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Abstract. In this paper we present a new technique to obtain estimators for

parameters of ergodic processes. When a diffusion is ergodic its transition
density converges to the invariant density [1]. This convergence enabled us

to introduce a sample partitioning technique that gives, in each sub-sample,

observations that can be treated as independent and identically distributed.
Within this framework, is possible the construction of estimators like maximum

likelihood estimators or others.
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1. Introduction

Diffusion processes are widely used in different areas as in biology, economics
and financial mathematics [6] or [10], among many others. Typicaly, the problems
are stated for independent and identically distributed observations but, when the
processes are ergodic we do not need this hipothesis. For ergodic processes many es-
timation techniques are well studied [5], some of those techniques use the transition
density of the process but, it turns out that in many cases this transition density
is untractable and cannot be used for estimation purposes. Using the ergodic na-
ture of the processes and the invariant density we propose a sample partitioning
technique that gives, in each subsample, observations that can be treated as inde-
pendent and identically distributed. In fact, for the Ornstein-Uhlenbeck process we
prove in proposition 4.2 that any two observations are asymptotically independent
when the time lag between the two increases. Within this framework, is possible the
construction of estimators, in each subsample, like maximum likelihood estimators
or others, using the invariant density. The average of the subsamples estimators
is a natural choice as estimators for the process parameters. In the case of the
Ornstein-Uhlenbeck and for a family of processes that includes the Cox-Ingersoll
& Ross and the Dixit & Pindyck process, we prove the consistency of the sample
partitioning estimators. For the Ornstein-Uhlenbeck and the Cox-Ingersoll & Ross
processes we compare the results obtained from our estimators with the results ob-
tained from the usual estimators for those processes, see [8]. In a simulation study
we show that our estimators will have smaller MSE than the usual estimators and
in some cases the diference will be very large. For the Dixit & Pindyck and other
processes for which there are no explicit estimators we only present our estimation
technique results.

The remainder of this article is organized as follows. In section 2 we introduce the
ergodic diffusions that we will study and the sub-sampling technique is described
in section 3. In section 4 we present the application of the technique to the ergodic
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processes presented in section 2, we build the sample partitioning estimators, prove
their consistency and for the Ornstein-Uhlenbeck process we will prove in propo-
sition 4.2 a fundamental result about asymptotic independency. In section 4 we,
also, implement the simulation study where we will compare our estimators with
the usual ones for the Ornstein-Uhlenbeck and Cox-Ingersoll & Ross processes by
comparing the MSE. We will compute the parameter estimators for other ergodic
processes and, finally, in section 5 we will give some conclusions.

2. Diffusions and Ergodicity

In what follows we will work with diffusion processes, see [2] or [9], that is, a
time-homogeneous stochastic process satisfying the stochastic differential equation
(SDE),

(2.1) dXt = b(Xt,θ)dt+ σ(Xt,θ)dBt,

where θ ∈ Θ ⊂ Rp is a multidimensional parameter and {Bt}t≥0 is the Brownian
motion or Wiener process. The functions b : R × Θ → R and σ : R × Θ →]0,+∞[
are known and such that the solution of (2.1) exists, see [3] or [7].

The function b is known as the drift coefficient of X, the function σ is known
as the diffusion coefficient of X.
An example of a diffusion is the Ornstein-Uhlenbeck process, that is, the process
solution of the equation,

dXt = b(a−Xt)dt+ σdBt, b > 0.

We will be interested in the study of a special type of diffusions, the ergodic
diffusions, for a review in statistical inference for diffusion ergodic processes see [5].
It is well known the following characterization of an ergodic process. With E =]l, r[
the range of variation of Xt, t > 0, and l < x0 < r, let the scale function and speed
measure, be

(2.2)


s(x,θ) = exp

[
−2
∫ x
x0

b(y,θ)
σ2(y,θ)dy

]
; x ∈]l; r[

m(x,θ) = 1
s(x,θ)σ2(x,θ) ; x ∈]l; r[

respectively.
The diffusion is ergodic whenever, for every θ ∈ Θ,

(2.3)

∫ r

x0

s(x,θ)dx =

∫ x0

l

s(x,θ)dx = +∞

and

(2.4) M(θ) =

∫ r

l

m(x,θ)dx < +∞.

With the invariant density being,

(2.5) fθ(x) =
m(x,θ)

M(θ)
; x ∈]l; r[.

We have, regarding the invariant density, that:

Theorem 2.1. The transition density of a ergodic diffusion tends to the corre-
sponding invariant density when the time lag tends to infinite [1].
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Next we will introduce some ergodic processes that we will study in this paper.

Example 1. Ornstein-Uhlenbeck Process

(2.6) dXt = b(a−Xt)dt+ σdBt, b > 0.

It is known that the process, solution os this stochastic differential equation is
ergodic, with invariant density,

fθ(x) =
1√

2π σ
2

2b

e
− (x−a)2

2(σ22b ) ∼ N
(
a;
σ2

2b

)
.

Example 2. A special class of mean reverting processes
The processes, solution of the SDE

(2.7) dXt = b(a−Xt)X
γ
t dt+ σ

√
Xγ+1
t dBt, a, b > 0, γ ≥ 0,

are ergodic, when 2ab > σ2(γ + 1), because, with θ = (a, b, γ, σ),

S(x;θ) =

∫ x

x0

s(y,θ)dy =

∫ x

x0

exp

(
−2

∫ y

x0

b(a− v)vγ

σ2vγ+1
dv

)
dy

= x
2ab
σ2

0 e−
2b
σ2
x0

∫ x

x0

y−
2ab
σ2 e

2b
σ2
ydy → +∞, x→ +∞, x→ 0,

and

M(θ) =

∫ +∞

0

1

σ2xγ+1
exp

(
2

∫ x

x0

b(a− v)vγ

σ2vγ+1
dv

)
dx =

=
x
− 2ab
σ2

0 e
2b
σ2
x0

σ2

∫ ∞
0

x
2ab
σ2
−γ−1e−

2b
σ2
xdx <∞, if 2ab > σ2(γ + 1),

having invariant density,

fθ(x) =
x
− 2ab
σ2

0 e
2b
σ2
x0

σ2
x

2ab
σ2
−γ−1e−

2b
σ2
x

x− 2ab
σ2

0 e
2b
σ2
x0

σ2

∫ ∞
0

x
2ab
σ2
−γ−1e−

2b
σ2
xdx

−1

=
xα−1e−βxβα

Γ(α)
∼ Gamma(α, β), with, α =

2ab

σ2
− γ =

2ab− σ2γ

σ2
, β =

2b

σ2
.

Remark 2.2. Within this class of processes, we have,
Cox-Ingersoll & Ross (γ = 0)

dXt = b(a−Xt)dt+ σ
√
XtdBt;

Dixit & Pindyck process (γ = 1)

dXt = b(a−Xt)Xtdt+ σXtdBt.

Example 3. An ergodic process with Cauchy invariant density
The solution of,

(2.8) dXt =
−σ2(Xt − α)

1 + (Xt − α)2
dt+ σdBt.
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is an ergodic process, because it verifies, with θ = (α, σ),

S(x;θ) =

∫ x

x0

exp

(
−2

∫ y

x0

−σ2(v − α)

σ2(1 + (v − α)2)
dv

)
dy

=
1

1 + (x0 − α)2

∫ x

x0

1 + (y − α)2dy → +∞, x→ ±∞

and

M(θ) =

∫ +∞

−∞

1

σ2
exp

(
2

∫ x

x0

−σ2(v − α)

σ2(1 + (v − α)2)
dv

)
dx =

=
1 + (x0 − α)2

σ2
π

having invariant density,

fθ(x) =
1 + (x0 − α)2

σ2(1 + (x− α)2)

(
1 + (x0 − α)2

σ2
π

)−1

=
1

π
(

1 + (x− α)
2
) ∼ Cauchy(α, 1).

3. Limit Independence and Sub-Sampling

Suppose that we have discrete observations, X1, ..., Xn, of the process at times
ti = i∆ with ∆ = ti+1−ti, i = 1, ..., n−1, that is, equally spaced observations of the
process. The main idea in our estimation technique is that, for ergodic processes,
if we consider two observations separated by a time interval long enough then they
can be treated as if they are independent and both with the same invariant density.
When the transition density converges to the invariant density we assume that there
is ∆ such that, for, t > ∆, we may assume Xt to have the invariant density and,
when ∆ < t < t′−∆, Xt and Xt′ can be treated as if they are independent. The best
way to find such a ∆ is an open problem, but for the Ornstein-Uhlenbeck process
we have a result based in the correlation coefficient, as we will see in proposition
4.2, that should be enough to the study of ∆. Another possibility to find ∆ should
be through hypothesis testing. Assuming that we have m, k ∈ {1, ..., n} such that
m∆ > ∆ and n = km, we put the observations Xj at times tj , j = 1, ..., km, in the
following table:

X1 · · · Xj · · · Xm

...
...

...
X(i−1)m+1 · · · X(i−1)m+j · · · Xim

...
...

...
X(k−1)m+1 · · · X(k−1)m+j · · · Xkm

Now, the matched sub-samples corresponding to the lines of the table will have
the same distribution and we can treat the observations in each column as being
independent and identically distributed with the invariant density. Thus, from each
column we can obtain a estimator (maximum likelihood estimator if possible, or
other kind of estimator) θj , j = 1, . . . ,m for θ. Afterwards, we take the average
of the θj , j = 1, . . . ,m, in order to estimate θ.
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4. Application to ergodic processes

In this section we will apply the sub-sampling estimation method for some of
the ergodic processes presented in section 2.

Application 1. Example 1 (Ornstein-Uhlenbeck process).
Consider,

(4.1) dXt = b(a−Xt)dt+ σdBt, b > 0

the solution of this SDE is,

Xt = X0e
−bt + a(1− e−bt) + σ

∫ t

0

e−b(t−s)dBs

being the conditional mean of Xi+1 given Xi,

E[Xi+1|Xi] = Xie
−b∆ + a(1− e−b∆),

the conditional variance,

V[Xi+1|Xi] =
σ2

2b

(
1− e−2b∆

)
,

and the conditional distribution of Xi+1 given Xi is then

N

(
Xie

−b∆ + a(1− e−b∆);
σ2

2b

(
1− e−2b∆

))
.

As we saw before, the Ornstein-Uhlenbeck process is ergodic with invariant density,

fθ(x) =
1√

2π σ
2

2b

e
− (x−a)2

2(σ22b ) ∼ N
(
a;
σ2

2b

)
.

If X0 is a random variable with the invariant density then the process is strictly

stationary and then for ∀t ≥ 0, Xt have the N
(
a; σ

2

2b

)
distribution. For simplicity

we will suppose that σ is known and we will estimate only a and b.

From the sub-sampling approach, we obtained the maximum likelihood estimators
for a and b,

(4.2) ân =
1

m

m∑
j=1

âj,k =
1

m

m∑
j=1

[
1

k

k∑
i=1

X(i−1)m+j

]

and

(4.3) b̂n =
1

m

m∑
j=1

b̂j,k =
1

m

m∑
j=1

[
2

k

k∑
i=1

(
X(i−1)m+j − âj,k

)2]−1

We have a first result on consistency.

Proposition 4.1. The sample partitioning, maximum likelihood estimators of a
and b in the Ornstein-Uhlenbeck process, are consistent.
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Proof. Let ξ be a random variable with the invariant density, that is, with a normal

density of mean a and variance σ2

2b , b > 0. For ân, we have,

(4.4) ân =
1

m

m∑
j=1

[
1

k

k∑
i=1

X(i−1)m+j

]
=

1

n

n∑
i=1

Xi
n→∞−→ E[ξ] = a (a.s.)

where we only need to use the ergodic theorem [5].

For b̂n, notice that, with m fixed, n→∞⇒ k = k(n)→∞ and to prove that

(4.5) b̂n =
1

m

m∑
j=1

[
2

k

k∑
i=1

(
X(i−1)m+j − âj,k

)2]−1

n→∞−→ b

σ2

is enough to prove that

2

k

k∑
i=1

(
X(i−1)m+j − âj,k

)2 n→∞−→ σ2

b
,∀m

but

1

k

k∑
i=1

(
X(i−1)m+j − âj,k

)2
=

1

k

k∑
i=1

(
X(i−1)m+j − a

)2 − (âj,k − a)
2 n→∞−→ σ2

2b
(a.s.)

because from the ergodic theorem the first term converges to V[ξ] and the second
to zero. �

We have a result about the asymptotic independency between the variables in
each subsample when the process is the Ornstein-Uhlenbeck process.

Proposition 4.2. Let X1, ..., Xn, ... be observations of the Ornstein-Uhlenbeck pro-
cess, let X and Y be random variables, such that, X ∈ {X1, ..., Xp} and Y ∈
{Xp+m, ...}, for some m. Then the correlation coefficient,

(4.6) ρm(X,Y )→ 0, as m→∞

exponentially fast.

Proof. Put X = Xi for some i ∈ {1, ..., p} and Y = Xj for some j ≥ p + m. Then
we have from the ergodicity and the invariant density that,

E[Xi] = E[Xj ] = a

and from the conditional distribution, Markov property and conditional expectation
properties, with Fi = σ{X1, ..., Xi}, the σ−field generated by X1, ..., Xi,

E[XiXj ] = E[E[XiXj |Fi]] = E[XiE[Xj |Fi]] = E
[
Xi

(
Xie

−b(j−i)∆ + a(1− e−b(j−i)∆)
)]

= E
[
X2
i e
−b(j−i)∆

]
+ E

[
Xia(1− e−b(j−i)∆)

]
= e−b(j−i)∆E

[
X2
i

]
+ a(1− e−b(j−i)∆)E [Xi]

= e−b(j−i)∆
(
σ2

2b
+ a2

)
+ a2(1− e−b(j−i)∆) =

σ2

2b
e−b(j−i)∆ + a2

because

V[Xi] = V[Xj ] =
σ2

2b
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becoming in this case,

(4.7)
|E[XiXj ]− E[Xi]E[Xj ]|√

V[Xi]V[Xj ]
=

∣∣∣σ2

2b e
−b(j−i)∆ + a2 − a2

∣∣∣
σ2

2b

= e−b(j−i)∆.

Then we get a measure of the dependency between any two variables Xi, i = 1, ..., p
and Xj , j ≥ p+m given by,

(4.8) ρ∗(m) = sup
i,j

{
|E[XiXj ]− E[Xi]E[Xj ]|√

V[Xi]V[Xj ]
: i = 1, ..., p; j ≥ p+m

}
= e−bm∆

and the result follows because ρm ≤ ρ∗(m). �

We now compare our estimators with the well known estimators for a and b,

ãn =
SySxx − SxySx

n(Sxx − Sxy) + Sx(Sy − Sx)

and

b̃n = − 1

∆
ln

[
Sxy − ãn(Sx + Sy) + ã2

nn

Sxx − 2ãnSx + ã2
nn

]
when the argument of the logarithm is positive and where

Sx =

n−1∑
i=0

Xi;Sy =

n−1∑
i=0

Xi+1;Sxx =

n−1∑
i=0

X2
i ;Syy =

n−1∑
i=0

X2
i+1;Sxy =

n−1∑
i=0

XiXi+1.

Remark 4.3. Notice that, a first advantage of our technique is that, for the Ornstein-

Uhlenbeck, the estimator b̂n is always well defined while b̃n is well defined only when
the argument in the logarithm function is positive.

We used the transition density, which is known, to simulate trajectories of the
Ornstein-Uhlenbeck diffusion considering different values of b and for a fixed value
of a. We obtained the results presented in the following tables with mean, standard
deviation and the mean square error values for the estimators under analysis. We
have fixed σ = 1 and the time lag, ∆ = 1, the results are from 1000 observations
in 500 simulated trajectories.

Table 1. Mean, standard deviation and mean square error for
both estimators of b when k = 100, m = 10

b Mean(̂bn) Mean(̃bn) SD(̂bn) SD(̃bn) MSE(̂bn) MSE(̃bn)

0.01 0.015 0.015 0.007 0.007 7E-5 7E-5
0.1 0.106 0.105 0.017 0.018 3E-4 3E-4
0.5 0.517 0.508 0.035 0.044 1.5E-3 1.9E-3
1 1.034 1.015 0.055 0.081 0.004 0.007
2 2.065 2.062 0.097 0.255 0.014 0.069
5 5.159 4.159 0.238 1.229 0.082 2.213
10 10.317 4.188 0.477 1.175 0.327 35.153

Looking at Table 1, we can see that the results for our estimator of b are better
than least squares estimators when we consider a decomposition (k = 100, m = 10).
In Figure 1 we plot the empirical versus the theoretical correlation coefficient and
we can see that they are very close to each other being that consistent with the
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Table 2. Mean, standard deviation and mean square error for
both estimators of a(a = 0) when k = 100, m = 10 and different
values of b

b Mean(ân) Mean(ãn) SD(ân) SD(ãn) MSE(ân) MSE(ãn)

0.01 0.104 0.157 2.875 3.086 8.262 9.527
0.1 0.012 0.012 0.306 0.308 0.093 0.095
0.5 0.002 0.002 0.062 0.062 0.004 0.004
1 0.001 0.001 0.032 0.032 0.001 0.001
2 7E-4 7E-4 0.018 0.018 3E-4 3E-4
5 4E-4 4E-4 0.010 0.010 9E-5 9E-5
10 3E-4 3E-4 0.007 0.007 5E-5 5E-5
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Figure 1. Empirical vs theoretical correlation coefficient (ρ)
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proposition 4.2. The rate of convergence of the transition density to the invariant
density for the Ornstein-Uhlenbeck diffusion depends on b and is faster for larger
values of b, so our results are better for these values of b.

Since the parameter a does not change the process dynamics but only the mean
reverting position we only present results for a = 0. For this parameter there is
no difference between the two estimators for different values of b, as we can see in
Table 2.

Application 2. Now we will apply our estimation procedure for the class of

processes presented in example 2, for different values of γ and with the ab > σ2(γ+1)
2

condition satisfied. First we will look at the Cox-Ingersoll & Ross process (γ = 0)
and then we will get assymptotic results on consistency of the parameters estimators
for the general case.

The invariant density for the Cox-Ingersoll & Ross process is the gamma density,
Gamma(α, β), with α = 2ab

σ2 , β = 2b
σ2 . For simplicity we take σ = 1 and deduce the

estimators for a and b using in each subsample the maximum likelihood estimators
for a and b.

We obtained,

(4.9) ân =
1

m

m∑
j=1

âj,k =
1

m

m∑
j=1

[
1

k

k∑
i=1

X(i−1)m+j

]
and

(4.10) b̂n =
1

m

m∑
j=1

b̂j,k =
1

m

m∑
j=1

ρj

[
2

k

k∑
i=1

X(i−1)m+j

]−1

where, for j = 1, ...,m, ρj is solution of

ln(ρj)− ψ(ρj) = ln

(
1

k

k∑
i=1

X(i−1)m+j

)
− 1

k

k∑
i=1

ln
(
X(i−1)m+j

)
with, ψ(ρj) the digamma function. This equation must be solved using numerical
methods.

Alternatively, we can deduce the estimators for a and b using in each subsample
the moments estimators for the gamma density. We get in this case,

(4.11) ăn = ân =
1

m

m∑
j=1

âj,k =
1

m

m∑
j=1

[
1

k

k∑
i=1

X(i−1)m+j

]
and

(4.12) b̆n =
1

m

m∑
j=1

b̆j,k =
1

m

m∑
j=1

âj,k

[
2

k

k∑
i=1

(
X(i−1)m+j − âj,k

)2]−1

.

We now compare our estimators with the martingale estimating function esti-
mators for a and b,

b̃n = − 1

∆
log

(∑n−1
i=0 Xi+1

∑n−1
i=0 X

−1
i − n

∑n−1
i=0 Xi+1X

−1
i∑n−1

i=0 Xi

∑n−1
i=0 X

−1
i − n2

)
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if the logarithm argument is positive and

ãn =

∑n−1
i=0 Xi+1X

−1
i − ne−b̃n∆

(1− e−b̃n∆)
∑n−1
i=0 X

−1
i

.

We used the Euler scheme with a discretization step δ = 0.1 to simulate trajec-
tories of the Cox-Ingersoll & Ross process but we only work with the observations
X0, X1, X2, ..., at times 0, 1, 2, ..., respectively. Again, we consider different values
for b and we obtained the results presented in the following tables when compar-
ing the sub-sampling estimators derived from maximum likelihood and moments
estimators in the sub-samples with the traditional linear martingale estimating
functions estimators. We have fixed σ = 1 and the time lag, ∆ = 1 and we consider
k ×m observations (≈ 1000) from 500 simulations.

Table 3. Mean, standard deviation and mean square error for
both estimators of b when we use maximum likelihood estimators
in the sub-samples

k ×m b Mean(̂bn) Mean(̃bn) SD(̂bn) SD(̃bn) MSE(̂bn) MSE(̃bn)

100×10 0.01 0.015 0.013 0.006 0.006 6E-5 4E-5
100×10 0.1 0.105 0.086 0.016 0.014 3E-4 4E-4
100×10 0.5 0.502 0.475 0.038 0.053 0.001 0.003
67×15 1 0.995 1.384 0.058 0.252 0.003 0.211
28×36 2 2.016 5.108 0.108 1.130 0.012 10.930
15×67 5 4.681 0.410 0.284 0.103 0.182 29.274
10×100 10 7.126 0.004 0.470 0.055 8.479 100.084

Table 4. Mean, standard deviation and mean square error for
both estimators of b when we use moments estimators in the sub-
samples

k ×m b Mean(b̆n) Mean(̃bn) SD(b̆n) SD(̃bn) MSE(b̆n) MSE(̃bn)

67×15 0.01 0.015 0.013 0.007 0.006 7E-5 4E-5
67×15 0.1 0.101 0.086 0.016 0.014 3E-4 4E-4
50×20 0.5 0.500 0.475 0.039 0.053 1.5E-3 3.4E-3
40×25 1 0.993 1.384 0.058 0.252 0.003 0.211
20×50 2 2.008 5.108 0.108 1.130 0.012 10.930
10×100 5 4.824 0.410 0.314 0.103 0.130 29.274
10×100 10 6.417 0.004 0.423 0.055 13.014 100.084

We can observe from Tables 3 and 4 that the estimators obtained using maxi-
mum likelihood estimation or moment estimation in the sub-sampling do not pro-
duce very different results. As we can see the results for our estimators are similar
to martingale estimating functions estimators when we consider optimal decompo-
sitions for k ×m and small values of b, but are better when b increases.

For the general case, that is, for arbitrary γ, (but satisfying ab > σ2(γ+1)
2 ),

the invariant density, for the process solution of the equation in example 2, is the
gamma density, Gamma(α, β), with α = 2ab

σ2 − γ, β = 2b
σ2 . We will suppose that
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γ is know and we deduce the estimators for a and b using in each subsample the
moments estimators for the gamma density. We will get in this case, the equations,

(4.13)

{ α
β = X̄j
α
β2 = S2

j
,

with X̄j the jth-subsample mean and S2
j the jth-subsample variance, for j =

1, ...,m.
Then we get the parameter estimators,

(4.14) ăn =
1

m

m∑
j=1

[
X̄j +

S2
j

X̄j
γ

]
and

(4.15) b̆n =
1

m

m∑
j=1

b̆j,k =
1

m

m∑
j=1

σ2X̄j

2S2
j

.

We have also a result on consistency for this estimators.

Proposition 4.4. The sample partitioning, moments estimators of a and b in this
class of processes, are consistent.

Proof. Consider ξ the random variable with the invariant gamma density, Gamma(α, β),

where α = 2ab−γσ2

σ2 , β = 2b
σ2 . Is straightforward to prove the consistency of both

estimators, since, using the ergodic theorem,

(4.16) X̄j =
1

k

k∑
i=1

X(i−1)m+j
n→∞−→ E[ξ] =

α

β
a.s.

and

(4.17) S2
j =

1

k

k∑
i=1

(X(i−1)m+j − X̄j)
2 n→∞−→ V[ξ] =

α

β2
a.s.

Then,

(4.18) X̄j +
S2
j

X̄j
γ
n→∞−→ α

β
+
γ

β
= a a.s.

and

(4.19)
σ2X̄j

2S2
j

n→∞−→ βσ2

2
= b a.s.

proving the consistency of the estimators in the sub-samples. Being the sample
partitioning estimators just the mean of this estimators the result follows. �

When the γ parameter is equal to one, the process solution of the stochastic
differential equation (2.7) is known as the Dixit & Pindyck process, for this process
and the following others we do not have an explicit transition density and because
of that our estimation method is more usefull than in the previous cases. As to
the best of our knowledge there are no explicit estimators for the parameters of the
next processes and that is the reason why we will not compare the estimates of the
parameters. However, we will show, through simulation, that from the subsampling
procedure we can get good results for the parameter estimators. In the simulation
study we will use the Euler scheme to simulate the trajectories with a discretization
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step of δ = 0.01 but keeping only the observations at integer times, that is, at times
i∆, with ∆ = 1. For the Dixit & Pindyck process we get the results presented in
Table 5.

Table 5. Mean and standard deviation for the estimate of b in
the Dixit & Pindyck process (γ = 1)

k ×m b Mean(b̆n) SD(b̆n)

100×10 0.01 0.0100 0.0009
67×15 0.1 0.1005 0.0060
67×15 0.5 0.4955 0.0251
36×28 1 1.0006 0.0496
28×36 1.5 1.4943 0.0731
20×50 2 2.0099 0.1074
20×50 5 4.8894 0.2584
10×100 10 9.6225 0.5927

For the process, solution of the equation in example 2, with parameter γ = 1/2
and γ = 2, we get the results in Table 6.

Table 6. Mean and standard deviation for the estimate of b in
the case of γ = 1/2 or γ = 2

γ = 1/2 γ = 2
b k ×m Mean(b̆n) SD(b̆n) k ×m Mean(b̆n) SD(b̆n)

0.01 100×10 0.0109 0.0025 100×10 0.0141 0.0049
0.1 100×10 0.0999 0.0071 100×10 0.1017 0.0080
0.5 100×10 0.4978 0.0265 100×10 0.5059 0.0267
1 67×15 0.9982 0.0485 100×10 1.0020 0.0521

1.5 50×20 1.4942 0.0742 67×15 1.5057 0.0716
2 50×20 2.0051 0.1033 50×20 2.0065 0.0987
5 28×36 5.0199 0.2478 20×50 5.0353 0.2676
10 15×67 9.8467 0.5368 10×100 10.2960 0.6332

Application 3. In this last application we will study the ergodic process pre-
sented in example 3. We study this process to show that our technique works for
ergodic processes where the invariant density is an unusuall distribution, in this
case, without moments of any order.

The invariant density for the process considered is the Cauchy density, Cauchy(α, 1).
For simplicity we take σ = 1 and deduce the estimator for α using the sub-sampling
median.

We obtained,

(4.20) α̂n =
1

m

m∑
j=1

Median(Xj , Xm+j , ..., X(k−1)m+j).

We used the Euler scheme in the same conditions as in the previous application.
For the same value of α and different combinations of k and m we obtained the
results presented in Table 7. We have fixed σ = 1 and the time lag, ∆ = 1.
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Table 7. Mean, standard deviation and mean square error for the
estimators of α when we use the median estimator in the sub-
samples

k ×m α Mean(α̂n) SD(α̂n) MSE(α̂n)

10×100 10 10.2209 1.46897 2.20237
25×40 10 10.1789 1.47740 2.21033
40×25 10 10.1784 1.47608 2.20629
100×10 10 10.1720 1.46441 2.16979

In this application we used the median to estimate the centrality parameter of
the Cauchy distribution, α. The results we obtained are good and do not depend
on the decomposition. In this case we do not present results for other parameter
values because the standard deviation and the mean square error were quite similar.

5. Final remarks

This paper points towards the use of the invariant density while converging
out inference on ergodic diffusions. The results suggest that the technique pro-
vides better estimators than the usual techniques for the considered processes that
we were able to compare. It should be emphasized that our estimators not only
provide smaller MSE but they are always well defined in contrast with the other
presented estimators. For the new processes the results also suggest that the tech-
nique is valid when we choose appropriate decomposition of k and m. In fact, an
open problem is how to choose the optimal decomposition of the sample. For the
Ornstein-Uhlenbeck process this question is answered by proposition 4.2 and the
same idea could, eventually, be applied to other processes. For now and for pro-
cesses where the correlation coefficient equal to zero does not imply independence,
we can suggest a simple procedure to obtain a good decomposition. Starting with
a default decomposition (k ≈ m) we obtain initial estimatives for the parameters
and with this estimatives we can do simulations to get the optimal decomposition
for the same dimension samples and then, we compute estimatives using the orig-
inal sample and this optimal decomposition. This procedure can be repeated if
necessary.
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14 LUÍS P. RAMOS, PEDRO P. MOTA, AND JOÃO T. MEXIA
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