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Abstract

The product of independent Generalized Gamma random variables arises in many problems
and applications of the most different areas. Working with characteristic functions, which
are the Fourier transforms of density functions, we study the structure of the exact distri-
bution and, based on a truncation of the characteristic function of the negative logarithm
of the product of independent Generalized Gamma random variables, a simple and accurate
near-exact distribution is developed. The density and cumulative distribution functions of
the near-exact distribution have manageable expressions allowing for the computation of
p−values and quantiles. In the process, a flexible parameter, γ, is introduced in the repre-
sentations of the exact and near-exact distributions which allows to choose the quality of
the approximation developed. The numerical studies and simulations carried out show the
accuracy of this approximation as well as its asymptotic properties.

Keywords

asymptotic approximation, characteristic function, Gamma distribution, logGamma distri-
bution, Generalized Integer Gamma distribution, Generalized Near-Integer Gamma distri-
bution, near-exact distributions.

AMS subject classifications: 62H10, 62E20, 62H05, 62E15

1 Introduction

The Generalized Gamma distribution was introduce in [20] and is of great interest, mainly
due to its flexibility, in several areas of application, for example in Physics, Economet-
rics, Wireless Communications, Reliability Analysis, Hydrological Processes and Life Testing
Models [1, 2, 12, 15, 19]. Another point of interest of this distribution is due to fact of having
as particular cases some of the most important and known distributions such as the Gamma,
Weibull and Raleigh distributions, for more details see for example [5]. Results on inference
on the parameters of the Generalized Gamma distribution can be found in [8, 9, 10, 21, 7, 16].
The product of independent Generalized Gamma random variables arises naturally on prob-
lems posed in the above mentioned fields of research however the exact distribution does
not have a simple expression which limits its use in practical terms. The exact distribution
of the product of independent Generalized Gamma random variables was derived in [15],
using the inverse Mellin transform and H-functions, but the hight computational investment
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required limits the practical usefulness of this result. The authors also present representa-
tions in terms of Meijer-G functions for two particular cases; when all the parameters βj in
(1) are equal or when these are rational numbers. At the same time in [17] the author also
developed a representation in terms of Meijer-G function for the distribution of the product
of independent Generalized Gamma random variables when all the βj in (1) are equal. In
[13] the exact density and cumulative distribution functions are obtained, for the case of the
product of two Generalized Gamma random variables with equal shape parameters, using
the modified Bessel function and the incomplete gamma function.

Using the characteristic function of the negative logarithm of the product of indepen-
dent Generalized Gamma random variables, we give a different representation for the exact
distribution and, based on this representation, we develop a simple and accurate near-exact
distribution for the distribution of the product of independent Generalized Gamma ran-
dom variables. In Section 2 we show that exact distribution of the negative logarithm of
the product of independent Generalized Gamma random variables may be written as the
distribution of the sum of two independent random variables, one with the distribution of
the sum of independent logGamma distributions multiplied by a parameter and the other
with the distribution of a shifted Generalized Integer Gamma distribution [3]. Based on this
result we develop a simple but highly accurate near-exact distribution that is based on the
shifted Generalized Near-Integer Gamma distribution [4] which has manageable expressions
for the density and cumulative distribution functions. By construction, a new parameter, γ,
is introduced on the previous representations which allows the improvement of the quality
of the near-exact approximation developed by adjusting its value; we show that the ap-
proximation becomes more precise for high values of γ. In Section 3 we use a measure of
proximity between characteristic functions, that is also an upper bound on the proximity
between distribution functions, to assess the quality of the near-exact distribution proposed.
In addition, simulations are carried out that show the accuracy of the near-exact quantiles
and plots of the density and cumulative distribution functions are also presented.

2 The exact and near-exact distribution of the product

of independent Generalized Gamma random vari-

ables

2.1 The exact distribution

Let Xj be a random variable with Gamma distribution with rate parameter λj > 0 and
shape parameter rj > 0, that is, Xj ∼ Γ(rj, λj) with j = 1, . . . , p. We say that the random

variable Yj = X
1/βj

j , for βj 6= 0, has a generalized Gamma distribution and we will denote
this fact by

Yj ∼ GΓ(rj, λj, βj) . (1)

The probability density function is given by

fYj
(y) = |βj|

λ
rj
j

Γ(rj)
yβjrj−1e−λjy

βj
, y > 0
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and the non central moments are

E
[
Y h
j

]
=

∫
∞

−∞

yhfYj
(y)dy =

Γ (rj + h/βj)

Γ(rj)
λ
−h/βj

j . (2)

We are interested in studding the distribution of

Z =

p
∏

j=1

Yj

with Yj
ind.∼ GΓ(rj, λj , βj) j = 1, . . . , p. The characteristic function of the random variable

W = − logZ is defined as

ΦW (t) =

∫
∞

−∞

eitwfW (w)dw = E[eitW ]

which, using the expression of the non central moments in (2), may be written as

ΦW (t) = E[Z−it] =

p
∏

j=1

E[Y −it
j ] =

p
∏

j=1

Γ (rj − it/βj)

Γ(rj)
λ
it/βj

j , t ∈ R. (3)

Theorem 2.1 The characteristic function of W = − log
∏p

i=j Yj with Yj
ind.∼ GΓ(rj, λj, βj)

for rj > 0, λj > 0 and βj 6= 0 may be written as

ΦW (t) =

{
p
∏

j=1

Γ (rj + γ − it/βj)

Γ(rj + γ)

}

︸ ︷︷ ︸

ΦW1
(t)

{
p
∏

j=1

γ−1
∏

k=0

((rj + k)βj)((rj + k)βj − it)−1

}

e
it

p∑

j=1

log λ
1/βj
j

︸ ︷︷ ︸

ΦW2
(t)

(4)

Proof: See Appendix A.

From expression (4) and from the properties of the characteristic functions we may conclude
that, when βj > 0, the exact distribution of W = − logZ corresponds to the distribution
of the sum of two independent random variables; W1, with the distribution of the sum of
independent logGamma distributions with parameters rj+γ and 1, multiplied by the param-
eter 1/βj and, W2, with the distribution of a shifted sum of p× γ independent Exponential
distributions with parameters (rj + k)βj for j = 1, . . . , p and k = 0, . . . , γ − 1, and with

shift parameter θ =
∑p

j=1 log λ
1/βj

j . If we sum the Exponential distributions with the same
parameter we may write ΦW2

(t) in expression (4) as

ΦW2
(t) =

{
ℓ∏

j=1

α
δj
j (αj − it)−δj

}

eitθ (5)

where ℓ is the number of Exponential distributions with different parameters, αj are the
parameters of such Exponential distributions, and δj is the number of Exponential distri-
butions with the same parameter αj, for j = 1, . . . , ℓ. Thus we may say the distribution of
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W2 corresponds to a shifted Generalized Integer Gamma distribution (see [3]) with shape
parameters δj, rate parameters αj , for j = 1, . . . , ℓ, and with depth ℓ and shift parameter θ.
We denote this fact by W2 ∼ SGIG(δ1, . . . , δℓ ; α1, . . . , αℓ ; ℓ ; θ).

Using this representation, given by expressions (4) and (5), in the next subsection, we
derive a simple but very accurate near-exact distribution for the distribution of the product
of independent Generalized Gamma random variables.

2.2 Near-exact distribution for W = − logZ and for Z

One way of developing near-exact distributions is by using a factorization of the charac-
teristic function of a random variable or of its logarithm and then approximating one the
factors and leaving the remaining ones unchanged so that the resulting characteristic func-
tion corresponds to a known distribution and easy to use in practice. In our case, starting
from the factorization of ΦW (t) in (4) with ΦW2

(t) in (5), we approximate the characteristic
function ΦW1

(t) by the characteristic function of a random variable with a shifted Gamma
distribution and we leave ΦW2

(t) unchanged. Thus, the near-exact characteristic function
has the following structure

ΦW ∗

1
(t)ΦW2

(t) (6)

where
ΦW ∗

1
(t) = ωρ(ω − it)−ρeitυ, t ∈ R, (7)

is the characteristic function of W ∗

1 with a logGamma distribution, with shape parameter ρ,
rate parameter ω and shift parameter υ, we denote this fact by W ∗

1 ∼ SGamma(ρ, ω, υ). The
parameters ρ, ω, and υ, are determined as the numerical solution of the system of equations

∂jΦW ∗

1
(t)

∂tj

∣
∣
∣
∣
t=0

=
∂jΦW1

(t)

∂tj

∣
∣
∣
∣
t=0

, j = 1, 2, 3 . (8)

Theorem 2.2 If we use as an asymptotic approximation of ΦW1
(t) in (4) the characteristic

function ΦW ∗

1
(t) in (7), we obtain as near-exact distribution for W = − log

∏p
j=1 Yj with

Yj
ind.∼ GΓ(rj, λj , βj) for rj > 0, λj > 0 and βj > 0 (j = 1, . . . , p) a shifted Generalized Near-

Integer Gamma distribution with integer shape parameters δ1, . . . , δℓ and non-integer shape
parameter ρ, with rate parameters α1, . . . , αℓ and ω, with depth ℓ + 1 and shift parameter
θ + υ, that we will denote by

W2 ∼ SGING(δ1, . . . , δℓ , ρ ; α1, . . . , αℓ, ω ; ℓ+ 1 ; θ + υ)

where δj, αj, θ and ℓ are the same as in (5) and ρ, ω, and υ are obtained as the numerical
solution of (8).

Proof: See Appendix A.

By simple transformation, using the notation of Appendix B in [14] for the GNIG distribution
and considering the necessary adjustments due to the presence of the shift parameter, we
obtain the near-exact probability density function of Z =

∏p
j=1 Yj

fGNIG

(

− log(z)− (θ + υ)| δ1, . . . , δℓ, ρ ; α1, . . . , αℓ, ω ; ℓ+ 1

)
1

z
(9)
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and cumulative distribution function

1− FGNIG

(

− log(z)− (θ + υ) | δ1, . . . , δℓ, ρ ; α1, . . . , αℓ, ω ; ℓ+ 1

)

. (10)

In Section 3 we present plots for the probability density and cumulative distribution func-
tions respectively given in (9) and (10). Modules for the implementation of the near-exact
distribution proposed may be developed, for example, with software Mathematica or R, and
may be obtained from the author.

3 Numerical Studies and simulations

In this section we study the quality of the near-exact distribution developed for the distribu-
tion of the product of independent Generalized Gamma random variables. For this purpose
we consider, in next tables and figures, the following cases:

Case I - rj = {2, 3, 5}, λj = {1, 2, 10} and βj = {5, 6, 7};

Case II - rj = {1
4
, 9
5
, 1}, λj = {

√
2, π, 3} and βj = {2

7
, 2
11
,
√
3};

Case III - rj = {1, 2}, λj = {5, 6} and βj = {3, 4}.
In Table 1 we computed the exact quantiles for the product of independent Generalized

Gamma random variables using the inversion formulas in [6] and we compared them with
simulated quantiles (denoted by “simul.”) evaluated from samples of size 10 000 000 and
with the near-exact quantiles (denoted by “near”) obtained, for γ = 30, using the near-exact
cumulative distribution function in (10). From Table 1 we conclude that the values obtained
for the near-exact quantiles are very close to exact ones matching at least 5 decimal places
and are more reliable than the quantiles that were obtained by simulation.

Table 1: Comparison between exact, simulated and near-exact quantiles

Case - I Case - II Case - III

prob. exact simul. near exact simul. near exact simul. near

0.90 1.291245 1.291189 1.291246 1.696369 1.695775 1.696369 0.588087 0.588144 0.588087

0.95 1.369168 1.368910 1.369169 2.527685 2.524854 2.527687 0.657770 0.657572 0.657771

0.99 1.517857 1.517909 1.517854 4.691656 4.692405 4.691657 0.794812 0.794915 0.794811

Now we consider the measure

∆ =
1

2π

∫ +∞

−∞

∣
∣
∣
∣

ΦW (t)− Φ∗(t)

t

∣
∣
∣
∣
dt ,

where ΦW (t) and Φ∗(t) are respectively the exact and approximate characteristic functions
of W , and FW (w) and F ∗(w) the corresponding cumulative distribution functions. This
measure is also an upper bound on the proximity between distribution functions, since

sup
w∈R

|FW (w)− F ∗(w)| ≤ ∆ .
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For more details on this measure see for example [14]. In Table 2 we present values of the
measure ∆ for the three cases considered. In this table, the values of the measure are low
which indicates that the approximation is adequate and precise, and we may also note that
the values are even lower for increasing values of γ.

Table 2: Values of ∆ for the SGNIG proposed considering different values of γ; using the
near-exact characteristic function in (6) and the exact characteristic function in (3)

γ Case - I Case - II Case - III
4 1.7× 10−4 3.3× 10−5 1.2× 10−4

10 2.0× 10−5 2.1× 10−6 1.1× 10−5

50 2.4× 10−7 1.6× 10−8 1.0× 10−7

500 2.7× 10−10 1.6× 10−11 1.1× 10−10

In Figure 1 we present examples of plots of the near-exact cumulative distribution and
density functions, obtained form expressions (10) and (9) respectively, when γ = 30 and for
the three cases considered in this paper.

Case I

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Case II

1 2 3 4

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
0.0
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2.5

3.0
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Case III

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Figure 1: Near-exact distribution and density functions for the product of independent
Generalized Gamma random variables when γ = 30

4 Conlusions

The procedure used in this work enabled the development of a simple and accurate near-
exact distribution for the distribution of the product of independent Generalized Gamma
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random variables. This near-exact distribution is based on a shifted Generalized Near-Integer
Gamma distribution which has manageable and easy to implement density and cumulative
distribution functions. The numerical studies developed show the accuracy and adequabil-
ity of the near-exact distribution developed as well as its good asymptotic properties for
increasing values of the parameter γ.
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A Proof of Theorem 2.1 and 2.2

Proof of Theorem 2.1

Using the expression of the characteristic function of W in (3) we may do the following
algebraic manipulation that leads to the result of Theorem 2.1

ΦW (t) =

p
∏

j=1

Γ (rj − it/βj)

Γ(rj)
λ
it/βj

j

=

{ p
∏

j=1

Γ(rj + γ − it/βj)

Γ(rj + γ)

Γ(rj + γ)

Γ(rj + γ − it/βj)

Γ (rj − it/βj)

Γ(rj)

}

e
it

p∑

j=1

log λ
1/βj
j

=

p
∏

j=1

Γ(rj + γ − it/βj)

Γ(rj + γ)

{ p
∏

j=1

γ−1
∏

k=0

((rj + k)βj) ((rj + k)βj − it)−1

}

e
it

p∑

j=1

log λ
1/βj
j

.

�

Proof of Theorem 2.2

It is enough to note that

ΦW ∗

1
(t)ΦW2

(t) = ωρ(ω − it)−ρeitυ
︸ ︷︷ ︸

ΦW∗

1

(t)

{
ℓ∏

j=1

α
δj
j (αj − it)−δj

}

eitθ

︸ ︷︷ ︸

ΦW2
(t)

=

({
ℓ∏

j=1

α
δj
j (αj − it)−δj

}

ωρ(ω − it)−ρ

)

eit(υ+θ)

where δj, αj, θ and ℓ are the same as in (5) and ρ, ω, and υ are obtained as the numerical
solution of (8). �
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