + 2ν (1 + |η|)α−2

δikδj`, (2.2)

where (δij)ij denotes the Kronecker tensor. To overcome the singularity of the derivative of τL
at the origin, we introduce the regularized stress tensor τL,ε : S −→ S given by

τL,ε(η) = 2ν (1 + rε (|η|))α−2
η 0 ≤ ε < 1,
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where the regularizing function rε is given by rε(s) =
√
ε2 + s2. It is obvious that τL,0 ≡ τL.

Moreover, τL,ε ∈ C1 (S) for ε > 0 and

∂(τL,ε(η))k`
∂ηij

= 2ν(α− 2) (1 + rε (|η|))α−3 ηijηk`
rε(|η|) + 2ν (1 + rε (|η|))α−2

δikδj`. (2.3)

Throughout the paper we set

τ ′(η) : ζ : ξ =

n∑
i,j=1

n∑
k,`=1

∂τk`(η)
∂ηij

ζk`ξij η, ζ, ξ ∈ S (η 6= 0 if τ = τL).

The next result deals with some useful properties of the tensors τR, τL and τL,ε.

Lemma 2.1 Let τ = τR or τ = τL,ε for 0 ≤ ε < 1. Then

For all i, j, k, ` = 1, · · · , n∣∣∣∂τk`(η)
∂ηij

∣∣∣ ≤ 2ν (3− α)
(
1 + |η|2

)α−2
2 for all η ∈ S (η 6= 0 if ε = 0)

and

τ ′(η) : ζ : ζ ≥ ν(α− 1)
(
1 + |η|2

)α−2
2 |ζ|2 for all η, ζ ∈ S (η 6= 0 if ε = 0).

Proof. Consider first τ = τR. Standard calculations together with (2.1) and the fact that
1 < α < 2 show that

1
2ν

∣∣∣∂τk`(η)
∂ηij

∣∣∣ ≤ (2− α)
(
1 + |η|2

)α−4
2 |η|2 +

(
1 + |η|2

)α−2
2

=
(
1 + |η|2

)α−4
2
(
(3− α)|η|2 + 1

)
≤ (3− α)

(
1 + |η|2

)α−2
2

for all η ∈ S. Moreover,

1
2ν τ
′(η) : ζ : ζ = (α− 2)

(
1 + |η|2

)α−4
2 (η : ζ)2 +

(
1 + |η|2

)α−2
2 |ζ|2

≥ (α− 2)
(
1 + |η|2

)α−4
2 |η|2|ζ|2 +

(
1 + |η|2

)α−2
2 |ζ|2

=
(
1 + |η|2

)α−4
2
(
(α− 1)|η|2 + 1

)
|ζ|2

≥ (α− 1)
(
1 + |η|2

)α−2
2 |ζ|2

which gives the result. Similarly, considering τ = τL,ε for ε ∈ [0, 1[ and taking into account (2.2)
and (2.3), we deduce that

1
2ν

∣∣∣∂τk`(η)
∂ηij

∣∣∣ ≤ (2− α) (1 + rε (|η|))α−3 |η|2
rε(|η|) + (1 + rε (|η|))α−2

≤ (2− α) (1 + rε (|η|))α−3 |η|+ (1 + rε (|η|))α−2

≤ (3− α) (1 + rε (|η|))α−2

≤ (3− α) (1 + |η|)α−2 ≤ (3− α)
(
1 + |η|2

)α−2
2

for all η ∈ S (η 6= 0 if ε = 0, i.e. if τ = τL). Moreover, since

(η:ζ)2

rε(|η|) ≤
|η|2|ζ|2
rε(|η|) ≤

|η|
rε(|η|)rε (|η|) |ζ|2 ≤ rε (|η|) |ζ|2
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we deduce that

1
2ν τ
′(η) : ζ : ζ = (α− 2) (1 + rε (|η|))α−3 (η:ζ)2

rε(|η|) + (1 + rε (|η|))α−2 |ζ|2

≥ (α− 1) (1 + rε (|η|))α−2 |ζ|2

≥ (α− 1)2
α−2
2

(
1 + (rε (|η|))2

)α−2
2 |ζ|2

≥ (α− 1)2
α−2
2

(
1 + ε2

)α−2
2
(
1 + |η|2

)α−2
2 |ζ|2

≥ (α− 1)2α−2
(
1 + |η|2

)α−2
2 |ζ|2

≥ α−1
2

(
1 + |η|2

)α−2
2 |ζ|2

and the claimed result is proven. �

As a consequence of the previous lemma, we have the following standard continuity and mono-
tonicity properties for τR, τL and τL,ε.

Lemma 2.2 Let τ = τR or τ = τL,ε for 0 ≤ ε < 1. Then,

|τ(η)| ≤ 2ν
(
1 + |η|2

)α−2
2 |η| for all η ∈ S,

(τ(η)− τ(ζ)) : (η − ζ) ≥ ν(α− 1)
(
1 + |η|2 + |ζ|2

)α−2
2 |η − ζ|2 for all η, ζ ∈ S.

Proof. The continuity condition is direct for τ = τR. For τ = τL,ε with ε ∈ [0, 1[, we easily see
that

|τL,ε(η)| ≤ |τL(η)| ≤ |τR(η)| .
The monotonicity condition is obviously satisfied for η = ζ. If η 6= ζ, by taking into account
Lemma 2.1, we obtain

(τ(η)− τ(ζ)) : (η − ζ) =

∫ 1

0

τ ′(sη + (1− s)ζ) ds : (η − ζ) : (η − ζ)

≥ ν(α− 1)

∫ 1

0

(
1 + |sη + (1− s)ζ|2

)α−2
2 ds |η − ζ|2

≥ ν(α− 1)

∫ 1

0

(
1 + s|η|2 + (1− s)|ζ|2

)α−2
2 ds |η − ζ|2

≥ ν(α− 1)
(
1 + |η|2 + |ζ|2

)α−2
2 |η − ζ|2

which gives the claimed result. �

Throughout the paper Ω is a bounded domain in Rn (n = 2 or n = 3). The boundary of Ω is
denoted by Γ and is of class C2. The space of infinitely differentiable functions with compact
support in Ω will be denoted by D(Ω). The standard Sobolev spaces are denoted by W k,α(Ω)
(k ∈ N and 1 < α <∞), and their norms by ‖ · ‖k,α. We set W 0,α(Ω) ≡ Lα(Ω), ‖ · ‖Lα ≡ ‖ · ‖α,
Lα0 (Ω) =

{
v ∈ Lα(Ω) |

∫
Ω
v(x) dx = 0

}
and α′ = α

α−1 (the dual exponent to α). We will also use
the following notation

(u, v) =

∫
Ω

u(x) · v(x) dx, u ∈ Lα(Ω)n, v ∈ Lα′(Ω)n,

(η, ζ) =

∫
Ω

η(x) : ζ(x) dx, η ∈ Lα(Ω)n×n, ζ ∈ Lα′(Ω)n×n.
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Since many of the quantities occuring in the paper are vector-valued functions, the notation will
be abreged for the sake of brevity and we will omit the space dimension n in the function space
notation. (The meaning should be clear from the context.)

In order to eliminate the pressure in the weak formulation of the state equation, we will work in
divergence-free spaces. Consider

V = {ϕ ∈ D(Ω) | ∇ · ϕ = 0 in Ω} ,

and denote by Vα the closure of V in the Lα-norm of gradients, i.e.

Vα =
{
ϕ ∈W 1,α

0 (Ω) | ∇ · ϕ = 0 in Ω
}
.

3 State equation

This section is devoted to existence, uniqueness and regularity results for the state equation and
to derivation of some estimates useful for the subsequent analysis.

As already referred in the introduction, existence of weak solutions was proved by Ladyzhenskaya
and Lions for α ≥ 3n

n+2 . The restriction on the exponent α ensures that the convective term

belongs to L1 when considering test functions in Vα. Multiplying equation (1.1) by test functions
ϕ ∈ Vα and integrating, we obtain the following weak formulation.

Definition 3.1 Let u be in L2(Ω). A function y ∈ Vα is a weak solution of of the state equation
(1.1) if

(τ (Dy) , Dϕ) + b (y, y, ϕ) = (u, ϕ) for all ϕ ∈ Vα,

where b is the trilinear form defined by b(w, y, ϕ) = (w · ∇y, ϕ).

We recall that, having a solution satisfying the previous formulation, it is standard to construct
the corresponding pressure π ∈ Lα0 (Ω) such that

(τ (Dy) , Dϕ) + b (y, y, ϕ)− (π,∇ · y, ϕ) = (u, ϕ) for all ϕ ∈W 1,α
0 (Ω).

We will involve the pressure only in the statement of our results but not in the proofs, since it
can always be reconstructed uniquely.

Besides existence of a weak solution for the state equation, results on uniqueness and regularity
of such a solution are important in the treatment of control problems governed by shear-thinning
fluids. In the present paper we follow [1], where both two-dimensional and three-dimensional
cases for C1 and Lipschitz continuous extra stress tensors were considered, and identify a condi-
tion under which uniqueness and regularity of weak solutions are both guaranteed.

Theorem 3.2 Let u ∈ Lq(Ω) with q > n and let τ = τR with 3n
n+2 ≤ α < 2. Then problem (1.1)

admits at least a weak solution yu ∈ Vα and the following estimate holds

‖Dyu‖αα ≤ C̃
(
‖u‖q
ν

)α′
+ |Ω|, (3.1)

where C̃ ≡ C̃(n, α, q,Ω). Moreover, there exists a positive constant κ depending only on n, α, q
and Ω such that if

κ

(
‖u‖q
ν +

(
1 +

‖u‖q
ν

) 2(2−α)
α−1 ‖u‖q

ν2

)
< 1, (3.2)
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then this solution is unique, belongs to W 2,q(Ω) and the following estimate holds

‖yu‖2,q ≤ κ̃
‖u‖q
ν (3.3)

with κ̃ ≡ κ̃(n, q,Ω).

Proof. By taking into account Lemma 2.1 and using standard arguments, we may prove existence
of a weak solution yu ∈ Vα of equation (1.1) (see, e.g., [13]) and the following estimate holds

‖Dyu‖αα ≤ C
(
‖u‖2
ν

)α′
+ |Ω|

with C ≡ C(n, α,Ω) (see, e.g., Theorem 3.2 in [3]). Therefore,

‖Dyu‖αα ≤ C
(
|Ω|

1
2−

1
q
‖u‖q
ν

)α′
+ |Ω|

and estimate (3.1) is proven. Moreover, due to Theorem 3.3 in [3] there exists a positive constant
κ1 depending only on n, α and Ω such that if

κ1

(
1 + ‖u‖2

ν

) 2(2−α)
α−1 ‖u‖2

ν2 < 1, (3.4)

then problem (1.1) admits a unique weak solution. On the other hand, due to Theorem 2.1 in
[1], there exists a positive constant κ2 depending only on n, q and Ω such that if

κ2

(
‖u‖q
ν +

‖u‖q
ν2

)
< 1, (3.5)

then problem (1.1) admits a strong solution yu ∈W 2,q(Ω) and (3.3) holds. Setting

κ = max

(
κ1|Ω|

1
2−

1
q

(
1 + |Ω|

1
2−

1
q

) 2(2−α)
α−1

, κ2

)
, (3.6)

we can see that condition (3.2) implies (3.4) and (3.5) and the claimed result is proven. �

Theorem 3.3 Let u ∈ Lq(Ω) with q > n and let τ = τL with 3n
n+2 ≤ α < 2. Then problem

(1.1) admits at least a weak solution yu ∈ Vα and estimate (3.1) holds. Moreover, if u satisfies
condition (3.2), then this solution is unique, belongs to W 2,q(Ω) and satisfies estimate (3.3).

Proof. The proof follows exactly the same steps as in Theorem 3.2, using Theorem 2.2 instead
of using Theorem 2.1 in [1]. �

Theorem 3.4 Let u ∈ Lq(Ω) with q > n and let τ = τL,ε with 3n
n+2 ≤ α < 2 and 0 < ε < 1.

Then problem (1.1) admits at least a weak solution yεu ∈ Vα and the following estimate holds

‖Dyεu‖
α
α ≤ C̃

(
‖u‖q
ν

)α′
+ |Ω|, (3.7)

where C̃ ≡ C̃(n, α, q,Ω) independent of ε. Moreover, if u satisfies condition (3.2), then this
solution is unique, belongs to W 2,q(Ω) and the following estimate holds

‖yεu‖2,q ≤ κ̃
‖u‖q
ν (3.8)

with κ̃ ≡ κ̃(n, q,Ω) independent of ε.



8

Proof. The proof follows exactly the same steps as in Theorem 3.2, using Theorem 4.1 instead
of using Theorem 2.1 in [1]. �

Remark 3.5 i) Condition (3.2) is fulfilled if the term
‖u‖q
ν is ”small enough”, and can be inter-

preted either as a constraint on the size of ‖u‖q (small body force u) or as a restriction on the
viscosity parameter ν (large viscosity parameter ν).

ii) Due to compactness results on Sobolev spaces, we deduce that a W 2,q solution belongs to
C1,δ(Ω) for every δ < 1− n

q . Moreover, by taking into account (3.3) and (3.8), we have

‖yu‖C1,δ(Ω) ≤ κ̄
‖u‖q
ν , (3.9)

‖yεu‖C1,δ(Ω) ≤ κ̄
‖u‖q
ν , (3.10)

where κ̄ ≡ κ̄(n, q,Ω) is a positive constant independent of ε.

4 Adjoint equation

We next investigate the following linear system
−∇ ·

(
τ ′R (Dyu)

T
: Dp

)
+ (∇yu)T p− yu · ∇p+∇π = w in Ω,

∇ · p = 0 in Ω,

p = 0 on Γ,

(4.1)

where u ∈ Lq(Ω) with q > n, yu ∈ Vα is a corresponding solution of (1.1) and w ∈ L2(Ω).
Assuming that u satisfies condition (3.2), we deduce that yu ∈W 2,q(Ω) and we can consider the
weak formulation{

Find p ∈ V2 such that

(τ ′R (Dyu) : Dϕ,Dp) + b (ϕ, yu, p) + b (yu, ϕ, p) = (w,ϕ) for all ϕ ∈ V2.
(4.2)

Proposition 4.1 Assume that 3n
n+2 ≤ α < 2. Let u ∈ Lq(Ω) (with q > n) satisfying (3.2), yu be

the corresponding solution of (1.1) and w ∈ L2(Ω). There exists a positive constant κ̂ depending
only on n, α, q and Ω such that, if

κ̂
(

1 +
‖u‖q
ν

)2−α ‖u‖q
ν2 < 1 (4.3)

then problem (4.1) admits a unique weak solution puw in V2. Moreover, the following estimate
holds

‖Dpuw‖2 ≤ L
(
‖u‖q
ν

)
‖w‖2

with L(t) = Ĉ(1+t)2−α

ν−κ̂(1+t)2−αt and Ĉ ≡ Ĉ(n, α, q,Ω).

Proof. Consider B : V2 × V2 −→ R the bilinear form defined by

B(p1, p2) = (τ ′R (Dyu) : Dp2, Dp1) + b (p1, yu, p2) + b (yu, p1, p2) .

Recalling that
b (yu, p, p) = 0
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we get
B(p, p) = (τ ′R (Dyu) : Dp,Dp) + b (p, yu, p) + b (yu, p, p)

= (τ ′R (Dyu) : Dp,Dp) + b (p, yu, p)

for every p ∈ V2. On the other hand, by using Lemma 2.1 and estimate (3.9) , we deduce that

(τ ′R (Dyu) : Dp,Dp) ≥ (α− 1)ν

∫
Ω

(1 + |Dyu|)α−2 |Dp|2 dx

≥ (α− 1)ν (1 + ‖Dyu‖∞)
α−2 ‖Dp‖22

≥ (α− 1)ν (1 + κ̄)
α−2

(
1 +

‖u‖q
ν

)α−2

‖Dp‖22.

(4.4)

Moreover, Lemma 1.1, Chapter VIII in [7] together with the Korn inequality and estimate (3.9)
show that

|b (p, yu, p)| ≤ (n−1)
n |Ω|

1
n(n−1) ‖∇yu‖2 ‖∇p‖

2
2 = 2

3
2 (n−1)
n |Ω|

1
n(n−1) ‖Dyu‖2 ‖Dp‖

2
2

≤ C1 ‖Dyu‖∞ ‖Dp‖
2
2 ≤ C1κ̄

‖u‖q
ν ‖Dp‖

2
2 (4.5)

with C1 = 2
3
2 (n−1)
n |Ω|

1
n(n−1)

+ 1
2 . Therefore, (4.4) and (4.5) yield

B(p, p) ≥
(

(α− 1)ν (1 + κ̄)
α−2

(
1 +

‖u‖q
ν

)α−2

− C1κ̄
‖u‖q
ν

)
‖Dp‖22 (4.6)

which shows that B is coercive on V2 if u satisfies (4.3) with κ̂ = C1κ̄
(α−1)(1+κ̄)α−2 . Let us now

prove that B is continuous. Similar arguments show that

1
2ν(3−α) |(τ

′
R (Dyu) : Dp2, Dp1)| ≤

∫
Ω

(1 + |Dyu|)α−2 |Dp1||Dp2| dx

≤
∫

Ω

|Dp1||Dp2| dx ≤ ‖Dp1‖2 ‖Dp2‖2

and

|b (p1, yu, p2) + b (yu, p1, p2)| ≤ 2C1 ‖Dyu‖∞ ‖Dp1‖2 ‖Dp2‖2 ≤ 2C1κ̄
‖u‖q
ν ‖Dp1‖2‖Dp2‖2

≤ 2(α− 1)ν (1 + κ̄)
α−2

(
1 +

‖u‖q
ν

)α−2

‖Dp1‖2 ‖Dp2‖2

≤ 2ν(α− 1) ‖Dp1‖2 ‖Dp2‖2
for every p1, p2 ∈ V2. Therefore,

B (p1, p2) ≤ 4ν ‖Dp1‖2 ‖Dp2‖2 .

The bilinear form B is then continuous and coercive on V2. Applying the Lax-Milgram theorem,
we deduce that problem (4.2) admits a unique solution puw in V2. Taking into account (4.6), the
Hölder, the Poincaré and the Korn inequalities, we obtain(

(α− 1)ν (1 + κ̄)
α−2

(
1 +

‖u‖q
ν

)α−2

− C1κ̄
‖u‖q
ν

)
‖Dpuw‖22 ≤ B (puw, puw) = (w, puw)

≤ ‖w‖2 ‖puw‖2 ≤
n−1√
n
|Ω| 1n ‖w‖2 ‖∇puw‖2 = C2 ‖w‖2 ‖Dpuw‖2

which gives the estimate with Ĉ = C2(1+κ̄)2−α

α−1 where C2 = 2
1
2 (n−1)√

n
|Ω| 1n . �
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Remark 4.2 Let us notice that the regularity of the state is fundamental. As already referred
in the introduction, in the absence of additional regularity on the weak solution, problem (4.1) is
to be understood in the distribution sense{

Find p ∈ Vα such that

(τ ′R (Dyu) : Dϕ,Dp) + b (ϕ, yu, p) + b (yu, ϕ, p) = (w,ϕ) for all ϕ ∈ V

and there is no reason to assume uniqueness of solutions (see, e.g., [3]).

The following proposition deals with very similar results related with the regularized adjoint
equation.

Proposition 4.3 Assume that 3n
n+2 ≤ α < 2 and 0 < ε < 1, let u ∈ Lq(Ω) (with q > n)

satisfying (3.2), yεu be the corresponding solution of (1.1) and let w ∈ L2(Ω). If u satisfies (4.3),
then problem

−∇ ·
(
τ ′L,ε (Dyεu)

T
: Dp

)
+ (∇yεu)T p− yεu · ∇p+∇πε = w in Ω,

∇ · p = 0 in Ω,

p = 0 on Γ,

(4.7)

admits a unique weak solution pεuw in V2. Moreover, the following estimate holds

‖Dpεuw‖2 ≤ L
(
‖u‖q
ν

)
‖w‖2

with L defined as in Proposition 4.1 .

Proof. The proof follows exactly the same steps as in Proposition 4.1, using (3.10) instead of
using (3.9). �

In order to simplify the statements of our main results and the corresponding proofs, we observe
that the restrictions (3.2) and (4.3) on the control variable are very similar and can be summarized
as

(CR)


There exists a positive constant κ∗ depending only on n, α, q and Ω such that

κ∗

(
‖u‖q
ν +

(
1 +

‖u‖q
ν

) 2(2−α)
α−1 ‖u‖q

ν2

)
< 1

by setting κ∗ = max (κ, κ̂). Hence, due to Theorem 3.2, Theorem 3.4, Proposition 4.1 and
Proposition 4.3, we can see that imposing the restriction (CR) on the control guarantees existence,
uniqueness and regularity of the state, as well as existence and uniqueness of the adjoint state.

5 Necessary optimality conditions for (PR)

Let us now formulate our first main result.

Theorem 5.1 Assume that 3n
n+2 ≤ α < 2. Then problem (PR) admits at least one solution

(ū, ȳ). Moreover, if ū satisfies (CR) then there exists p̄ ∈ V2 such that the following conditions
hold 

−∇ · (τR(Dȳ)) + ȳ · ∇ȳ +∇π̄ = ū in Ω,

∇ · ȳ = 0 in Ω,

ȳ = 0 on Γ,
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
−∇ ·

(
τ ′R(Dȳ)T : Dp̄

)
+ (∇ȳ)T p̄− ȳ · ∇p̄+∇π̃ = ȳ − yd in Ω,

∇ · p̄ = 0 in Ω,

p̄ = 0 on Γ,

(5.1)

(p̄+ λū, v − ū) ≥ 0 for all v ∈ Uad. (5.2)

Proof. Taking into account Lemma 2.1, we can see that the assumptions of Theorem 4.1 in [3]
are fulfilled and existence of an optimal solution (ū, ȳ) for (PR) is then guaranteed. Moreover, if
ū satisfies (CR), then it satisfies (3.4) and due to Theorem 5.1 in [3], there exists p̄ ∈ Vα solution
of (5.1) in the distribution sense

(τ ′R (Dȳ) : Dϕ,Dp̄) +
(
(∇ȳ)T p̄− ȳ · ∇p̄, ϕ

)
= (ȳ − yd, ϕ) for all ϕ ∈ V

and such that (5.2) holds. The conclusion follows by observing that due to Proposition 4.1, if ū
satisfies (CR) then p̄ is the unique weak solution of (5.1) in V2. �

6 Necessary optimality conditions for (PL)

In order to obtain necessary optimality conditions for (PL) stated in Theorem 6.1 below, we
introduce a family of problems (PL,ε)ε whose solutions converge towards a solution of (PL). We
derive the corresponding optimality conditions in Section 6.1, and we pass to the limit in these
conditions in Section 6.2.

Theorem 6.1 Assume that 3n
n+2 ≤ α < 2. Then problem (PL) admits at least one solution

(ū, ȳ). Moreover, if ū satisfies (CR) then there exists p̄ ∈ V2 such that the following conditions
hold 

−∇ · (τL(Dȳ)) + ȳ · ∇ȳ +∇π̄ = ū in Ω,

∇ · ȳ = 0 in Ω,

ȳ = 0 on Γ,

−∇ ·
(
τ ′L(Dȳ)T : Dp̄

)
+ (∇ȳ)T p̄− ȳ · ∇p̄+∇π̃ = ȳ − yd in {x ∈ Ω | |Dȳ(x)| > 0}, (6.1)

(p̄+ λū, v − ū) ≥ 0 for all v ∈ Uad. (6.2)

6.1 Regularized control problem

Taking into account Lemma 2.1, we can see that the arguments in the proof of Theorem 4.1 in
[3] can be applied and existence of an optimal solution for (PL) is then guaranteed. Let (ū, ȳ) be
such a solution and assume that ū satisfies (CR) and 0 < ε < 1. Introduce the cost functional

I(u, y) = J(u, y) + 1
2

∫
Ω

|u− ū|2 dx

and the control problem

(PL,ε)



minimize I(u, yε)

subject to (u, yε) ∈ Uad × Vα satisfies
−∇ · (τL,ε(Dy)) + y · ∇y +∇πε = u in Ω,

∇ · y = 0 in Ω,

y = 0 on Γ,

for some πε ∈ Lα0 (Ω).

(6.3)
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The main result of this section deals with the necessary optimality conditions for the regularized
problem (PL,ε).

Theorem 6.2 Assume that 3n
n+2 ≤ α < 2. For each 0 < ε < 1, there exists at least one solution

(ūε, ȳε) of (PL,ε). Moreover, if ūε satisfies (CR) then there exists p̄ε ∈ V2 such that
−∇ ·

(
τ ′L,ε (Dȳε)

T
: Dp̄ε

)
+ (∇ȳε)T p̄ε − ȳε · ∇p̄ε +∇π̃ε = ȳε − yd in Ω,

∇ · p̄ε = 0 in Ω,

p̄ε = 0 on Γ,

(6.4)

(p̄ε + (λ+ 1)ūε − ū, v − ūε) ≥ 0 for all v ∈ Uad. (6.5)

Proof. The proof follows exactly the same steps as in Theorem 5.1, using Proposition 4.3 instead
of using Proposition 4.1. �

6.2 Convergence results

We first establish a useful convergence result.

Proposition 6.3 Assume that 3n
n+2 ≤ α < 2 and let

(
vε, y

ε
vε

)
be an admissible pair for (PL,ε).

There exists a subsequence (εk)k converging to zero and (u, y), an admissible pair for (PL), such
that

vεk −→ u weakly in L2(Ω) and yεkvεk
−→ y strongly in W 1,α

0 (Ω).

Proof. The proof is split into three steps.

Step 1. To simplify the redaction, let us set yε = yεvε . Since (vε)ε is uniformly bounded in the
closed convex set Uad, by taking into account estimate (3.7) we obtain

‖Dyε‖αα ≤ C̃
(‖vε‖q

ν

)α′
+ |Ω| ≤ C̃

(
U
ν

)α′
+ |Ω| (6.6)

where C̃ is independent of ε, and the sequence (yε)ε is then bounded in Vα. On the other hand,
it is easy to see that

|τL,ε(η)| ≤ 2ν|η|α−1

implying

‖τL,ε(Dyε)‖α
′

α′ ≤ 2ν ‖Dyε‖αα
which together with (6.6) show that sequence (τL,ε(Dy

ε))ε is uniformly bounded in Lα
′
(Ω).

There then exist a subsequence (εk)k converging to zero, u ∈ Uad, y ∈ Vα and τ̃ ∈ Lα′(Ω) such
that (vεk)k weakly converges to u in L2(Ω), (yεk)k weakly converges to y in Vα and (τL,εk(Dyεk))k
weakly converges to τ̃ in Lα

′
(Ω). Moreover, since α > 2n

n+1 , by using compactness results on

Sobolev spaces, we deduce that (yεk)k strongly converges to y in Lα
′
(Ω).

Step 2. Let us now prove that (u, y) is an admissible pair for (PL). Taking into account the
convergence results obtained in Step 1, we deduce that for every ϕ ∈ V, we have

|b (yεk , yεk , ϕ)− b (y, y, ϕ)| ≤ |b (yεk − y, yεk , ϕ)|+ |b (y, yεk − y, ϕ)|

= |b (yεk − y, yεk , ϕ)|+ |b (y, ϕ, yεk − y)|

≤ (‖∇yεk‖α ‖ϕ‖∞ + ‖y‖α ‖∇ϕ‖∞) ‖yεk − y‖α′
−→ 0 when k → +∞.

(6.7)
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Moreover, by passing to the limit in the weak formulation corresponding to yεk , we obtain

(τ̃ , Dϕ) + b (y, y, ϕ) = (u, ϕ) for all ϕ ∈ V

and by using the fact that V is dense in Vα and that y ∈ L
2α
α−1 (Ω) if α ≥ 3n

n+2 , it follows that

(τ̃ , Dϕ) + b (y, y, ϕ) = (u, ϕ) for all ϕ ∈ Vα. (6.8)

In particular, since b(y, y, y) = 0, we have

(τ̃ , Dy) = (τ̃ , Dy) + b (y, y, y) = (u, y) . (6.9)

On the other hand, the monotonicity property in Lemma 2.2 implies

(τL,εk (Dyεk)− τL,εk (Dϕ) , Dyεk −Dϕ) ≥ 0 for all ϕ ∈ Vα. (6.10)

Since (τL,εk (Dyεk) , Dyεk) = (vεk , y
εk), by substituing in (6.10), we obtain

(vεk , y
εk)− (τL,εk (Dyεk) , Dϕ)− (τL,εk (Dϕ) , Dyεk −Dϕ) ≥ 0 (6.11)

for all ϕ ∈ Vα. Observing that

|τL,ε(η)− τL(η)| =
∣∣∣(1 + rε (|η|))α−2 − (1 + |η|)α−2

∣∣∣ |η|
≤ (rε (|η|)− |η|) |η| = ε2

rε(|η|)+|η| |η| ≤ ε
2

it follows that
lim
k→∞

‖τL,εk(Dϕ)− τL(Dϕ)‖α′ = 0

and by passing to the limit in (6.11), we get

(u, y)− (τ̃ , Dϕ)− (τL (Dϕ) , Dy −Dϕ) ≥ 0 for all ϕ ∈ Vα.

This inequality together with (6.9) then yields

(τ̃ − τL (Dϕ) , Dy −Dϕ) ≥ 0 for all ϕ ∈ Vα

and by setting ϕ = y − tψ with t > 0, we obtain

(τ̃ − τL (Dy − tDψ) , Dψ) ≥ 0 for all ψ ∈ Vα.

Letting t tend to zero and using the continuity of τL, we deduce that

(τ̃ − τL (Dy) , Dψ) ≥ 0 for all ψ ∈ Vα

and thus
(τ̃ , Dψ) = (τL (Dy) , Dψ) for all ψ ∈ Vα. (6.12)

Combining (6.8) and (6.12) gives

(τL (Dy) , Dϕ) + b (y, y, ϕ) = (u, ϕ) for all ϕ ∈ Vα

showing that
yεk −→ y weakly in W 1,α

0 (Ω)



14

and that (u, y) is admissible for (PL).

Step 3. Let us now prove the strong convergence of (yεk)k to y in W 1,α
0 (Ω). Lemma 2.2 together

with Lemma 2.8 in [3] and estimate (6.6) yield

(τL,εk (Dyεk)− τL,εk (Dy) , D (yεk − y)) ≥ ν(α−1)‖D(yεk−y)‖2α

(|Ω|+‖Dyεk‖αα+‖Dy‖αα)
2−α
α

≥ ν(α−1)‖D(yεk−y)‖2α(
3|Ω|+2C̃(Uν )

α′
) 2−α

α

.

Therefore, by taking into account the previous convergence results, we deduce that

ν(α−1)(
3|Ω|+2C̃(Uν )

α′
) 2−α

α

lim sup
k
‖D(yεk − y)‖2α

≤ lim sup
k

(τL,εk (Dyεk)− τL,εk (Dy) , D (yεk − y)) ≤ lim sup
k

(τL,εk (Dyεk) , D (yεk − y))

≤ lim sup
k

((vεk , y
εk)− (τL,εk (Dyεk) , Dy)) ≤ (u, y)− (τ̃ , Dy) = 0

and the claimed result is proven �

Next, we prove that the solutions of problems (PL,ε) form an approximating family for (PL).

Proposition 6.4 Assume that 3n
n+2 ≤ α < 2. Let (ūε, ȳε) be a solution of (PL,ε). There exists

a subsequence (εk)k converging to zero such that

lim
k→+∞

‖ūεk − ū‖2 = 0, lim
k→+∞

‖ȳεk − ȳ‖1,α = 0, lim
k→+∞

I(ūεk , ȳεk) = J(ū, ȳ).

Proof. Setting vε = ū for all ε > 0 and vε = ūε and applying Proposition 6.3, we deduce that
there exists a subsequence (εk)k such that (yεkū )k converges in W 1,α

0 (Ω) to ȳ (the unique solution
of (1.1) corresponding to ū), (ūεk)k weakly converges in L2(Ω) to some u and (ȳεk)k converges

in W 1,α
0 (Ω) to y (a solution of (1.1) corresponding to u). Using the lower semicontinuity of I

and the admissibility of (ū, yεkū ) for (PL,εk), we obtain

1
2 ‖y − yd‖

2
2 + λ

2 ‖u‖
2
2 + 1

2 ‖u− ū‖
2
2≤ lim inf

k
I(ūεk , ȳεk) ≤ lim sup

k
I(ūεk , ȳεk)

≤ lim
k
I(ū, yεkū ) = 1

2 ‖ȳ − yd‖
2
2 + λ

2 ‖ū‖
2
2

and consequently
J(u, y) + 1

2 ‖u− ū‖
2
2 ≤ J(ū, ȳ).

Since (ū, ȳ) is solution of (PL), we have J(ū, ȳ) ≤ J(u, y) and thus u = ū. Recalling that ū
satisfies (CR), we deduce that y = ȳ and thus

lim
k→+∞

I(ūεk , ȳεk) = J(ū, ȳ).

Finally, observing that

1
2 lim sup

k
‖ūεk − ū‖22 = lim sup

k

(
I(ūεk , ȳεk)− 1

2‖ȳ
εk − yd‖22 − λ

2 ‖ū
εk‖22

)
≤ J(ū, ȳ)− 1

2‖ȳ − yd‖
2
2 − λ

2 lim inf
k
‖ūεk‖22

= λ
2 ‖ū‖

2
2 −

λ
2 lim inf

k
‖ūεk‖22 ≤ 0

we conclude that (ūεk)k converges to ū strongly in L2(Ω). �
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6.3 Proof of Theorem 6.1

Let (ūεk , ȳεk) be the solution of (PL,εk) given in Proposition 6.4. Since ū satisfies (CR), we
deduce that there exists k1 ∈ N such that ūεk also satisfies (CR) for every k > k1. Due Theorem
6.2, there exists p̄εk ∈ V2 such that

−∇ ·
(
τ ′L,εk (Dȳεk)

T
: Dp

)
+ (∇ȳεk)T p− ȳεk · ∇p+∇π̃εk = ȳεk − yd,

∇ · p = 0,

p|Γ = 0,

(6.13)

(p̄εk + (λ+ 1)ūεk − ū, v − ūεk) ≥ 0 for all v ∈ Uad. (6.14)

Moreover, due to (3.8) and Proposition 4.3 the following estimates hold

‖ȳεk‖2,q ≤ κ̃
‖ūεk‖q
ν ≤ κ̃Uν ,

‖Dp̄εk‖2 ≤ L
(
‖ūεk‖q
ν

)
‖ȳεk − yd‖2 ≤ L

(
U
ν

)
‖ȳεk − yd‖2

where κ̃ ≡ κ̃(n, q,Ω) is a positive constant independent of k. Therefore, the sequences (ȳεk)k and
(p̄εk)k are uniformly bounded in W 2,q(Ω) and V2, respectively. There then exist a subsequence,
still indexed by k, and p̄ ∈ V2 such that (p̄εk)k weakly converges to p̄ in V2. Moreover, since
q > n, by compactness results on Sobolev spaces, we deduce that (ȳεk)k strongly converges to ȳ
in C1,δ(Ω) with δ < 1− n

q and (p̄εk)k strongly converges to p̄ in L2(Ω). It follows that

lim
k→+∞

(
(∇ȳεk)T p̄εk − ȳεk · ∇p̄εk , ϕ

)
=
(
(∇ȳ)T p̄− ȳ · ∇p̄, ϕ

)
(6.15)

for every ϕ ∈ V and

lim
k→+∞

(
τ ′L,εk (Dȳεk) : Dϕ,Dp̄εk

)
= (τ ′L(Dȳ) : Dϕ,Dp̄) (6.16)

for every ϕ ∈ V(Ω0) = {ϕ ∈ D(Ω0) | ∇ · ϕ = 0 in Ω0} with Ω0 = {x ∈ Ω | |Dȳ(x)| > 0}. Taking
into account (6.15) and (6.16), and passing to the limit in (6.13) and (6.14), we obtain

(τ ′L(Dȳ) : Dϕ,Dp̄) +
(
(∇ȳ)T p̄− ȳ · ∇p̄, ϕ

)
= (ȳ − yd, ϕ) for all ϕ ∈ V(Ω0),

and
(p̄+ λū, v − ū) ≥ 0 for all v ∈ Uad

which gives (6.1) and (6.2) and the claimed result is proven. �
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