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1. Introduction

In a previous paper [2], the authors presented a new variational approach by I'-convergence in
order to study the asymptotic behavior of the spectral problem for the Laplace operator with
homogeneous Dirichlet boundary conditions in a tube of infinitesimal thickness. The limit problem
arising from a 3D-1D reduction analysis was shown to be characterized by a 1D-effective potential
depending explicitly on the local curvature and torsion. From there, very interesting effects on the
energy levels could be evidenced in terms of the geometrical characteristics of the thin domain, in
a way which was complementary to many results in the literature, as for instance in [3], [6], [7].



In the present paper we perform the same analysis for the case of the Laplace operator with Robin
boundary conditions, more precisely, we consider the eigen problem:

Ote +Yeue =0, on OS),, (1'1)

{ —Au, = Nug, in Q,

on.

where ¢ is a small positive parameter, . C R? is a thin and long domain generated by a cross
section w, = ¢ w (being w a fixed subset of R?) which rotates along a curve through an angle
a(s) with respect to the Frenet frame. Here the function +. is a suitable scaled real coefficient in
L>®(09.,RT). In terms of local coordinates x = ¥_(s,y) with (s,y) € [0, L] x dw, (see (2.6) in
Section 2), it has the form

V(Ey), for(y, s) €]0, L[x dw,
Ye(x) = § 0(y), for (y,s) € {0} x w, (1.2)
(y),  for (y,5) € {L} X w,

where function v € L>®(0w;R™) is a weight for the Robin condition on the lateral part of the
thin tube Q. whereas 9,7, € L (w;R™) are associated with the Robin condition we set on
the two bases. Notice that the Dirichlet case studied in [2] can be formally recovered by taking
~¥,%0, 7L = +0o. However the situation is quite different here and the asymptotic analysis as € — 0
of the eigenvalue problem (1.1) under the scaling given in (1.2) reveals an important novelty.

Indeed, two rather distinct situations will occur depending on the geometric constant vector

1 . : . . . :
o= / u2ndo where ug is the fundamental mode in the cross section w with exterior unitary
Ow

normal n. If pg vanishes, which is the case when subset w and function ~ present enough symmetry,
then the lower level eigenmodes are propagating along the central curve and are characterized
through a suitable 1D spectral problem with a potential weighted by local torsion and curvature;
thus the situation is similar to the Dirichlet case treated in [2].

In contrast, if pg is a non zero vector, then a localization phenomenon takes place in the vicinity of
the minimum point of a suitable function on the central curve depending on the curvature and on
the rotation angle. In that case we show that the low level eigenmodes behave, after blow-up, like
the eigenfunctions of a 1D-harmonic oscillator. Let us notice that similar effects have been pointed
out recently in [1] where narrow strips in R? are considered whose thickness presents a strict global
maximizer. Two dimensional waveguides with mixed Dirichlet and Neumann conditions have been
also considered in [8,9].

In Section 2, after introducing the geometry of the waveguide and the scaling, we present our
asymptotic variational approach and some preliminary results. In particular, we give a perturbation
result for the fundamental eigenvalue in the cross section. In Section 3 we study the symmetric
case (po = 0) and prove the spectral convergence to a 1D limit Sturm-Liouville problem. The non
symmetric case pg # 0 is considered in Section 4. We prove the localization of the lower energy
levels and evidence a gap between them, blowing up like e=1/2 as ¢ — 0.

2. Definitions and preliminary results

2.1. Geometry of the domain. Let r : s € [0,L] — r(s) € R3 be a simple C? curve in R3
parametrized by the arc length parameter s. Denoting by 7' its tangent vector and assuming
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that 7"(s) # 0 for every s € [0, L], we may define the usual Frenet system (7', N, B) through the
following expressions:

d
T="=r (=15 N=T/|T|x: B=TxN.

==
Denote by k : s € [0,L] — k(s) € Rand by 7: s € [0,L] — 7(s) € R, the curvature and torsion
functions associated with the curve, respectively. They are functions in L>°(0, L) and they satisfy
the Frenet formulas:

T"=kN; N=-kT+7B; B =-7N. (2.1)

It is clear from (2.1) that the plane defined by (N (s), B(s)) rotates around T'(s), as s moves along
[0, L]. On the contrary, if we consider the Tang system (7'(s), X (s),Y(s)) for X and Y satisfying

X =AT: Y =uT:; T'=-\AXX—-puY, (2.2)

where A and p are functions of the arclength parameter s, the plane defined by (X (s), Y (s)) does not

rotate around 7'(s). It is easy to check from (2.1) and (2.2) that the velocity of the rotation ag(s)

of (N(s), B(s)) with respect to (X(s),Y(s)) at each point s € [0, L] satisfies ag(s) = % = —7(s);

we also obtain that A = —kcosag, p = ksinag (see [2]).

The twisted thin domain on which we will study the energy levels of problem (1.1) will be described
by a rotation function o € L>°(0, L). Let us define

Ny (s) :=cosa(s) N(s)+sina(s) B(s) = cos(a —ag)(s) X(s)+ sin(a — ag)(s) Y(s),

B, (s) == —sina(s) N(s)+ cosa(s) B(s) = —sin(a — ap)(s) X(s) + cos(a — ap)(s) Y(s), (2:3)

Then, given w C R? an open bounded simply connected subset of R?, we define for every small
parameter € > 0

Q. = {:E eER*:x=r(s)+eyi No+eys Ba, s€[0,L], y=(y1,92) € w}. (2.4)
The diameter of the cross section of the domain €2 is of infinitesimal order ¢ (in particular much
smaller than the length L). Moreover, the local torsion at every point of the central curve r(s) is
measured by the parameter 7 := 7 + o/, i.e. by the velocity of rotation of the cross section with

respect to the Tang system.

2.2. Variational formulation on a fixed domain. We start from the variational formulation
of problem (1.1):

/ VUEVw—i—/ ’yauew—)\a/ Ug W for all w € HY(2.) ,
Q. o0, Q.

to which we associate the quadratic energy functional defined in H'(.) by:

F.(w) ::/Q |Vw|? dx + /Q Ye |w|? do. (2.5)

€ 9 €
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As usual in dimension reduction analysis, it is convenient to deal with an equivalent formulation
on a fixed domain @y, :=]0, L[xw. In relation with (2.3) and (2.4), we consider for each ¢ > 0 the
following transformation

(N QL - ﬁe

(s,y) = (s, (y1,y2)) — x=71(s) + € y1 No + € y2B,. (2.6)

Accordingly, to every element u € H'(€.), we associate v € H*(Q) defined by

v(s, (Y1, 92)) = u(Pe(s, (y1,92))). (2.7)

We write the gradient of v in the form (v, V,v), being v" the derivative with respect to s € [0, L].
In order to compute the Dirichlet energy of u on €)., we introduce

Fi=140d, Be(s,y)i=1—ck(s)(2a-y), 2o :=(cosa,—sina), zL := (sina,cosa), (2.8)

where z, -y represents the inner product in R? of z, and y.

Then, after some computations, we get

Oe 0 0
Ve = | —e7 (2t -y) £Cos —esina |, det Vi, = 24.,
eT(2a  Y) £ sin o £ COS (v
L 0 0
Be
_ T2 cos o sin
Vot =
Ve O € €
—TY1 —sina cos
Oe € €

Thus we have

/QS (|[Vu(z)]?) do = /OL/w (IVo(s,y) Vo (s,9)%) €2 B.(s,y) dy ds
- [z

where R is the clockwise rotation matrix <_01 (1)> .

2 g4 (2.9)
v+ (Vyv- R y)%‘ + 6—; (|Vyv|2)] dy ds

Let now = € I'. =]0, L[x Ow. and, representing by t the local tangential coordinate along the

d
oriented boundary of w, define, for y = y(t), y := d—i We have
T N B
Ox Ox o -
s X Frie O —e7(25 - Y) eT(Z0 - V)
0 (Y- za) e(y- zy)



and, consequently,

ox 837

85 ot

where, as can be checked by (2.8) and Taylor expansion of the square root, the function r.(s,y)
satisfies

: = VTSR GF = ot (210)

~2
Te — E(y y)

From (2.10), (2.11) and the fact that v € L>°(0, L), it follows that

‘/ el da(e / /&)'””‘2 <5E —T *(y- y)) do ds

re >0 and < Ce. (2.11)

< CE// lv|?> do ds.
ow

(2.12)
On the other hand, if x € ¥, := {0, L} X w,, then H— X g—; = g2 and we get
[ el do@) =< [ (o 0.0 + 3 (L) P) d. (213)
e w
Let us define the functional F. : H*(Q1) — R by setting
1
—2 //ﬁv—i-VvRy)‘dyds
+/ 7(/ 5 o2y - )2 da) ds
0 0w (2.14)

+ [ (o 100+ (L) ?) dy

1 [k
+6—2/ [/ [35|Vyv\2dy+/ Be v |v|2d0] ds
0 w ow

Then, recalling (2.7) and collecting (2.9), (2.12) and (2.13), we obtain, for small e, the following
estimate:

|F(u) _FE(U” < Ce? ||UH§[1(QL)' (2.15)

2.3. Perturbed problem in the cross section. In view of the last term appearing in (2.14), an
important step is to understand the behavior as ¢ — 0 of the following minimal Rayleigh quotient
in each cross section {s} x w :

/ Bo(s,9) Vol dy+ [ Belsiy)vIol® do
me(s) = inf = 0w . (2.16)
venl() / Bo(s,) [ol? dy

Recalling that (s, y) = 1 —££(s) -y, to each £ € R? we associate the following perturbed spectral
problem in H!(w):

—div([l—ﬁ-y]Vu) = A[1-¢ 9y u, inw,
ou (2.17)

a—+7u—0 on OJw.



For small values of |£|, the related operator is positive self-adjoint with compact resolvent. We
denote by Ag(§) the fundamental eigenvalue of (2.17). It is given by the following minimum
problem:

L=y | VoPdy + [ (1=€ - y) y [v]? do .
M@ = int | TA—E w)ePdy ver@l. @21
Then we observe that
me(s) = Ao (ek(s) za(s)) - (2.19)

Therefore, it is worth studying the behavior of function Ag(€) in a neighbourhood of £ = 0.
Let (Ag,up) be the first eigenpair of the Robin-Laplace operator in w, i.e.,

— Aug = Mg up, inw,
auo
B +yug =0, on Jdw, (2.20)

ug > 0, /uozl;

We associate with ug two vectors (which depend only on w and 7):

1
po = 5/6 udn do and vy :—/ugydy. (2.21)
W

w

We obviously have that Ag(0) = A¢ which is stricly positive since we took for (s) a non negative
function. Moreover, by Krein-Rutman’s Theorem, Ay is a simple eigenvalue for (2.20) and the
associated eigenvector ug can be chosen to be positive on w.

We notice that ug is orthogonal in L?(w) to all components of the vector function Vug — po ug
being py given by (2.21). Indeed, by integration by parts, we have:

2/u0(Vu0—p0u0)dy—/ (V (u§) — 2poud) dy—/ ud -ndo—2py=0.
w w 0

w

Thus, by Freedholm’s alternative, for every & = (£1,&2) € R?, there exists a unique solution x¢ of

BAX£_)\O Xe = —&§-Vug + §-po up in w,
X

ZXE —
o +7vxe =0, ondw, (2.22)

Xe uo dy = 0.

w

By linearity, we have x¢ = &1 x1+&2x2 where the shape functions y; are solutions for £ = e;, i = 1, 2.
Setting x := (x1, x2) and denoting by I5 the 2 x 2 identity matrix, we introduce the following tensor

1 1
Mo = —5 1> + (po @ o) + 5/ uy(y ® n) do +/ up(x ®n)do . (2.23)
ow ow

In the next proposition we show that function Ag defined in (2.18) is differentiable at £ = 0 with
VAo(0) = po. Furthermore we give a polynomial estimate at third order for Ag(€) as well as for
the following “error” functional

Fe(v) = / (1—€ ) (IVoP — (Ao + po - €) v)dy + /8 (-€-y)y ?do.  (2.24)

w
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Proposition 2.1. Let pyg, My be defined by (2.21) and (2.23) respectively. Then there exists
constants C' > 0 and rq > 0 such that:

Ao(&) — <)\0 +po- &+ %Mog- 5)‘ <C P whenever |£| < rg. (2.25)
‘Eg(uo +Xxe) — %Mof . E‘ < CgP whenever |£| < rg . (2.26)

We notice that if, in the expressions (2.21)and (2.23), we substitute uy with the fundamental mode
of the Dirichlet problem in €2, then we obtain pg = 0 and My = —% I which is nothing else but
the result in [2, Proposition 4.1].

The identification of the first and second order terms of Ay(§) near & = 0 can be done directly
by formal asymptotic expansion. However, in order to provide a rigorous proof, we will use an
alternative formulae for matrix My, given in next lemma.

Lemma 2.2. Let pg and My be given by (2.21) and by (2.23), respectively. Then, the following
equalities hold true for every & € R?:

%Moﬁf = /(f'vxduo+(§‘VU0)(§'?J)U0 dy = /(€'VUO)X€+(PO‘§) (yo-&). (2.27)

Proof . Since div((¢-y)¢) = [|€]|* and ||ug| r2() = 1, by integrating by parts we obtain

[ (€ VP way =l + [ (€ (&) uol* o
and, consequently,

2
1
Ll 1

/(f Vo) (€ - y)uo dy = 5 5

/a (€ )& ) [uol dor (2.28)

On the other hand, noticing that { = V(¢ - y) and exploiting equations (2.20) and (2.22), we infer

/(5’VX&)Uody—/(f'VUO)X£dy_/§(VX£U0—Vuoxs)dy

=— /(ﬁ-y)(ﬁ'Vuo)uoder (o - &) (yo - £).-

:@ — % /&d(g n) (€ y) uol® do + (po - &) (yo - &)

where in the last line we exploit identity (2.28). Noticing that /(f-ng) ug dy+/ (&-Vug) xe dy =

/ (€ -n) xe up do, we deduce that
Ow

Jevudy =551 [ €m@nul dot 50m- 90945 [ (€mxcundo (220



_lel®

/<£-wo>><gdy= +1/8 (f'n)(g'y)|U0|2d0—1(,00'§)(y0'§)—1/8 (€n) xeup do (2.30)

4 4 2 2
Plugging (2.28), (2.29) and (2.30) in the second and third members of (2.27), it can be checked
that both expressions agree with %Mgf - £, being My given by (2.23). O

Proof of Proposition 2.1.
We begin by proving (2.25). This is done in two steps.

Step 1. First we notice that the perturbed eigenvalue problem (2.17) is well posed provided ¢ is
small enough. Indeed, if 1 — £ -y has a positive lower bound on w, then the operator

A tw— —div<(1—§ . y)Vw), D(A¢) = {w c H*(w) : (?9_17: +~yw =0, on &u} ,

has compact resolvent and is a positive self-adjoint operator, acting on L?(w) endowed with the
scalar product (ulv) = [ (1—¢-y)uvdy. As a consequence of Krein Rutman’s Theorem, the first
eigenvalue Ag(&) is simple and the second eigenvalue A;(€) is such that Ay(£) > Ag(€). In fact
there exits rg > 0 and x > 0 such that

A1(&) — Ao(§) > K whenever [£| < 7o, (2.31)

which follows from the continuity of functions Ay and A; in a neighborhood of £ = 0. This fact
can be established by using the strong continuity with respect to £ of the resolvent operator or,
directly, by passing to the limit in the variational characterization of Ay(&,) and Ai(§,) on a
sequence &, — &, with the help of the compact embedding H'(Q) C L?(Q).

Let us set P(£) := Ao + po - & + £ Mo€ - €. By the continuity of [Ag(€) — P(£)], we need only to
prove that
Ao(§) — P
by { L9860
£—0, 640 i

To that aim we substitute & by € ¢, where e — 0 and [£] = 1, and show that |Ag(e€) — P(e€)| < Ce3,
for a suitable constant C' (independent of € and of the unit vector &).

}<+oo.

Exploiting (2.31), we may apply the assertion i) of Lemma 5.1 to the operator A.¢ defined in the
Hilbert space H. = L*(w) endowed with the scalar product (u|v). := [ (1 —¢ef - y)uvdy. As we
have (1 — Ce)llul| 2wy < (ulu)e < (14 C¢)llul/12(w), we eventually conclude that (2.25) holds true
provided we show the existence of a sequence of quasi eigenvector {w.} such that:

|Accw: — P(e€)we| 2wy < Ce®||wellr2(w) - (2.32)

Step 2. We prove (2.32). In what follows we will suppose that £ is fixed and, in order to simplify
the computations, we denote A := pg - £ (see (2.21)) and uy := x¢, so that problem (2.22) reads

— Aup — Mg up = =€ - Vug + Mug, in w,

8u1
o +yu; =0, on Jw, (2.33)
uiug dy = 0.

w



Setting Ay 1= %Mof &, we have P(e€) = \g + A1 +e2)\g. Let us consider
We = ug + cug + £2uy | (2.34)
where us is the unique solution of

— AUQ — )\0 U2 = —5 . Vu1 — (f . V’LL())(g . y) + )\1U1 + )\QUO, in w,

0
ghz +yus =0, on Jw,
on

/u2u0 dy =20

The existence of usy follows from the Fredholm orthogonality condition

(2.35)

A2 = /[(5 - Vug)ug + (£ - Vuo)(§ - y)uol dy

which by (2.27) is satisfied precisely for Ay := %Mgé_ -&. On the other hand w. given by (2.34)
satisfies the prescribed Robin condition and therefore belongs to the domain of A.¢.

Now we compute A.¢(w.) — P(e€) gathering power like terms in € and using (2.20), (2.33), (2.34)
and (2.35) :

—div( [1— (g€ y) Vwe) — P(€)[1 — (€ - y)Jwe = — 3[(€ - y) Aug + £ - Vug]
— 3[(€ - y) (Noug 4+ Arur + Agug) — Aus — Aoy
— et [(€ - y)(Arug + dour) — Agug)]
— &% [(&- y)haua).

In view of the continuous polynomial dependence of uq,us, Ay and Ay with respect to &, and since
|lwe ||z — 1, we can therefore find a constant C' > 0 independent of € such that (2.32) holds true.
This completes the proof of (2.25) .

Proof of (2.26) : In view of (2.20), we have that —div((1—¢ - y)Vug) = Ao(1—& - y)up + & - Vug.
By integration by parts, we deduce that for every ¢ € H'(w) it holds

/w(l—f y) (VuoVe — Aguo ) + /

ow

(1€ ) o) = /<§-Vuo>w. (2.36)

In particular for ¢ = ug, taking into account that fw ud =1 and (2.21), we obtain:

Be(uo) = = [ po-€0-)ud+ [ (€Vu0) o = (€-0)€-s0) =€ po+5 & [ Td) = (€:0)(Ew0).

Taking now ¢ = x¢ in (2.36) and recalling that fw ugxe = 0, we get

Ee(uo + xe) = Be(uo) + Ee(xe) +2 {/(1—@) (Vo ¥xe — (Ao + € - po) tto xe) +/ (1€ )y xe

ow

_(§‘P0)(§‘yo)+E5(X5)+2/(§’VU0)X£+2§‘P0 /(ﬁ‘y)uom-

w w

(2.37)



On the other hand, by (2.22) we have

_div<(1—§-y)VX§> = (1€ 5)(Moxe — € Vg + € - po o) + € - Ve,

from which follows, by multiplying by x¢ and integrating by parts ,

Ee(xe) = —/(1—£-y) (€ po) (Ixel” = uo xe) + & - Vuo xe] +/£-VXng-

Then, recalling that [ wugxe = 0, we rewrite (2.37) as follows
Bl +x6) = (€ po)(€ w0 + [ (€ Vo) xe + R,
where the reminder R() is a sum of terms of power order greater than 3 with respect to &:

RE) = [ (€ € Tunxe — [=¢-0)(€-p0) IxeP + (€ po) |

w

(§'y)U0X5+/(§'VX£)X£'

Therefore, taking into account the second equality in (2.27), we conclude that, for |£| sufficiently
small,

e+ xe) — €] = RGO < CleP

3. The symmetric case

In this section we will assume that the solution ug of (1.1) satisfies the following balance relation:

po = / ui ndo = 0. (3.1)
ow

This condition is necessary in order that, for small values of ¢, the lower energy modes propagate
along the x3 direction. Otherwise, as we will discover in the next section, the fundamental mode
will localize. Let us notice that condition (3.1) involves only the geometry of w and the function
v € L*°(Jw) associated with the Robin condition. In particular, if «y is constant, it can be checked
that it is fulfilled if w has one axis of symmetry.

We will assume further that the curvature k(s), the torsion 7(s) and the angular parameter «(s)
have the following regularity

ke L>*(0,L) , 7€W">(0,L) , aecW>»>(0,L). (3.2)

Then, recalling (2.8) (in particular 7 = 7 4+ o) and (2.23), we set

s) = S ME(s) €(5) + Co 7 (92 = CaF'(s) () = K()7age) (33)
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where constants C1,Cy (depending on w and ug) are defined as follows:

1 .
Crim [ Vuo-RyP dy+5 [ vud (i do o Coi= [wolVuo-Ry)dy (3.9
w ow w

The scalar function ¢(s) appearing in (3.3) will play the role of an effective potential in the limit
problem which rules the x3-propagation of lower order modes. More precisely, let us introduce the
following Sturm-Liouville problem

w=pw, weH?0,L),
Fo — C27(0 ) w(0) =0 (3.5)
L+ CoF(L)) w(l) =0,

—w’ +q(

/'\\_/

w'(L)—l—(

N

where we have set
Yo = / Yougdy , 1= / Y1 ug dy. (3.6)

Then, the main result of this section states the convergence of the family of spectral problems (1.1)
in the symmetric case.

Theorem 3.1. Assume that (3.1) and (3.2) hold. Then the eigenvalues \j < A\j < -+ < X8 <.
of the spectral problem (1.1) satisty for each i € N

AP = 22 S I T (3.7)
where p; (i € N) are the eigenvalues of (3.5). Furthermore, if u$ is a normalized eigenvector for
problem (1.1) associated with AS, then, up to a subsequence, v5(s,y) = u5(-(s,y)) converges
strongly in L?*(Qr) to vi(s,y) = w;(s)ug(y) where w; is a normalized eigenvector of problem (3.5)
associated with p;. Conversely, any such v; is the limit of a sequence uj o 1. where ui Is an
eigenvector of (1.1) associated with 5.

Remark 3.2. The result above is quite similar to the main result of [2]. Only changes the structure
of the effective potential q(s). In particular, the influence of the curvature k(s) is taken into account
through the function My&(s) - £(s) where My is not a priori a scalar tensor as it was in [2]. Notice
that if we formally substitute the Robin condition on the lateral part of the tube by a Dirichlet
one (that is v = 400), we get My = —31, (independant of the shape of w) and we recover the
effective potential obtained in [BMT].

The key argument in order to prove Theorem 3.1 consists in establishing the I'-convergence of
suitable quadratic energies defined on H'(Qr) and to apply to them the general statement of
Proposition 5.2 (see Appendix). We observe that, thanks to (3.1), applying (2.25) yields

W N lMo £(s)-&(s) uniformly on [0, L] . (3.8)

In view of (3.8), these functionals are obtained, up to multiplicative factor €2, by shifting the initial
energy F.. More precisely, we introduce G- : L?(Q1) — R defined by

- (I 2 : 1
Gty L 2P0 =5 [ [ Bdestay itoemiQu, o)
+o0o otherwise.
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In connection with spectral problem (3.5) , we consider G : L?(Q) — R defined as follows

Go(w) if v(s,y) = w(s) up(y), we H(0,L),
G(v) := (3.10)
400 otherwise,

L
Go(w) = /O (1w + [ 17 + %Mof ] + 207 (shu'w) ds+ 50 w(0)” + AL w(L)? (3.1)

Proposition 3.3. Under the hypotheses of Theorem 3.1,~(~¥E [ - converges in L*(Q) to G given
by (3.10) and (3.11). Moreover, the family of functionals G. satisfies all conditions 1), ii) and i)
of Proposition 5.2 .

Proof. We proceed in three steps: in Step 1 we prove that {Ga} satisfies the hypothesis i) and
i7). Then we split the proof of éii) into two steps: in Step 2 we prove the lower bound inequality

for the I'-convergence, and in Setp 3 we establish the existence of a sequence realizing the lower
bound.

Step 1. Recalling the definition of G. (see (3.9) and (2.14)) we have

s

1 L
t3 [/ ﬁe(|Vyv|2—>\o|v|2)dy+/a Be v |v|2da} ds
0 w w

2
'+ (Vyv-R y)f" dy ds

(3.12)
L 7";2 L
+/ — </ v v (y - 9)? d0> d5+6/ / v [v]? re do ds
0 2 dw 0 Ow
+ [ 00 .0+ [o(L.)) do,
where r.(s,y) is uniformly bounded in (s,y), for € small enough (see (2.10) and (2.11)).
)
Since 7, y0, vz, and 7-E(y -9)? + er. are non negative (see (2.11)), from (3.12) we deduce
Loy 2
v)Z/ /ﬁ_ v’—i—(Vyv-Ry)%‘ dy ds
10 b (3.13)
= [ 0Tl < xlePya [ 5y poas | as
and also, using the definition of Ag(e£(s)) (see (2.18)),
/ / [ '+ (Vyu-Ry)T ‘ +ﬁEMQ))_)\O|U|2} dy ds
+/ —</ v v (y - 9)? do) ds—i—a/ / v |v|* re do ds
0 2 Ow dw
(3.14)

= [ o o0+ L)) dy

AL

v+ (Vyo - Ry)~‘ +ﬁEW|U|2} dy ds

12



Since (3. converges uniformly to 1, in view of (3.8) and (3.14), for ¢ small enough we can find ¢y
such that condition 7) is satisfied.

Consider now a sequence {v.} bounded in L2(Qy), such that G.(v.) is also uniformly bounded.
Then, first from (3.13) and (3.8), and then from (3.14), we will obtain, for some M and N
independent of ¢,

Jo

From (3.15) , we infer that the sequence {Dv.}, where Dv. = (v., V,v.), is bounded in [L*(Q)]>.
Thus {v. } is bounded in H!(Q,) and strongly relatively compact in L?(Q,) by Rellich-Kondrachov
Theorem.

2
V. + (Vyv. - R y) %( < M, IV, 0> < N. (3.15)
QL

Step 2. Let {v.} bea sequence such that v. — v in L?(Qr). Up to a subsequence we may assume
that lim i(r)1f G:(ve) = liH(l) G:(v:) < 400 . Then, as proved in Step 1, the sequence is bounded in
E— E—

H'(Qp) and inequalities (3.15) apply. Therefore, v belongs to H*(Qr) and v. = v/, Vv, = Vv
weakly in L?(Qr). In particular, as R y,7 € L>=(Q), we obtain:

L+ (Vyve - Ryt — o +(Vyo-Ry) 7.
Futhermore, from (3.14) and the uniform convergence (3.8) we deduce that

1

[+

+

lil;n_)iglf G-(v.) > /L {‘U/ +(Vyv-Ry) T (MO &(s) - g(s))|v|2} dy ds

L =2
7— .
+/ 5 </8 v Py - 9)° do> d8+/ (Yo [0(0,9)* + 71 |v(L,y)?) dy.
0 w "
. (3.16)
On the other hand, from (3.13) and since G¢(v.) is uniformly bounded, one has that

L
0> hminf/ </ ﬁ€(|vyve|2 - >\O|U€|2)dy + Be v |U€|2d0) ds.
e—0 0 w ow

But

L L
liminf/ / B:(|Vyve|* = Xolve|?) dy ds +/ / Be v |ve|? do ds >
0 w 0 ow

e—0
L L
/ / [(V,0]* = Xo|v|?)dyds +/ / v [v]2dods > 0,
0 w 0 ow

by the definition of \g. Therefore, for a.e. s € (0, L),

J 1 = daloP)ay+ [ P =0

and v(s, ), as an eigenvector associated with Ao, is proportional to the ground state ug. We deduce

that v can be written in the form v(s,y) = w(s)uo(y) with w € H'(0, L) (since v € H'(Qr)). We

plug this expression of v into (3.16) to conclude that lim i(I)lf G.(v:) > G(v) where G(v) = Gp(w).
e—

This achieves the proof of the lower bound for the I'-convergence.
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Step 3. Let v € L?(Q). We have to show the existence of a sequence {v.} such that v. — v and
liII(l) Ge(v:) = G(v). We may assume that G(v) < 400 so that we can write v(s,y) = w(s)uo(y)

for a suitable element w € H'(0,L). We consider v. defined by v. = w(s)[uo(y) + ep(s,y)] where
o € HY(Qy) is given by o(s,y) = Xe(s)(¥), Xe(s) being the solution, for each s, of problem (2.22),
for £ = £(s). Clearly v. — v strongly in H'(Qp) and, as 3. is uniformly close to 1, we have

[, 5
_/L

L
= / [w' | + C17(5))?|w|? + Cyw' w7 (s) ds
0

~2

9 L
v;+Vyv5-Ry7~" dsdy+/ T—(/ 7|U5|2(y-y)2do> ds]
0 2 Ow

L ~2

2
v'—i—Vyv-Ry%‘ dsdy+/ T—(/ v v (y - 9)? da)ds (3.17)
0 2 ow

and
glg(l)/ (70 10(0,9) 1> + 7 [ve (L, 9)*) dy = Fo [w(0)[* + 7z [w(L)[. (3.18)

On the other hand, since v, = w(s) (up + xz¢), replacing 3. by [1 — (& - y)] and using assertion ii)
of Proposition 2.1 with pg = 0, we obtain

1
S [ B (1990 = doloel?) dy + [ 5o v o] dor] =

Ow 3.19
) ) (3.19)

= €_2|w(8)|2E€£(s) (uo + Xeg(s)) = lw(s)|? 3 My &(s) - §(5) + pe(s),

where liH(l) p<(s) = 0, uniformly in [0, L].
Passing to the limit in G¢(v.) as e — 0 and taking into account (3.17), (3.18) and (3.19) integrated
with repect to s, we are led to
- L 1
tim Gifor) = [ [l (€7 4 Mot - € + 2Car(pun] ds + Fow(0? + Fuw(L)®
E— 0
which completes the proof. O

Proof of Theorem 3.1. By Proposition 3.3, G given by (3.11) is nothing else but the I'-
limit in L?(Qr) of (G.) as ¢ — 0. It is a lower semicontinuous and quadratic functional from
L?(Qr) into (—o0,+00] (in the sense of ([5, Theorem 11.10)). By (3.11) its domain of finiteness
D(G) = {w(s) ug(y) : w € H'(0, L)} can be identified with H'(0, L) and we have

G(w(s)uo(y)) = Go(w) = ag(w,w) ,

where ag is the continuous coercive bilinear symmetric form on H'(0, L) deduced from the right
hand side of (3.11). After integration by parts and recalling the definition of ¢ in (3.3) , we observe
that for every smooth test function ¢, there holds

ao(w, p) = /0 (w'e" + quep) ds 4 Cy ([?ww] (L) — [fwy] (0)) + Fow(0)¢(0) + Frw(L)p(L).
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Therefore, the self-adjoint operator associated with ag is the (compact resolvent) operator Ay :
L*(Qr) — L*(Qr) whose domain D(Ag) consists of all elements w € H?(0,L) which satisfy the
boundary conditions appearing in (3.5) and such that Agw = —w"” + ¢(s) w for all w € D(Ay).
Then, Theorem 3.1 follows by applying Proposition 5.2 to the sequence {G.}, which by Proposition
3.3 satisfies all the required conditions. O

4. Non symmetric case and localization

In this section we consider a geometry w and a Robin factor v(s) for which the balance condition
1
(3.1) is not satisfied, that is py = 3 / u3 n do is a non zero vector.
ow
It turns out that localization occurs at the minimum points of the following scalar product

p(s) == po-&(s)  (recall {(s) = k(s)za(s)) - (4.1)
We will assume that the function ¢ is of class C?([0, L]) and that it admits a unique global minimizer
at so € (0,L):
o = @(s0) < p(s) forall s # sg and ¢"(sg) > 0. (4.2)
p(s) — #(s0)
|s — so|?
at s = sg is positive continuous on the whole interval [0, L]. Thus, there exists 79 > 0 such that

In particular ¢’(sg) = 0 and the function extended by prescribing the value %gp’ "(50)

1
nols — so|> < @(s) —po < —Js — s> for every s € [0, L] . (4.3)
Mo

We are going to show that localization occurs in the vicinity of r(sg). The concentrating behavior
of eigenvectors turns out to be described after a suitable blow-up by the lower level eigenfunctions
of the classical 1D-quantum harmonic oscillator. More precisely let

(po - €"(s0)) (4.4)

vy ‘=

DO =

and consider the spectral problem

A~

—" gt =vw, @< H*(R)NLA(R;t%dt), (4.5)
(being L*(R; t%dt) the subspace of functions w € L*(R) such that [, t* [@|* dt < o0).
We recall (se for instance [4, & 2, Prop 25-26]) that we may associate with (4.5) a positive self-
adjoint operator in L?(R) with compact resolvent and whose eigenvalues are all simple and given

by
vi = v(1+2i) , ieN. (4.6)

Moreover, there exists an othonormal basis of eigenfunctions in terms of Hermite polynomials as
follows:

(0) = g VT ) L 0= ) e e ) )

2
In particular, the normalized fundamental mode w(t) := /2 e "7 satisfies

~ 12 ~112 Vo 21~ 12 1 41~ 12 3
wol° =1 /w = — , /t wo|” = =— /t wo|” = —5 4.8
JACt (e =2 . [l =ge o [l g s

Our second main result reads as follows
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Theorem 4.1. Assume that £(s) given in (4.1) belongs to CQ([O ]) and that (4.2) is satisfied.
Let v; be defined by (4.6). Then the eigenvalues \j < \] < --- < X5 < .- of the spectral problem
(1.1) can be expanded as follows

Ao
A —
K 62 \/E

Furthermore, if wu is a normalized eigenvector for problem (1.1) associated with X\, then,
up to a subsequence, ¥5(t,y) = &'/5us(e(so + €'/*t,y)) converges strongly in L*(R x w) to
0;(t,y) = £w;(t)uo(y), being w; given by (4.7). Conversely, any such v; is the limit of a sequence
of eigenvectors u; for (1.1) associated with A.

where, for each i € N, hH(l) v = 1. (4.9)
E—

Since the eigenvalues v; are simple, we infer from previous theorem that, for all i, the spectral
distance A5, ; — A7, 4 > 0 is of order 1//c.

Our next issue is the asymptotic behavior of the first eigenvalue \§ as ¢ — 0. We assume that
the function o(s) in (4.1) still satisfies (4.2) and, in addition, £(s) belongs to C*([0, L]). Recalling
(2.23) and (3.4), we set:

2

_ 1 sa) - E(s #(s (s 1 po - €W (s0) 17 po - €3 (s0)
B = 5 Mass0)s0) + C1 750 = Co /(o) + 5 (220 ) = T (220 o)

Conjecture. The first eigenvalue \j satisfies the following expansion

e Ao, Mo
)‘O = -2 +—+1—/2+00+0( )

In this paper we are able to prove the upper bound part of the conjecture above, namely

Proposition 4.2. Let £(s) belong to C*(]0, L)) and satisfy (4.2) . Then it holds

Ao Mo Vo
hr;:sgp ()\5 — = 81/2) < bp. (4.11)

We strongly believe that the upper bound obtained here is optimal. However the proof of the lower
bound inequality seems to require much more intricate arguments.

Remark 4.3. In order to describq the localization of the eigenmodes vl in the vicinity of
so, we made a blow-up of function v. by setting 0.(t,y) = 66“/21)(80 + e%,y) where a = 1/4
(notice that the L? norm remains unchanged). Let us explain this choice of o performing the
change of variable t := i _aSO in the shifted energy J.(v) = F.(v) — (Ao + € o) fQ B:|vl?,
€

where in order to simplify we take 7 = 0 and vy = 71 = 0 and in which we substitute the
expression fOL L[, B:|VyvPdy + [, B v [v|*do] ds, appearing in (2.14), by its optimal lower
bound fOL I, Ne€)Be|v|dy ds. With o(t,y) = e*/?v(sg + et,y), I. == [—j—g, %] and B, ~ 1,
we roughly obtain

L
sy~ e [ [P ayars [ [ (etso+70) = o+ ) [oPdyds
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Exploiting (2.25) and (4.3) , we can see that A(e&(so + €“t)) — (Ao +¢€ o) is of order e'+2*,
Then, in order to balance the different powers of ¢ in the expression above for J.(v), we need that
1+2a =2—2a. Thus a = 1/4 and J.(v) is of order £3/* which , after division by volume factor
€2, gives exactly the exponent e~'/* appearing in (4.9).

In view of the discussion in Remark 4.3, we now fix the change of variables

t= 220 bty =M u(sg +£Y0E), tel = [

S el/a 1/4

S0 L<—SO
61/4 Y Y

together with a rescaling of the energy, defining G. : L?(R x w) — R as follows

1 (= . .
Gu(0) = Yz <F5(v) - /QL Be(Xo + Eu0)|v|2> , ifve HY(Qr),v =0a.e.in (R\ [0, L]) X w,
+o0 otherwise.

Denoting fB.(t) := Be(so + /%) , 7-(t) := F(so +e/*t) , if G<(0) < +00, then

G.(0) = /1 _i|f/ + eV, 0 R y)7|? dt dy
e XWw

€

—1 3 T N o) ~
Ry [/ ﬂ5<lvyv|2 — (Ao + €Mo)|v|2> dt dy +/ Bey|0)? dt do
€ I Xw I

e X 0w

_2 (4.12)
+al/2/ T—[/ v (y-9)?[0f da] dt
I 2 Ow
N s 2 (L —s 2
e [ (o= ) o () )
One checks that, for every ¢, v € H*(Qy) if and only if & € H!(I. x w) and it holds
llFr @, < Ce ol (1. xw) (4.13)

In connection with the one dimensional spectral problem (4.5), we introduce the quadratic energy
G : L*(R x w) — R defined as follows

. Go(w) if 0(t,y) = w(t) uo(y), we H'(R) N L*(R; t3dt),
G(v) = (4.14)

—+00 otherwise,

where, with v defined in (4.4),

Cio(w) :—/R(\w'|2+t2ug wf?) ds. (4.15)

As in the previous section the following proposition prepares our second main result
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Proposition 4.4. Under the assumptions of Theorem 4.1, the sequence of functionals {Ge} defined
in (4.12) satisfies all conditions i), i) and iii) of Proposition 5.2 , being the I'-limit of G. given by
(4.14) and (4.15).

For subsequent estimates, it is useful to introduce

_ Ag(2&(s0 + 1)) = (Ao + € po) t*

Jfe(t) : 2372 » Jolt) = 5 (po - €"(s0) (= vy t) (4.16)

Lemma 4.5. Let £(s) be of class C*(]0, L]) and satisfy (4.2) and (4.3). Then, for small €, there
holds
fe(t) > mot? —eye (4.17)

Moreover, the convergence f. — fo holds uniformly on bounded subsets of R.

Proof. By (2.25) and the boundedness of function &(s), it holds [Ag(g£(s)) — (Ao + € ¢(s))| <
Ce2. Since by (4.3) we have ¢(so + e'/%t) > g + /%09 t2, it follows that

Ao(e€(s0 + 1)) — (Mo +epo) > €3/ %not? — Ce?,
which, after dividing by €%/2, leads to lower bound (4.17). Moreover, for every t, we write

the following Taylor expansion (at third order in e'/%): &(sq + e'/%t) = &(s0) + /4t & (s0) +
gl/? % ¢"(so +'/*0t) , being 0 a suitable value in (0,1). Then, inserting in (2.25), we are led to

2
|f(t) — fo(t)| < % ‘(cp"(so +el/491)) — 4,0"(30)‘ +Ce3?

and f. — fo uniformly on compact subsets, thanks to the uniform continuity of ¢ on [0, L]. O

Proof of Proposition 4.4. The conditions ), ii) of Proposition 5.2 are established in Step 1.
The I'— convergence of G (condition #i7)) is proved by checking the lower bound inequality in
Step 2 and the upper bound inequality in Step 3.

Step 1 (Coercivity and compactness) Looking at the expression (4.12), since +,7,yr are non
negative (see (2.11)), we obtain

A 1
&) > // 107+ (90 Ry e dy
wJI. Me

L A SN2 ~12 = 1~12
+ 2372 [/w /1 ﬁ5<|Vyv| (Ao + o) 0] ) dt dy+/8w /1 Bey|o]© dt da].

On the other hand, by (2.16), (2.19) and (4.16), we have the sharp lower bound

1 = N N = s = 1a
o | (vl = o ealoR) avays [ [ gt avao] = [ [ g ar .
€ wJI, ow J1I. w I,

from which follows that

(4.18)

Go0) = [ [ |51+ T,0 Rn B felof | atdy (4.19)

€
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In particular, for small ¢, as B. > 1/2 whereas f. > —c by (4.17), the condition 4) of Proposition
5.2 is fulfilled by G..

In order to check condition i), consider a bounded sequence {?.} in L*(R x w) satisfying
sup G.(0:) < +o00. Then, in view of (4.17), (4.18) and (4.19), we obtain

/ IV, 0.2 < M,
Ie Xw I Xw

for a suitable constant M independent of e (notice that, by definition, the condition G.(?.) < 400
implies 0. = 0 a.e. in (R\ I;) X w). Possibly after extracting a subsequence of {0.}, we may assume
that 9. — o weakly in L?(R x w). Then, by (4.20), for every finite n > 0, {0.} is weakly compact
in H'((—n,n) x w)) so that by Rellich-Kondrachov Theorem, there holds

<M, 2|0, dtdy < M (4.20)

I Xw

2
oL+ eV (V. - Ry) 7

lim 5,2 —/ o2 .
¢ J(=nm)xw (=) xw

By exploiting the third inequality in (4.20) and as v. = 0 outside I., we obtain

M
/ 6% dtdy < liminf 0.2 dtdy < limsup/ 0|2 dt dy g/ 0] dtdy +— |
Rxw e—0 I Xw n

I xw e—0 ltI<n
from which folllows the strong convergence of 9. in L?(R x w) by sending 1 to infinity.

Step 2 (Lower bound inequality.) Let {0.} be a sequence such that 9. — ¥ in L?(R x w). We
have to establish X X
liminf G (0.) > G(9) . (4.21)
Up to a subsequence we may assume that lim i(I)lf G.(0.) = liH(l) G.(.) < +00. Then, as noticed
e— e—

in Step 1, the sequence {0} is bounded in H. (R x w) since estimates (4.20) hold. Therefore,
the limit ¢ is an element of H]! (R x w). Let us pass to the lower limit in inequality (4.19): since
B. — 1 uniformly, while 7. remains bounded, and f. converges pointwise to fy and satisfies a
uniform lower bound (see Lemma 4.5), with the help of Fatou’s Lemma we obtain

liminf G (5:) > / (1912 + fo(t)|o%dt) dy . (4.22)
e Rxw
On the other hand, from (4.18) and since G.(#.) is uniformly bounded, one has

/ B€<|vy’[}€|2 - (>‘0 +5/L0)|{)€|2> dt dy + / BE V(y) |®5|2dtda(y) < 063/2 .
I Xw 1

= X Ow
It follows that the function h(t) == [ (|V,0:(t,)[* = Xolo=(t,-)|?) dy+ [,,v(v)|0(¢,-)|> do(y) ,
which by the deﬁnltlon of )\0 is nonnegatlve does converge to zero in LIOC(R). We notice that
the function hg(t f (\V o( - )\0|f)(t, ?) dy+ [, () |o(t, )| do(y) is nonnegative as

well. Moreover, since 0. — 0 strongly in L2(R x w) and weakly in Hl (R x w), for every R > 0,

there holds 0 = liminf._.o [, _phe(t)dt > [, _pho(t) dt. This 1mphes that ho(t) = 0 a.e. and

therefore 0(t, -) is an eigenvector associated with Ay (see (2.20)). It follows that © can be written in
the form 9(t,y) = w(t) ug(y) with w € HL _(R). Plugging this expression of 9 into the right hand

loc

19



side of (4.22) we obtain that w belongs to H'(R) N L(R;¢?dt) and, in view of (4.14) and (4.15),
we see that (4.22) is nothing else but the lower bound inequality (4.21).

Step 3 (Upper bound inequality.) Let © € L*(R x w). We have to construct a sequence {2} such
that 0. — @ and limsup G.(2.) < G(0). We may assume that G() < 400 so that we can write

e—0

0(t,y) = w(t) ug(y) for a suitable element w € H'(R) N L*(R; t?dt).

We consider 9. defined by 0. = x.(t)@(t) uo(y), being x. on I. X w. Then, substituting in the
formula (4.12) and taking into account that w is bounded while 3. — 1 uniformly and [ u§ =1,
we infer, after some computations, that

e—0

1
lim sup G (9.) /\ 2dt + limsup%/ o, (5(50+t€1/4)> lw|*dt
e—0 €& I.
where for every ¢ € R? we have set:

D (&) = /(1—€£~y)<\vyuo|2—(Ao+€/to)|u()|2) dy+/ (1—e&-y)v|uol*do .

ow
In view of (4.15) , we are reduced to show that

1
lim sup 3/2/ . ({(so+tal/4)> lw|*dt < /Vth\det. (4.23)
e—0 €& I. R

Since ug satisfy (2.20), the €° order term in ®.(¢) vanishes. By writing relation (2.36) with ¢ = uq
and recalling (2.21) , we get ®.(§) = e (£ po — po) +€%po [, & -y dy. Thus, by (4.2), we have the
estimate

/4y _
53%‘1)5 (5(30+’5€1/4))—<pa(t)‘§0\/5 where . (1) = g’((SOJFt;/Q) #(s0)

Therefore, the concluding inequality (4.23) is achieved provided
lim/ @ (t) [W|* dt = /(u0)2t2 lw|* dt .
e—0 I. R

This is a consequence of the dominated convergence Theorem, since ¢.(t) — (v)*t? and, by (4.3),
it holds |p(t)] < %tQ whereas [ t*|w|? dt < 4oo0. O

Proof of Theorem 4.1. We observe that, by (2.15)and (4.13), there holds for every u € H'(.)

53% [Fe(u) — (Ao + 2p0) /Q o dw] — Ge(9)

< C P olling,) < Cellolinxe (424)

where v(s,y) = uo ¢ (s,y) and o(t,y) = e/8u(sy + 51/415). The asymptotic behavior of
vl = 531/2 [AS — (Ao + €p10)] is therefore ruled by the functional G. to which we apply Proposition
4.4. The proof follows by using exactly the same line as in the proof of Theorem 3.1. O

Proof of Theorem 4.2. We introduce H. : L?(R x w) — R defined by

~

H.(0) := L/G (9) — !

Zi2 Be vo|0)?dtdy .

I Xw
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For © € H'(I. X w) and © vanishing in (R \ I.) x w, the expression of H.(?) reads

H.(0) = A.(0) + B.(0) + C.(0), where

2
dt dy

>

1 . _
mv' +(Vy0- R y)7.

. 1 _ ) )
B = | [ 519408 = (ot emo + wn)lof) dt dy + [
- Xw

2
€ I X 0w

R 72 — 2 I — 2
A\ L Ts N2 A2 A S0 N S0
Ce(0) == /staw CRAA dtd0+/w (’m v<—€1/4=y>( +7L‘v(761/4 y)( ) dy

S H.(0)
0° = 1nf{fow EATE dtdy}’ (4.26)

Bey|0)? dt da] (4.25)

we claim that
e e & e Ao Ho o

Indeed, by dividing the inequality (4.24) by /€, we infer that for every u € H'(Q.) it holds

1 g
s [Fa(u) — (Mo + epo +¥%1) / |u\2daﬁ] — H.(0)

€

< \/E ||®H%[1(ISXQ) )

being o(t,y) = /S uo . (so + e'/*,y) in I. x w and zero in (R\ I.) x w. The claim follows by
comparing the Rayleigh quotients associated with 6° and 6§, respectively.

Let & () := &(so + €'/*t) and let Xz (1) be the solution of (2.22) for z = €.(t). We consider the
approximating sequence (0.) defined on I. x w as follows

0:(ty) = (o(®) +(0)) (uoly) +exe. @) - (4:28)

and zero outside I. X w, where the function ¢, specified later, will be a suitable linear combination of
the eigenfunctions {w; ,i = 1,3} defined in (4.7). In particular, in order that the total energy H.(v.)
remains finite, we will need that [;, piog = [, t*@o = 0. Thanks to the normalization condition on

functions ug, W, and recalling that 3. — 1 uniformly, one checks that liH(l) Be|oe P dtdy = 1.
eV JRxw

Thus, by (4.26) and (4.27), the upper bound inequality of Proposition 4.2 is established once we
have shown that

limsup H.(0.) < 6. (4.29)
e—0
We will establish successively the following convergences:
. A oa 20 . 2 IR - - .
tim (Auti) = 5 [ il = 5 [ 002) = ) [0 R~ oo0) + [ 18R
(4.30)
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(s W e 2 ) L , po - € (s0)
tim (Beti)+ 5o [ il o [ he') = G (s -elon) + Ppmiot) o
.£3)
+/(u§t2—y0)\¢|2dt +/ po - €7(50) t3 g @ dt
R R 3
(4.31)

oA 1. )
lim C.(0.) = §T2(80)/(9 'y|u0\2(y'y)2da. (4.32)

e—0

Adding up the three previous equalities, we infer that

. . ¢(4)
limsup 72(62) < = Mo€(s0) - £(s0) + C1 P2 (s0) — Co 7 (sg) + L5 150)

D 4.
e—0 - 2 32 Vg +5((70) ( 33)

where the last term, to be minimized with respect to ¢ € H!(R), is given by

L £(3)
E(P) = /|¢J’\2dt+/ (v 2 — v | ) dt +2/h(t)<,5dt with  h(t) ;—%@O)ﬁwo.
R R R

It turns out that A is orthogonal to wg and can be expressed as a linear combination of normalized
eigenvectors w1, w3 introduced in (4.7). In fact, we have

Wyt Ws gt 12 V3
T = (wo)? == . 2 =)¥?* —— — ()2 Yy,
wo() (o) NG wo() (v0) W () " =

and, consequently,

~p0-EP(so) (1 2
h(t) = OSEEE <ﬁ w1 (t) +ﬁw3(t)>.

Applying Lemma 5.1, we deduce that the minimum of £(¢p) is reached for a suitable linear
combination @qpe of w; and wsz. Taking into account that v3—vy = 6vy , 1 —1v9 = 21 and
recalling (4.4), we have

17 [,00 : §<3><so)r T [Po : £<3><80>r |

minf = — —
36 (v0)* 9 [ po-E&"(s0)

Then, plugging ¢ = Popt into the definition (4.28) of 0. and in view of (4.10), the upper bound
inequality (4.29) follows directly from (4.33).

It remains to show claims (4.30), (4.31) and (4.32).
Let us plug 0. into the three expressions in (4.25), taking into account that for all ¢ € I. it holds

oL (t,y) = (y+e'/ @) (8) (uote xg ) (y)+e* o () xg. (6)' (1) s Vyde(t) = (do+e'/*@)(t) (Vyuote Vyxe,)-
In particular, we have the following estimates:
0Lt y)— (e 1) (O uo (W)l 1201, xw) < Ce o [Vy0e(t,y)—(do+e @) (1) Vyuo (W)l 221, xw) < Cce
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Thus, as |1 — 3| < Ce and observing that, by (4.8) and the exponential decay of gy, we have
\fls(\w0|2 — 2 lwo|?)| <« /E, it follows that the left hand side of (4.30) has the same asymptotic
behavior as

Lom 22 | [ [(ah + /) @nato) + % o + 100 (V0 R

After straightforward computations, taking into account that 7. — 7(sg) uniformly and integrating
with respect to y € w, we obtain

- / (b2 + 264 e") |
I.

. _ ~2 ) 2 . A Te
tim L = #(s0) [ [Vu- Ry + i [ 12+ 5] (4:34)
where J.(¢) == [, (|¢']P +2Cs [, (@ +do@’) Te dt and 7e 1= 20 [, (wp(t)ivo(t)) 7 dt.

Integrating by parts, and as the boundary terms are exponentially small (¢ is a linear combination
of w1, ws), it holds that

lim [ (@) + W@ ) Tedt = —lim [ wop7 (so +e/*t)et/*dt =0,
e—0 I. e—0 I.
lim/ [ |* 7. dt = — lim/ lio|? 7' (so + e/4t) e/t dt = —7'(s0)
e—0 I. e—0 I.
where in the last integral we use dominated convergence. Therefore, we obtain that

lirr(l)raafl/AL:—Cgf'/(So) ) hmJ /|¢3,‘2dt

Then (4.30) follows from (4.34).

The derivation of (4.32) is straightforward since

%( oy 9)° df’) </IT2 i ? dt>
</w oluo|? dy) o (- f?4)‘2+ (/wmuopdy)

where the expressions in the last line vanish as € — 0 due the exponential decay of wyg.

/\

€ 5

_L—s0.|?
wo(glﬁ)

9

Eventually we finish the proof by establishing the claim (4.31). Let us insert 5. =1 — e(&(t) - y)
and 0. given by (4.28) in the expression of B. (see (4.25)). By using the assertion ii) of Proposition
2.1, we have

o1 2 . - . 3 s
hII%) ) [/ ﬂ6<|vyv€|2 - (>‘O +Epo - 55(75))|’U€|2) dt dy + / ﬁ€’7|ve|2 dtdo
e—0 ¢ I xXw

I. X0w

= lim —/ \w0+€ <P| Eegs(t)(UO"'XEEs(t))d

e—0

—tim [ 5 (Mo&(t) -€.(0) lio + < /4P d
E— Ia

= 5 Mo&(so) -E(so)
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where in the last line we used dominated convergence, the exponential decay of g and [, |wo 2 =1.
Thus, recalling the definition of B. in (4.25), we deduce that

o (B e 2 [ raes 2 [ ao) o ] | U
lim <Be<v€>+2 72 |tk + / wo<p> = 5 Mo&(s0) - €(s0) + lim Uo(g) . (4.35)

where we have set

R (Po-&) = 1o =W VEY . | ijap Vo/ S22 / N
c = dt + —= —_— . (4.
v = [ o+ a2 [ o+ 2 [ @ao)

€

As &(s) is of class C*([0, L]), we may use the following Taylor expansion at fourth order in /4

(recall that 1 = 2po - & (s0) and & (t) = po - £(s0 + £/*t))

z t3 ¢
(po-&e)(t) — o — o vVeE = e/ (5 1> — 1) + ¥/ A §®(s0) +¢ 51 Po £W(s0) + o) -

Then, taking into account the exponential decay of functions wy, ¢, the integrals over I. in (4.36)
can be substituted with the same integrals over all R and we obtain the following expansion:

R o
Ue(p) = 7 /R(VSR—VOJFEO)\MOP dt
! 242 byt 3) () I |2
g [ 2001 ) o d g (o €7 (s0)) ol dt
[ [0Re =) 108 + 25 (- €9 s0) 08 + 2 (00 - €9 (s0) i 2]
& 0 0) P 6 £0o Sp)) Wop 7 00 s0) |wo
—1—0(51/4)

By (4.8) the first term in % vanishes. Observing that t3[1g|? and g ¢ are odd functions, we see

that the second term (in ﬁ) vanishes as well and we conclude that

. . 2, )
i U(9) = [ |08 =) 162 + 5 (o0 €9 o) ol
E— R

The claim (4.31) follows from (4.35).

5. APPENDIX
5.1. Some elementary results.

Lemma 5.1. Let A : H — H be a positive linear self-adjoint operator with compact resolvent.
Let 0 < vy < 11 <y < --- be the eigenvalues where the first one vy is assumed to be simple. Let
{ep,e1,€2, ek} be a basis of associated eigenvectors. Then:

i) For every )\, the following implication holds

Vi — 1

2

A — | < =  ||[Av— | > |A—w|ljv|| YveEH.
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ii) For every h € H such that (h|eg) = 0, there holds

, o |(Blew)?
A - 2(h = .
min {(Av|v) — vo (v|v) +2(h|v)} g —

Proof. The assertion i) is a consequence of the inequality [[Av — Av|| > inf;en [N — ]} [Jv]| (valid
whenever A is a self-adjoint operator). To show ii), we observe that, for every v = >, ¢ ey, the
energy £(v) to be minimized can be written as

o0
Z (v — vo)|er]® + 2(hler)cr
k=1

(hlew)

The minimum is achieved by taking ¢, = — or k > 1 and ¢y arbitrary. O
Vg — o

5.2. The I'-convergence method. In this section we present a general result that enables
us to guarantee the spectral convergence of our problem, throughout the I'-convergence of the
corresponding energy functional. The proof can be found in [2]. We begin by recalling the
definition of I'-convergence. Consider a quadratic functional G' : L*(Qr) — L*(Qr). We say
that the sequence {G.} I-converges to G in H = L?(Qy) if the following two conditions hold:

(i) (lower bound) For any v and {v.} such that v. — v in H, limi[I)lf G:(ve) > G(v);

(ii) (upper bound) For every v, there exists a sequence {0.} such that 9. — v in H and
lim sup G (9:) < G(v).

E—

It turns out that such a I'-limit G always exists, possibly after extracting a subsequence. Also, the
I-convergence of {G.} is unchanged if we subsitute G, by its lower semicontinuous envelope (with
respect to the strong topology in H) and the I'-limit G enjoys the lower semicontinuity property as
well. For further features on I'-convergence theory, we refer to the monograph by G. Dal Maso [5],
where particular issues concerning the case of quadratic functionals and related linear operators
are detailed (see Section 12 in this book). The relationship with the strong compact resolvent
convergence of operators is summarized in the following

Proposition 5.2. Let A. : H. — H_. be a sequence of self-adjoint operators where H. coincides
algebraically with a fixed Hilbert space H endowed with a scalar product (-|-). such that

ac lul* < (ulu)e < belul?,

being a., b. suitable constants such that a.,b. — 1 and (-,-), ||- || represent the usual scalar product
and norm in H, respectively. Let G. : H — (—o00,+00] be a lower semicontinuous quadratic form
satisfying G.(v) = (A:v|v)e, if v € D(A.), and assume that the three following conditions hold:

i) Go(v) > —col||v]|? for a suitable constant cq > 0.

i1) If sup{Gc(ve) + ||ve||} < +o00, then {v.} is strongly relatively compact in H.
13

iii) G- does I'—converge to G.

Then, the limit functional G determines a unique closed linear operator Ag : H — H with compact
resolvent, with domain D(Ag) (a priori non dense in H) and such that G(v) = (Apv,v) for all
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v € D(Ay). Furthermore, the spectral problems associated with A. converge in the following sense:
let ps,v; and pi,v; be such that

<, (vil)e = 8ig,
S, (vilvy) =64

vy € H,  Acvf =pzv7, py < pp < -
v eEH, Ag'=pui, po<p <

Then, as € — 0, u5 — p; for every i € N. Moreover, up to a subsequence, {vi} converges strongly
to eigenvectors associated to p;. Conversely, any eigenvector v; is the strong limit of a particular
sequence of eigenvectors of A. associated to i .
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