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Abstract: We consider the Laplace operator in a thin three dimensional tube with a Robin type condition on its

boundary and study, asymptotically, the spectrum of such operator as the diameter of the tube’s cross section becomes

infinitesimal. In contrast with the Dirichlet condition case [2], we evidence different behaviors depending on a symmetry

criterium for the fundamental mode in the cross section. If that symmetry condition fails, then we prove the localization

of lower energy levels in the vicinity of the minimum point of a suitable function on the tube’s axis depending on the

curvature and the rotation angle. In the symmetric case, the behavior of lower energy modes is shown to be ruled by a one

dimensional Sturm-Liouville problem involving an effective potential given in explicit form.
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1. Introduction

In a previous paper [2], the authors presented a new variational approach by Γ-convergence in
order to study the asymptotic behavior of the spectral problem for the Laplace operator with
homogeneous Dirichlet boundary conditions in a tube of infinitesimal thickness. The limit problem
arising from a 3D-1D reduction analysis was shown to be characterized by a 1D-effective potential
depending explicitly on the local curvature and torsion. From there, very interesting effects on the
energy levels could be evidenced in terms of the geometrical characteristics of the thin domain, in
a way which was complementary to many results in the literature, as for instance in [3], [6], [7].
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In the present paper we perform the same analysis for the case of the Laplace operator with Robin
boundary conditions, more precisely, we consider the eigen problem:

{−∆uε = λεuε, in Ωε,
∂uε

∂nε
+ γεuε = 0, on ∂Ωε,

(1.1)

where ε is a small positive parameter, Ωε ⊂ R
3 is a thin and long domain generated by a cross

section ωε = ε ω (being ω a fixed subset of R
2) which rotates along a curve through an angle

α(s) with respect to the Frenet frame. Here the function γε is a suitable scaled real coefficient in
L∞(∂Ωε,R

+). In terms of local coordinates x = Ψε(s, y) with (s, y) ∈ [0, L] × ∂ω, (see (2.6) in
Section 2), it has the form

γε(x) =







γ(y)
ε , for(y, s) ∈]0, L[× ∂ω,

γ0(y), for (y, s) ∈ {0} × ω,
γL(y), for (y, s) ∈ {L} × ω,

(1.2)

where function γ ∈ L∞(∂ω; R+) is a weight for the Robin condition on the lateral part of the
thin tube Ωε whereas γ0, γL ∈ L∞(ω; R+) are associated with the Robin condition we set on
the two bases. Notice that the Dirichlet case studied in [2] can be formally recovered by taking
γ, γ0, γL = +∞. However the situation is quite different here and the asymptotic analysis as ε→ 0
of the eigenvalue problem (1.1) under the scaling given in (1.2) reveals an important novelty.
Indeed, two rather distinct situations will occur depending on the geometric constant vector

ρ0 :=
1

2

∫

∂ω

u2
0 ndσ where u0 is the fundamental mode in the cross section ω with exterior unitary

normal n. If ρ0 vanishes, which is the case when subset ω and function γ present enough symmetry,
then the lower level eigenmodes are propagating along the central curve and are characterized
through a suitable 1D spectral problem with a potential weighted by local torsion and curvature;
thus the situation is similar to the Dirichlet case treated in [2].

In contrast, if ρ0 is a non zero vector, then a localization phenomenon takes place in the vicinity of
the minimum point of a suitable function on the central curve depending on the curvature and on
the rotation angle. In that case we show that the low level eigenmodes behave, after blow-up, like
the eigenfunctions of a 1D-harmonic oscillator. Let us notice that similar effects have been pointed
out recently in [1] where narrow strips in R

2 are considered whose thickness presents a strict global
maximizer. Two dimensional waveguides with mixed Dirichlet and Neumann conditions have been
also considered in [8,9].

In Section 2, after introducing the geometry of the waveguide and the scaling, we present our
asymptotic variational approach and some preliminary results. In particular, we give a perturbation
result for the fundamental eigenvalue in the cross section. In Section 3 we study the symmetric
case (ρ0 = 0) and prove the spectral convergence to a 1D limit Sturm-Liouville problem. The non
symmetric case ρ0 6= 0 is considered in Section 4. We prove the localization of the lower energy
levels and evidence a gap between them, blowing up like ε−1/2 as ε→ 0.

2. Definitions and preliminary results

2.1. Geometry of the domain. Let r : s ∈ [0, L] → r(s) ∈ R
3 be a simple C2 curve in R

3

parametrized by the arc length parameter s. Denoting by T its tangent vector and assuming
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that T ′(s) 6= 0 for every s ∈ [0, L], we may define the usual Frenet system (T,N,B) through the
following expressions:

T =
dr

ds
= r′ (‖r′‖R3 = 1) ; N = T ′/‖T ′‖R3 ; B = T ×N.

Denote by k : s ∈ [0, L] → k(s) ∈ R and by τ : s ∈ [0, L] → τ(s) ∈ R, the curvature and torsion
functions associated with the curve, respectively. They are functions in L∞(0, L) and they satisfy
the Frenet formulas:

T ′ = k N ; N ′ = −k T + τ B ; B′ = −τ N. (2.1)

It is clear from (2.1) that the plane defined by (N(s), B(s)) rotates around T (s), as s moves along
[0, L]. On the contrary, if we consider the Tang system (T (s),X(s), Y (s)) for X and Y satisfying

X ′ = λ T ; Y ′ = µT ; T ′ = −λ X − µ Y, (2.2)

where λ and µ are functions of the arclength parameter s, the plane defined by (X(s), Y (s)) does not
rotate around T (s). It is easy to check from (2.1) and (2.2) that the velocity of the rotation α0(s)

of (N(s), B(s)) with respect to (X(s), Y (s)) at each point s ∈ [0, L] satisfies α′
0(s) =

dα0

ds
= −τ(s);

we also obtain that λ = −k cosα0, µ = k sinα0 (see [2]).

The twisted thin domain on which we will study the energy levels of problem (1.1) will be described
by a rotation function α ∈ L∞(0, L). Let us define

Nα(s) := cosα(s) N(s) + sinα(s) B(s) = cos(α− α0)(s) X(s) + sin(α− α0)(s) Y (s),

Bα(s) := − sinα(s) N(s) + cosα(s) B(s) = − sin(α− α0)(s) X(s) + cos(α− α0)(s) Y (s),
(2.3)

Then, given ω ⊂ R
2 an open bounded simply connected subset of R

2, we define for every small
parameter ε > 0

Ωε :=
{

x ∈ R
3 : x = r(s) + ε y1 Nα + ε y2 Bα, s ∈ [0, L], y = (y1, y2) ∈ ω

}

. (2.4)

The diameter of the cross section of the domain Ωε is of infinitesimal order ε (in particular much
smaller than the length L). Moreover, the local torsion at every point of the central curve r(s) is
measured by the parameter τ̃ := τ + α′, i.e. by the velocity of rotation of the cross section with
respect to the Tang system.

2.2. Variational formulation on a fixed domain. We start from the variational formulation
of problem (1.1):

∫

Ωε

∇uε ∇w +

∫

∂Ωε

γε uεw = λε

∫

Ωε

uεw for all w ∈ H1(Ωε) ,

to which we associate the quadratic energy functional defined in H1(Ωε) by:

Fε(w) :=

∫

Ωε

|∇w|2 dx+

∫

∂Ωε

γε |w|2 dσ. (2.5)
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As usual in dimension reduction analysis, it is convenient to deal with an equivalent formulation
on a fixed domain QL :=]0, L[×ω. In relation with (2.3) and (2.4), we consider for each ε > 0 the
following transformation

ψε : QL −→ Ωε

(s, y) = (s, (y1, y2)) 7→ x = r(s) + ε y1Nα + ε y2Bα.
(2.6)

Accordingly, to every element u ∈ H1(Ωε), we associate v ∈ H1(Q) defined by

v(s, (y1, y2)) := u(ψε(s, (y1, y2))). (2.7)

We write the gradient of v in the form (v′,∇yv), being v′ the derivative with respect to s ∈ [0, L].
In order to compute the Dirichlet energy of u on Ωε, we introduce

τ̃ := τ + α′, βε(s, y) := 1 − εk(s)(zα · y), zα := (cosα,− sinα), z⊥α := (sinα, cosα), (2.8)

where zα · y represents the inner product in R
2 of zα and y.

Then, after some computations, we get

∇ψε =











βε 0 0

−ετ̃(z⊥α · y) ε cosα −ε sinα

ετ̃(zα · y) ε sinα ε cosα











, det∇ψε = ε2βε,

∇ψ−1
ε =

















1

βε
0 0

τ̃ y2
βε

cosα

ε

sinα

ε

−τ̃ y1
βε

− sinα

ε

cosα

ε

















.

Thus we have

∫

Ωε

(

|∇u(x)|2
)

dx =

∫ L

0

∫

ω

(

|∇v(s, y) ∇ψ−1(s, y)|2
)

ε2 βε(s, y) dy ds

= ε2
∫ L

0

∫

ω

[

1

βε

∣

∣

∣v′ + (∇yv ·R y)τ̃
∣

∣

∣

2

+
βε

ε2

(

|∇yv|2
)

]

dy ds

(2.9)

where R is the clockwise rotation matrix

(

0 1
−1 0

)

.

Let now x ∈ Γε =]0, L[× ∂ωε and, representing by t the local tangential coordinate along the

oriented boundary of ω, define, for y = y(t), ẏ :=
dy

dt
. We have

∂x

∂s
× ∂x

∂t
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

T N B

βε −ετ̃(z⊥α · y) ετ̃(zα · y)

0 ε(ẏ · zα) ε(ẏ · z⊥α )

∣

∣

∣

∣

∣

∣

∣

∣

∣
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and, consequently,

1

ε

∥

∥

∥

∥

∂x

∂s
× ∂x

∂t

∥

∥

∥

∥

=
√

β2
ε + ε2τ̃2(y · ẏ)2 = βε + ε2 rε , (2.10)

where, as can be checked by (2.8) and Taylor expansion of the square root, the function rε(s, y)
satisfies

rε ≥ 0 and

∣

∣

∣

∣

rε −
τ̃2

2
(y · ẏ)2

∣

∣

∣

∣

≤ Cε. (2.11)

From (2.10), (2.11) and the fact that γ ∈ L∞(0, L), it follows that
∣

∣

∣

∣

∣

∫

Γε

γε |u|2 dσε(x) −
∫ L

0

∫

∂ω

γ |v|2
(

βε +
ε2

2
τ̃2(y · ẏ)2

)

dσ ds

∣

∣

∣

∣

∣

≤ C ε3
∫ L

0

∫

∂ω

|v|2 dσ ds.

(2.12)

On the other hand, if x ∈ Σε := {0, L} × ωε, then
∥

∥

∥

∂x
∂y1

× ∂x
∂y2

∥

∥

∥
= ε2 and we get

∫

Σε

γε |u|2 dσε(x) = ε2
∫

ω

(

γ0 |v(0, y)|2 + γL |v(L, y)|2
)

dy. (2.13)

Let us define the functional F̃ε : H1(QL) → R by setting

1

ε2
F̃ε(v) :=

∫ L

0

∫

ω

1

βε

∣

∣

∣
v′ + (∇yv ·R y)τ̃

∣

∣

∣

2

dy ds

+

∫ L

0

τ̃2

2

(∫

∂ω

γ |v|2(y · ẏ)2 dσ
)

ds

+

∫

ω

(

γ0 |v(0, y)|2 + γL |v(L, y)|2
)

dy

+
1

ε2

∫ L

0

[
∫

ω

βε|∇yv|2dy +

∫

∂ω

βε γ |v|2dσ
]

ds

(2.14)

Then, recalling (2.7) and collecting (2.9), (2.12) and (2.13), we obtain, for small ε, the following
estimate:

|Fε(u) − F̃ε(v)| ≤ C ε3 ‖v‖2
H1(QL). (2.15)

2.3. Perturbed problem in the cross section. In view of the last term appearing in (2.14), an
important step is to understand the behavior as ε→ 0 of the following minimal Rayleigh quotient
in each cross section {s} × ω :

mε(s) := inf
v∈H1(ω)

v 6≡0

∫

ω

βε(s, y) |∇yv|2 dy +

∫

∂ω

βε(s, y) γ |v|2 dσ
∫

ω

βε(s, y) |v|2 dy
. (2.16)

Recalling that βε(s, y) = 1− εξ(s) · y, to each ξ ∈ R
2 we associate the following perturbed spectral

problem in H1(ω):






−div
(

[1 − ξ · y]∇u
)

= λ [1 − ξ · y] u, in ω,

∂u

∂n
+ γu = 0, on ∂ω.

(2.17)
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For small values of |ξ|, the related operator is positive self-adjoint with compact resolvent. We
denote by Λ0(ξ) the fundamental eigenvalue of (2.17). It is given by the following minimum
problem:

Λ0(ξ) = inf
v 6≡0

{

∫

ω
(1−ξ · y) |∇v|2dy +

∫

∂ω
(1−ξ · y) γ |v|2 dσ

∫

ω
(1−ξ · y)|v|2 dy , v ∈ H1(ω)

}

, (2.18)

Then we observe that
mε(s) = Λ0

(

ε k(s) zα(s)

)

. (2.19)

Therefore, it is worth studying the behavior of function Λ0(ξ) in a neighbourhood of ξ = 0.

Let (λ0, u0) be the first eigenpair of the Robin-Laplace operator in ω, i.e.,


















− ∆u0 = λ0 u0, in ω,
∂u0

∂n
+ γu0 = 0, on ∂ω,

u0 > 0,

∫

ω

u2
0 = 1;

(2.20)

We associate with u0 two vectors (which depend only on ω and γ):

ρ0 :=
1

2

∫

∂ω

u2
0n dσ and y0 :=

∫

ω

u2
0 y dy. (2.21)

We obviously have that Λ0(0) = λ0 which is stricly positive since we took for γ(s) a non negative
function. Moreover, by Krein-Rutman’s Theorem, λ0 is a simple eigenvalue for (2.20) and the
associated eigenvector u0 can be chosen to be positive on ω.

We notice that u0 is orthogonal in L2(ω) to all components of the vector function ∇u0 − ρ0 u0

being ρ0 given by (2.21). Indeed, by integration by parts, we have:

2

∫

ω

u0(∇u0 − ρ0 u0) dy =

∫

ω

(

∇
(

u2
0

)

− 2ρ0u
2
0

)

dy =

∫

∂ω

u2
0 · ndσ − 2ρ0 = 0 .

Thus, by Freedholm’s alternative, for every ξ = (ξ1, ξ2) ∈ R
2, there exists a unique solution χξ of



















− ∆χξ − λ0 χξ = −ξ · ∇u0 + ξ · ρ0 u0 in ω,
∂χξ

∂n
+ γ χξ = 0, on ∂ω,

∫

ω

χξ u0 dy = 0.

(2.22)

By linearity, we have χξ = ξ1χ1+ξ2χ2 where the shape functions χi are solutions for ξ = ei, i = 1, 2.
Setting χ := (χ1, χ2) and denoting by I2 the 2×2 identity matrix, we introduce the following tensor

M0 = −1

2
I2 + (ρ0 ⊗ y0) +

1

2

∫

∂ω

u2
0(y ⊗ n) dσ +

∫

∂ω

u0(χ⊗ n) dσ . (2.23)

In the next proposition we show that function Λ0 defined in (2.18) is differentiable at ξ = 0 with
∇Λ0(0) = ρ0. Furthermore we give a polynomial estimate at third order for Λ0(ξ) as well as for
the following “error” functional

Eξ(v) :=

∫

ω

(1−ξ · y) (|∇v|2 − (λ0 + ρ0 · ξ) v2)dy +

∫

∂ω

(1−ξ · y) γ v2 dσ. (2.24)
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Proposition 2.1. Let ρ0,M0 be defined by (2.21) and (2.23) respectively. Then there exists
constants C > 0 and r0 > 0 such that:

∣

∣

∣

∣

Λ0(ξ) −
(

λ0 + ρ0 · ξ +
1

2
M0 ξ · ξ

)∣

∣

∣

∣

≤ C |ξ|3 whenever |ξ| < r0. (2.25)

∣

∣

∣

∣

Eξ(u0 + χξ) −
1

2
M0ξ · ξ

∣

∣

∣

∣

≤ C |ξ|3 whenever |ξ| < r0 . (2.26)

We notice that if, in the expressions (2.21)and (2.23), we substitute u0 with the fundamental mode
of the Dirichlet problem in Ω, then we obtain ρ0 = 0 and M0 = − 1

2
I2 which is nothing else but

the result in [2, Proposition 4.1].

The identification of the first and second order terms of Λ0(ξ) near ξ = 0 can be done directly
by formal asymptotic expansion. However, in order to provide a rigorous proof, we will use an
alternative formulae for matrix M0, given in next lemma.

Lemma 2.2. Let ρ0 and M0 be given by (2.21) and by (2.23), respectively. Then, the following
equalities hold true for every ξ ∈ R

2:

1

2
M0ξ · ξ =

∫

ω

(ξ · ∇χξ)u0 + (ξ · ∇u0)(ξ · y)u0 dy =

∫

ω

(ξ · ∇u0)χξ + (ρ0 · ξ) (y0 · ξ). (2.27)

Proof . Since div((ξ · y)ξ) = ‖ξ‖2 and ‖u0‖L2(ω) = 1, by integrating by parts we obtain

∫

ω

(ξ · ∇|u0|2)(ξ · y) dy = −‖ξ‖2 +

∫

∂ω

(ξ · n)(ξ · y) |u0|2 dσ

and, consequently,

∫

ω

(ξ · ∇u0)(ξ · y)u0 dy = −‖ξ‖2

2
+

1

2

∫

∂ω

(ξ · n)(ξ · y) |u0|2 dσ. (2.28)

On the other hand, noticing that ξ = ∇(ξ · y) and exploiting equations (2.20) and (2.22), we infer

∫

ω

(ξ · ∇χξ)u0 dy −
∫

ω

(ξ · ∇u0)χξ dy =

∫

ω

ξ (∇χξ u0 −∇u0 χξ) dy

= −
∫

ω

(ξ · y)(ξ · ∇u0)u0 dy + (ρ0 · ξ)(y0 · ξ).

=
‖ξ‖2

2
− 1

2

∫

∂ω

(ξ · n)(ξ · y) |u0|2 dσ + (ρ0 · ξ)(y0 · ξ)

where in the last line we exploit identity (2.28). Noticing that

∫

ω

(ξ ·∇χξ)u0 dy+

∫

ω

(ξ ·∇u0)χξ dy =
∫

∂ω

(ξ · n)χξ u0 dσ, we deduce that

∫

ω

(ξ ·∇χξ)u0 dy =
‖ξ‖2

4
− 1

4

∫

∂ω

(ξ ·n)(ξ ·y) |u0|2 dσ+
1

2
(ρ0 ·ξ)(y0 ·ξ)+

1

2

∫

∂ω

(ξ ·n)χξ u0 dσ (2.29)
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∫

ω

(ξ ·∇u0)χξ dy = −‖ξ‖2

4
+

1

4

∫

∂ω

(ξ ·n)(ξ ·y) |u0|2 dσ−
1

2
(ρ0 ·ξ)(y0 ·ξ)−

1

2

∫

∂ω

(ξ ·n)χξ u0 dσ (2.30)

Plugging (2.28), (2.29) and (2.30) in the second and third members of (2.27), it can be checked
that both expressions agree with 1

2
M0ξ · ξ, being M0 given by (2.23).

Proof of Proposition 2.1.

We begin by proving (2.25). This is done in two steps.

Step 1. First we notice that the perturbed eigenvalue problem (2.17) is well posed provided ξ is
small enough. Indeed, if 1 − ξ · y has a positive lower bound on ω, then the operator

Aξ : w 7→ −div
(

(1−ξ · y)∇w
)

, D(Aξ) =

{

w ∈ H2(ω) :
∂w

∂n
+ γw = 0, on ∂ω

}

,

has compact resolvent and is a positive self-adjoint operator, acting on L2(ω) endowed with the
scalar product (u|v) =

∫

ω
(1− ξ · y)u v̄ dy. As a consequence of Krein Rutman’s Theorem, the first

eigenvalue Λ0(ξ) is simple and the second eigenvalue Λ1(ξ) is such that Λ1(ξ) > Λ0(ξ). In fact
there exits r0 > 0 and κ > 0 such that

Λ1(ξ) − Λ0(ξ) ≥ κ whenever |ξ| < r0, (2.31)

which follows from the continuity of functions Λ0 and Λ1 in a neighborhood of ξ = 0. This fact
can be established by using the strong continuity with respect to ξ of the resolvent operator or,
directly, by passing to the limit in the variational characterization of Λ0(ξn) and Λ1(ξn) on a
sequence ξn → ξ, with the help of the compact embedding H1(Ω) ⊂ L2(Ω).

Let us set P (ξ) := λ0 + ρ0 · ξ + 1
2M0ξ · ξ. By the continuity of |Λ0(ξ) − P (ξ)|, we need only to

prove that

lim sup
ξ→0, ξ 6=0

{ |Λ0(ξ) − P (ξ)|
|ξ|3

}

< +∞ .

To that aim we substitute ξ by ε ξ, where ε→ 0 and |ξ| = 1, and show that |Λ0(εξ)−P (εξ)| ≤ Cε3,
for a suitable constant C (independent of ε and of the unit vector ξ).

Exploiting (2.31), we may apply the assertion i) of Lemma 5.1 to the operator Aεξ defined in the
Hilbert space Hε = L2(ω) endowed with the scalar product (u|v)ε :=

∫

ω
(1 − εξ · y)u v̄ dy. As we

have (1−Cε)‖u‖L2(ω) ≤ (u|u)ε ≤ (1 +Cε)‖u‖L2(ω), we eventually conclude that (2.25) holds true
provided we show the existence of a sequence of quasi eigenvector {wε} such that:

‖Aεξwε − P (εξ)wε‖L2(ω) ≤ Cε3 ‖wε‖L2(ω) . (2.32)

Step 2. We prove (2.32). In what follows we will suppose that ξ is fixed and, in order to simplify
the computations, we denote λ1 := ρ0 · ξ (see (2.21)) and u1 := χξ, so that problem (2.22) reads



















− ∆u1 − λ0 u1 = −ξ · ∇u0 + λ1u0, in ω,
∂u1

∂n
+ γu1 = 0, on ∂ω,

∫

ω

u1u0 dy = 0.

(2.33)
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Setting λ2 := 1
2
M0ξ · ξ, we have P (ε ξ) = λ0 + ελ1 + ε2λ2. Let us consider

wε := u0 + εu1 + ε2u2 , (2.34)

where u2 is the unique solution of



















− ∆u2 − λ0 u2 = −ξ · ∇u1 − (ξ · ∇u0)(ξ · y) + λ1u1 + λ2u0, in ω,
∂u2

∂n
+ γu2 = 0, on ∂ω,

∫

ω

u2u0 dy = 0

(2.35)

The existence of u2 follows from the Fredholm orthogonality condition

λ2 =

∫

ω

[(ξ · ∇u1)u0 + (ξ · ∇u0)(ξ · y)u0] dy ,

which by (2.27) is satisfied precisely for λ2 := 1
2
M0ξ · ξ. On the other hand wε given by (2.34)

satisfies the prescribed Robin condition and therefore belongs to the domain of Aεξ.

Now we compute Aεξ(wε) − P (εξ) gathering power like terms in ε and using (2.20), (2.33), (2.34)
and (2.35) :

−div
(

[1 − (εξ · y)]∇wε

)

− P (εξ) [1 − (εξ · y)]wε = − ε3[(ξ · y)∆u2 + ξ · ∇u2]

− ε3[(ξ · y)(λ0u2 + λ1u1 + λ2u0) − λ1u2 − λ2u1]

− ε4 [(ξ · y)(λ1u2 + λ2u1) − λ2u2]

− ε5 [(ξ · y)λ2u2].

In view of the continuous polynomial dependence of u1, u2, λ1 and λ2 with respect to ξ, and since
‖wε‖L2 → 1, we can therefore find a constant C > 0 independent of ε such that (2.32) holds true.
This completes the proof of (2.25) .

Proof of (2.26) : In view of (2.20), we have that −div((1−ξ · y)∇u0) = λ0(1−ξ · y)u0 + ξ · ∇u0.
By integration by parts, we deduce that for every ψ ∈ H1(ω) it holds

∫

ω

(1−ξ · y) (∇u0∇ψ − λ0 u0 ψ) +

∫

∂ω

(1−ξ · y) γ u0 ψ =

∫

ω

(ξ · ∇u0)ψ. (2.36)

In particular for ψ = u0, taking into account that
∫

ω
u2

0 = 1 and (2.21), we obtain:

Eξ(u0) = −
∫

ω

ρ0 ·ξ(1−ξ ·y)u2
0+

∫

ω

(ξ ·∇u0)u0 = (ξ ·ρ0)(ξ ·y0)−ξ ·ρ0+
1

2
ξ ·

∫

ω

∇(u2
0) = (ξ ·ρ0)(ξ ·y0) .

Taking now ψ = χξ in (2.36) and recalling that
∫

ω
u0χξ = 0, we get

Eξ(u0 + χξ) = Eξ(u0) + Eξ(χξ) + 2

[∫

ω

(1−ξ · y) (∇u0∇χξ − (λ0 + ξ · ρ0)u0 χξ) +

∫

∂ω

(1−ξ · y) γ u0 χξ

]

= (ξ · ρ0)(ξ · y0) +Eξ(χξ) + 2

∫

ω

(ξ · ∇u0)χξ + 2 ξ · ρ0

∫

ω

(ξ · y)u0 χξ .

(2.37)
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On the other hand, by (2.22) we have

−div
(

(1−ξ · y)∇χξ

)

= (1−ξ · y)(λ0χξ − ξ · ∇u0 + ξ · ρ0 u0) + ξ · ∇χξ,

from which follows, by multiplying by χξ and integrating by parts ,

Eξ(χξ) = −
∫

ω

(1−ξ · y)
[

(ξ · ρ0) (|χξ|2 − u0 χξ) + ξ · ∇u0 χξ

]

+

∫

ω

ξ · ∇χξ χξ .

Then, recalling that
∫

ω
u0χξ = 0, we rewrite (2.37) as follows

Eξ(u0 + χξ) = (ξ · ρ0)(ξ · y0) +

∫

ω

(ξ · ∇u0)χξ +R(ξ) ,

where the reminder R(ξ) is a sum of terms of power order greater than 3 with respect to ξ:

R(ξ) =

∫

ω

(ξ · y) ξ · ∇u0 χξ −
∫

ω

(1−ξ · y)(ξ · ρ0) |χξ|2 + (ξ · ρ0)

∫

ω

(ξ · y)u0 χξ +

∫

ω

(ξ · ∇χξ)χξ .

Therefore, taking into account the second equality in (2.27), we conclude that, for |ξ| sufficiently
small,

∣

∣

∣

∣

Eξ(u0 + χξ) −
1

2
M0ξ · ξ

∣

∣

∣

∣

= |R(ξ)| ≤ C |ξ|3 .

3. The symmetric case

In this section we will assume that the solution u0 of (1.1) satisfies the following balance relation:

ρ0 =

∫

∂ω

u2
0 n dσ = 0. (3.1)

This condition is necessary in order that, for small values of ε, the lower energy modes propagate
along the x3 direction. Otherwise, as we will discover in the next section, the fundamental mode
will localize. Let us notice that condition (3.1) involves only the geometry of ω and the function
γ ∈ L∞(∂ω) associated with the Robin condition. In particular, if γ is constant, it can be checked
that it is fulfilled if ω has one axis of symmetry.

We will assume further that the curvature k(s), the torsion τ(s) and the angular parameter α(s)
have the following regularity

k ∈ L∞(0, L) , τ ∈ W 1,∞(0, L) , α ∈W 2,∞(0, L) . (3.2)

Then, recalling (2.8) (in particular τ̃ = τ + α′) and (2.23), we set

q(s) :=
1

2
M0ξ(s) · ξ(s) + C1 τ̃(s)

2 − C2τ̃
′(s) , ξ(s) = k(s)zα(s) , (3.3)
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where constants C1, C2 (depending on ω and u0) are defined as follows:

C1 :=

∫

ω

|∇u0 ·Ry|2 dy +
1

2

∫

∂ω

γ u2
0 (y · ẏ)2 dσ , C2 :=

∫

ω

u0(∇u0 ·Ry) dy (3.4)

The scalar function q(s) appearing in (3.3) will play the role of an effective potential in the limit
problem which rules the x3-propagation of lower order modes. More precisely, let us introduce the
following Sturm-Liouville problem















−w′′ + q(s) w = µ w, w ∈ H2(0, L),

−w′(0) +
(

γ̃0 − C2τ̃(0)
)

w(0) = 0

w′(L) +
(

γ̃L + C2τ̃(L)
)

w(L) = 0 ,

(3.5)

where we have set

γ̃0 :=

∫

ω

γ0 u
2
0 dy , γ̃1 :=

∫

ω

γ1 u
2
0 dy. (3.6)

Then, the main result of this section states the convergence of the family of spectral problems (1.1)
in the symmetric case.

Theorem 3.1. Assume that (3.1) and (3.2) hold. Then the eigenvalues λε
0 < λε

1 ≤ · · · ≤ λε
i ≤ · · ·

of the spectral problem (1.1) satisfy for each i ∈ N

λε
i =

λ0

ε2
+ µε

i , µε
i → µi, (3.7)

where µi (i ∈ N) are the eigenvalues of (3.5). Furthermore, if uε
i is a normalized eigenvector for

problem (1.1) associated with λε
i , then, up to a subsequence, vε

i (s, y) = uε
i (ψε(s, y)) converges

strongly in L2(QL) to vi(s, y) = wi(s)u0(y) where wi is a normalized eigenvector of problem (3.5)
associated with µi. Conversely, any such vi is the limit of a sequence uε

i ◦ ψε where uε
i is an

eigenvector of (1.1) associated with λε
i .

Remark 3.2. The result above is quite similar to the main result of [2]. Only changes the structure
of the effective potential q(s). In particular, the influence of the curvature k(s) is taken into account
through the function M0ξ(s) · ξ(s) where M0 is not a priori a scalar tensor as it was in [2]. Notice
that if we formally substitute the Robin condition on the lateral part of the tube by a Dirichlet
one (that is γ = +∞), we get M0 = − 1

2
I2 (independant of the shape of ω) and we recover the

effective potential obtained in [BMT].

The key argument in order to prove Theorem 3.1 consists in establishing the Γ-convergence of
suitable quadratic energies defined on H1(QL) and to apply to them the general statement of
Proposition 5.2 (see Appendix). We observe that, thanks to (3.1), applying (2.25) yields

Λ0(εξ(s))− λ0

ε2
→ 1

2
M0 ξ(s) · ξ(s) uniformly on [0, L] . (3.8)

In view of (3.8), these functionals are obtained, up to multiplicative factor ε2, by shifting the initial
energy F̃ε. More precisely, we introduce G̃ε : L2(QL) → R defined by

G̃ε(v) :=











1

ε2
F̃ε(v) −

1

ε2

∫ L

0

∫

ω

βε λ0 v
2dy, if v ∈ H1(QL),

+∞ otherwise.

(3.9)
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In connection with spectral problem (3.5) , we consider G̃ : L2(QL) → R defined as follows

G̃(v) :=







G̃0(w) if v(s, y) = w(s) u0(y), w ∈ H1(0, L),

+∞ otherwise,

(3.10)

where

G̃0(w) :=

∫ L

0

(

|w′|2 +
[

C1τ̃
2 +

1

2
M0ξ · ξ

]

w2 + 2C2τ̃(s)w
′w

)

ds+ γ̃0 w(0)2 + γ̃L w(L)2 (3.11)

Proposition 3.3. Under the hypotheses of Theorem 3.1, G̃ε Γ - converges in L2(Q) to G̃ given
by (3.10) and (3.11). Moreover, the family of functionals G̃ε satisfies all conditions i), ii) and iii)
of Proposition 5.2 .

Proof. We proceed in three steps: in Step 1 we prove that {G̃ε} satisfies the hypothesis i) and
ii). Then we split the proof of iii) into two steps: in Step 2 we prove the lower bound inequality
for the Γ-convergence, and in Setp 3 we establish the existence of a sequence realizing the lower
bound.

Step 1. Recalling the definition of G̃ε (see (3.9) and (2.14)) we have

G̃ε(v) =

∫ L

0

∫

ω

1

βε

∣

∣

∣v′ + (∇yv ·R y)τ̃
∣

∣

∣

2

dy ds

+
1

ε2

∫ L

0

[∫

ω

βε(|∇yv|2 − λ0|v|2)dy +

∫

∂ω

βε γ |v|2dσ
]

ds

+

∫ L

0

τ̃2

2

(∫

∂ω

γ |v|2(y · ẏ)2 dσ
)

ds+ ε

∫ L

0

∫

∂ω

γ |v|2 rε dσ ds

+

∫

ω

(

γ0 |v(0, y)|2 + γL |v(L, y)|2
)

dy,

(3.12)

where rε(s, y) is uniformly bounded in (s, y), for ε small enough (see (2.10) and (2.11)).

Since γ, γ0, γL and
τ̃2

2
(y · ẏ)2 + εrε are non negative (see (2.11)), from (3.12) we deduce

G̃ε(v) ≥
∫ L

0

∫

ω

1

βε

∣

∣

∣v′ + (∇yv ·R y)τ̃
∣

∣

∣

2

dy ds

+
1

ε2

∫ L

0

[∫

ω

βε(|∇yv|2 − λ0|v|2)dy +

∫

∂ω

βε γ |v|2dσ
]

ds,

(3.13)

and also, using the definition of Λ0(εξ(s)) (see (2.18)),

G̃ε(v) ≥
∫ L

0

∫

ω

[

1

βε

∣

∣

∣
v′ + (∇yv ·R y)τ̃

∣

∣

∣

2

+ βε
Λ0(εξ(s))− λ0

ε2
|v|2

]

dy ds

+

∫ L

0

τ̃2

2

(
∫

∂ω

γ |v|2(y · ẏ)2 dσ
)

ds+ ε

∫ L

0

∫

∂ω

γ |v|2 rε dσ ds

+

∫

ω

(

γ0 |v(0, y)|2 + γL |v(L, y)|2
)

dy

≥
∫ L

0

∫

ω

[

1

βε

∣

∣

∣v′ + (∇yv ·R y)τ̃
∣

∣

∣

2

+ βε
Λ0(εξ(s))− λ0

ε2
|v|2

]

dy ds

(3.14)
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Since βε converges uniformly to 1, in view of (3.8) and (3.14), for ε small enough we can find c0
such that condition i) is satisfied.

Consider now a sequence {vε} bounded in L2(QL), such that G̃ε(vε) is also uniformly bounded.
Then, first from (3.13) and (3.8), and then from (3.14), we will obtain, for some M and N
independent of ε,

∫

QL

∣

∣

∣v′ε + (∇yvε ·R y) τ̃
∣

∣

∣

2

≤ M,

∫

QL

|∇yvε|2 ≤ N. (3.15)

From (3.15) , we infer that the sequence {Dvε}, where Dvε = (v′ε,∇yvε), is bounded in [L2(QL)]3.
Thus {vε} is bounded inH1(QL) and strongly relatively compact in L2(QL) by Rellich-Kondrachov
Theorem.

Step 2. Let {vε} be a sequence such that vε → v in L2(QL). Up to a subsequence we may assume
that lim inf

ε→0
Gε(vε) = lim

ε→0
G̃ε(vε) < +∞ . Then, as proved in Step 1, the sequence is bounded in

H1(QL) and inequalities (3.15) apply. Therefore, v belongs to H1(QL) and v′ε ⇀ v′,∇yvε ⇀ ∇yv
weakly in L2(QL). In particular, as R y , τ̃ ∈ L∞(QL), we obtain:

v′ε + (∇yvε ·R y)τ̃ ⇀ v′ + (∇yv ·R y) τ̃ .

Futhermore, from (3.14) and the uniform convergence (3.8) we deduce that

lim inf
ε→0

G̃ε(vε) ≥
∫

QL

{

∣

∣

∣
v′ + (∇yv ·R y) τ̃

∣

∣

∣

2

+
1

2

(

M0 ξ(s) · ξ(s)
)

|v|2
}

dy ds

+

∫ L

0

τ̃2

2

(∫

∂ω

γ |v|2(y · ẏ)2 dσ
)

ds+

∫

ω

(

γ0 |v(0, y)|2 + γL |v(L, y)|2
)

dy.

(3.16)
On the other hand, from (3.13) and since G̃ε(vε) is uniformly bounded, one has that

0 ≥ lim inf
ε→0

∫ L

0

(

∫

ω

βε(|∇yvε|2 − λ0|vε|2)dy +

∫

∂ω

βε γ |vε|2dσ
)

ds.

But

lim inf
ε→0

∫ L

0

∫

ω

βε(|∇yvε|2 − λ0|vε|2) dy ds+

∫ L

0

∫

∂ω

βε γ |vε|2 dσ ds ≥
∫ L

0

∫

ω

|(∇yv|2 − λ0|v|2)dyds+

∫ L

0

∫

∂ω

γ |v|2dσds ≥ 0,

by the definition of λ0. Therefore, for a.e. s ∈ (0, L),

∫

ω

|(∇yv|2 − λ0|v|2)dy +

∫

∂ω

γ |v|2dσ = 0

and v(s, ·), as an eigenvector associated with λ0, is proportional to the ground state u0. We deduce
that v can be written in the form v(s, y) = w(s)u0(y) with w ∈ H1(0, L) (since v ∈ H1(QL)). We
plug this expression of v into (3.16) to conclude that lim inf

ε→0
G̃ε(vε) ≥ G̃(v) where G̃(v) = G̃0(w).

This achieves the proof of the lower bound for the Γ-convergence.
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Step 3. Let v ∈ L2(QL). We have to show the existence of a sequence {vε} such that vε → v and
lim
ε→0

G̃ε(vε) = G̃(v). We may assume that G̃(v) < +∞ so that we can write v(s, y) = w(s)u0(y)

for a suitable element w ∈ H1(0, L). We consider vε defined by vε = w(s)[u0(y) + εϕ(s, y)] where
ϕ ∈ H1(QL) is given by ϕ(s, y) = χξ(s)(y), χξ(s) being the solution, for each s, of problem (2.22),
for ξ = ξ(s). Clearly vε → v strongly in H1(QL) and, as βε is uniformly close to 1, we have

lim
ε→0

[

∫

QL

1

βε

∣

∣

∣
v′ε + ∇yvε ·R y τ̃

∣

∣

∣

2

ds dy +

∫ L

0

τ̃2

2

(

∫

∂ω

γ|vε|2(y · ẏ)2dσ
)

ds

]

=

∫

QL

∣

∣

∣v′ + ∇yv ·Ry τ̃
∣

∣

∣

2

ds dy +

∫ L

0

τ̃2

2

(

∫

∂ω

γ |v|2(y · ẏ)2 dσ
)

ds

=

∫ L

0

|w′|2 + C1τ̃(s))
2|w|2 + C2 w

′ w τ̃(s) ds

(3.17)

and

lim
ε→0

∫

ω

(

γ0 |vε(0, y)|2 + γL |vε(L, y)|2
)

dy = γ̃0 |w(0)|2 + γ̃L |w(L)|2. (3.18)

On the other hand, since vε = w(s) (u0 + χεξ), replacing βε by [1− ε(ξ · y)] and using assertion ii)
of Proposition 2.1 with ρ0 = 0, we obtain

1

ε2

[

∫

ω

βε(s, y)
(

|∇yvε|2 − λ0|vε|2
)

dy +

∫

∂ω

βε(s, y) γ |vε|2 dσ
]

=

=
1

ε2
|w(s)|2Eεξ(s)

(

u0 + χεξ(s)

)

= |w(s)|2 1

2
M0 ξ(s) · ξ(s) + ρε(s),

(3.19)

where lim
ε→0

ρε(s) = 0, uniformly in [0, L].

Passing to the limit in G̃ε(vε) as ε→ 0 and taking into account (3.17), (3.18) and (3.19) integrated
with repect to s, we are led to

lim
ε→0

G̃ε(vε) =

∫ L

0

[

|w′|2 +
(

C1τ̃
2 +

1

2
M0ξ · ξ

)

|w|2 + 2C2τ̃ (s)w
′w

]

ds+ γ̃0w(0)2 + γ̃Lw(L)2,

which completes the proof.

Proof of Theorem 3.1. By Proposition 3.3, G̃ given by (3.11) is nothing else but the Γ-
limit in L2(QL) of (G̃ε) as ε → 0. It is a lower semicontinuous and quadratic functional from
L2(QL) into (−∞,+∞] (in the sense of ([5, Theorem 11.10)). By (3.11) its domain of finiteness
D(G̃) = {w(s)u0(y) : w ∈ H1(0, L)} can be identified with H1(0, L) and we have

G̃(w(s)u0(y)) = G̃0(w) = a0(w,w) ,

where a0 is the continuous coercive bilinear symmetric form on H1(0, L) deduced from the right
hand side of (3.11). After integration by parts and recalling the definition of q in (3.3) , we observe
that for every smooth test function ϕ, there holds

a0(w,ϕ) =

∫ L

0

(w′ϕ′ + q wϕ) ds+ C2

(

[τ̃wϕ](L) − [τ̃wϕ](0)
)

+ γ̃0w(0)ϕ(0) + γ̃Lw(L)ϕ(L).
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Therefore, the self-adjoint operator associated with a0 is the (compact resolvent) operator A0 :
L2(QL) → L2(QL) whose domain D(A0) consists of all elements w ∈ H2(0, L) which satisfy the
boundary conditions appearing in (3.5) and such that A0w = −w′′ + q(s)w for all w ∈ D(A0).
Then, Theorem 3.1 follows by applying Proposition 5.2 to the sequence {G̃ε}, which by Proposition
3.3 satisfies all the required conditions.

4. Non symmetric case and localization

In this section we consider a geometry ω and a Robin factor γ(s) for which the balance condition

(3.1) is not satisfied, that is ρ0 =
1

2

∫

∂ω

u2
0 n dσ is a non zero vector.

It turns out that localization occurs at the minimum points of the following scalar product

ϕ(s) := ρ0 · ξ(s) (recall ξ(s) = k(s)zα(s)) . (4.1)

We will assume that the function ϕ is of class C2([0, L]) and that it admits a unique global minimizer
at s0 ∈ (0, L):

µ0 := ϕ(s0) < ϕ(s) for all s 6= s0 and ϕ′′(s0) > 0. (4.2)

In particular ϕ′(s0) = 0 and the function
ϕ(s) − ϕ(s0)

|s− s0|2
extended by prescribing the value 1

2ϕ
′′(s0)

at s = s0 is positive continuous on the whole interval [0, L]. Thus, there exists η0 > 0 such that

η0 |s− s0|2 ≤ ϕ(s)− µ0 ≤ 1

η0
|s− s0|2 for every s ∈ [0, L] . (4.3)

We are going to show that localization occurs in the vicinity of r(s0). The concentrating behavior
of eigenvectors turns out to be described after a suitable blow-up by the lower level eigenfunctions
of the classical 1D-quantum harmonic oscillator. More precisely let

ν0 :=

√

1

2
(ρ0 · ξ′′(s0)) (4.4)

and consider the spectral problem

−ŵ′′ + ν2
0 t

2 ŵ = ν ŵ, ŵ ∈ H2(R) ∩ L2(R; t2dt), (4.5)

(being L2(R; t2dt) the subspace of functions ŵ ∈ L2(R) such that
∫

R
t2 |ŵ|2 dt <∞).

We recall (se for instance [4, & 2, Prop 25-26]) that we may associate with (4.5) a positive self-
adjoint operator in L2(R) with compact resolvent and whose eigenvalues are all simple and given
by

νi = ν0 (1 + 2i) , i ∈ N. (4.6)

Moreover, there exists an othonormal basis of eigenfunctions in terms of Hermite polynomials as
follows:

ŵi(t) =
1

[2i i!
√
π]1/2

4
√
ν0 e

−ν0
t2

2 Hi(t
√
ν0) , Hi(t) = (−1)i e

t2

2
di

dti
(e−

t2

2 ) (4.7)

In particular, the normalized fundamental mode ŵ0(t) := 4
√

ν0

π
e−ν0

t2

2 satisfies
∫

R

|ŵ0|2 = 1 ,

∫

R

|ŵ′
0|2 =

ν0
2

,

∫

R

t2|ŵ0|2 =
1

2ν0
,

∫

R

t4|ŵ0|2 =
3

4ν2
0

(4.8)

Our second main result reads as follows

15



Theorem 4.1. Assume that ξ(s) given in (4.1) belongs to C2([0, L]) and that (4.2) is satisfied.
Let νi be defined by (4.6). Then the eigenvalues λε

0 < λε
1 ≤ · · · ≤ λε

i ≤ · · · of the spectral problem
(1.1) can be expanded as follows

λε
i =

λ0

ε2
+
µ0

ε
+
νε

i√
ε

where, for each i ∈ N, lim
ε→0

νε
i = νi . (4.9)

Furthermore, if uε
i is a normalized eigenvector for problem (1.1) associated with λε

i , then,
up to a subsequence, v̂ε

i (t, y) = ε1/8uε
i (ψε(s0 + ε1/4t, y)) converges strongly in L2(R × ω) to

v̂i(t, y) = ±ŵi(t)u0(y), being ŵi given by (4.7). Conversely, any such v̂i is the limit of a sequence
of eigenvectors uε

i for (1.1) associated with λε
i .

Since the eigenvalues νi are simple, we infer from previous theorem that, for all i, the spectral
distance λε

i+1 − λε
i , i ≥ 0 is of order 1/

√
ε.

Our next issue is the asymptotic behavior of the first eigenvalue λε
0 as ε → 0. We assume that

the function ϕ(s) in (4.1) still satisfies (4.2) and, in addition, ξ(s) belongs to C4([0, L]). Recalling
(2.23) and (3.4), we set:

θ0 :=
1

2
M0ξ(s0) · ξ(s0)+C1 τ̃(s0)

2 −C2 τ̃
′(s0)+

1

16

(

ρ0 · ξ(4)(s0)
ρ0 · ξ′′(s0)

)

− 17

9

(

ρ0 · ξ(3)(s0)
ρ0 · ξ′′(s0)

)2

(4.10)

Conjecture. The first eigenvalue λε
0 satisfies the following expansion

λε
0 =

λ0

ε2
+
µ0

ε
+

ν0
ε1/2

+ θ0 + o(1) .

In this paper we are able to prove the upper bound part of the conjecture above, namely

Proposition 4.2. Let ξ(s) belong to C4([0, L]) and satisfy (4.2) . Then it holds

lim sup
ε→0

(

λε
0 −

λ0

ε2
− µ0

ε
− ν0
ε1/2

)

≤ θ0. (4.11)

We strongly believe that the upper bound obtained here is optimal. However the proof of the lower
bound inequality seems to require much more intricate arguments.

Remark 4.3. In order to describe the localization of the eigenmodes vi
ε in the vicinity of

s0, we made a blow-up of function vi
ε by setting v̂i

ε(t, y) := εα/2v(s0 + εαt, y) where α = 1/4
(notice that the L2 norm remains unchanged). Let us explain this choice of α performing the

change of variable t :=
s− s0
εα

in the shifted energy Jε(v) := F̃ε(v) − (λ0 + ε µ0)
∫

Q
βε|v|2,

where in order to simplify we take τ̃ = 0 and γ0 = γ1 = 0 and in which we substitute the

expression
∫ L

0

[∫

ω
βε|∇yv|2dy +

∫

∂ω
βε γ |v|2dσ

]

ds, appearing in (2.14), by its optimal lower

bound
∫ L

0

∫

ω
λ(εξ)βε|v|2dy ds. With v̂(t, y) := εα/2v(s0 + εαt, y), Iε :=

[

− s0

εα ,
L−s0

εα

]

and βε ∼ 1,
we roughly obtain

Jε(v) ∼ ε2−2α

∫

Iε

∫

ω

|v̂′(t, y)|2 dy dt+
∫ L

0

∫

ω

(

λ
(

εξ(s0 + εαt)
)

− (λ0 + ε µ0)
)

|v|2dy ds

16



Exploiting (2.25) and (4.3) , we can see that λ
(

εξ(s0 + εαt)
)

− (λ0 + ε µ0) is of order ε1+2α.
Then, in order to balance the different powers of ε in the expression above for Jε(v), we need that
1 + 2α = 2 − 2α. Thus α = 1/4 and Jε(v) is of order ε3/4 which , after division by volume factor
ε2, gives exactly the exponent ε−1/4 appearing in (4.9).

In view of the discussion in Remark 4.3, we now fix the change of variables

t =
s− s0
ε1/4

, v̂(t) = ε1/8 v(s0 + ε1/4 t), t ∈ Iε :=

[

− s0
ε1/4

,
L− s0
ε1/4

]

,

together with a rescaling of the energy, defining Ĝε : L2(R × ω) → R as follows

Ĝε(v̂) :=







1

ε3/2

(

F̃ε(v) −
∫

QL

βε(λ0 + εµ0)|v|2
)

, if v ∈ H1(QL), v = 0 a.e. in (R \ [0, L]) × ω,

+∞ otherwise.

Denoting β̄ε(t) := βε(s0 + ε1/4t) , τ̄ε(t) := τ̃(s0 + ε1/4t) , if Ĝε(v̂) < +∞, then

Ĝε(v̂) =

∫

Iε×ω

1

β̄ε

|v̂′ + ε1/4(∇yv̂ ·R y)τ̄ε|2 dt dy

+
1

ε3/2

[∫

Iε×ω

β̄ε

(

|∇y v̂|2 − (λ0 + εµ0)|v̂|2
)

dt dy +

∫

Iε×∂ω

β̄εγ|v̂|2 dt dσ
]

+ ε1/2

∫

Iε

τ̄2
ε

2

[

∫

∂ω

γ (y · ẏ)2|v̂|2 dσ
]

dt

+ ε1/2

∫

ω

(

γ0

∣

∣

∣
v̂
(

− s0
ε1/4

, y
)∣

∣

∣

2

+ γL

∣

∣

∣
v̂
(L− s0
ε1/4

, y
)∣

∣

∣

2
)

dy .

(4.12)

One checks that, for every ε, v ∈ H1(QL) if and only if v̂ ∈ H1(Iε × ω) and it holds

‖v‖2
H1(QL) ≤ C ε1/2 ‖v̂‖2

H1(Iε×ω) (4.13)

In connection with the one dimensional spectral problem (4.5), we introduce the quadratic energy
Ĝ : L2(R × ω) → R defined as follows

Ĝ(v̂) :=







Ĝ0(w) if v̂(t, y) = w(t) u0(y), w ∈ H1(R) ∩ L2(R; t2dt),

+∞ otherwise,

(4.14)

where, with ν0 defined in (4.4),

Ĝ0(w) :=

∫

R

(

|w′|2 + t2 ν2
0 |w|2

)

ds. (4.15)

As in the previous section the following proposition prepares our second main result
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Proposition 4.4. Under the assumptions of Theorem 4.1, the sequence of functionals {Ĝε} defined
in (4.12) satisfies all conditions i), ii) and iii) of Proposition 5.2 , being the Γ-limit of Ĝε given by
(4.14) and (4.15).

For subsequent estimates, it is useful to introduce

fε(t) :=
Λ0

(

ε ξ(s0 + ε1/4t)
)

− (λ0 + ε µ0)

ε3/2
, f0(t) :=

t2

2
(ρ0 · ξ′′(s0)) (= ν2

0 t
2) (4.16)

Lemma 4.5. Let ξ(s) be of class C2([0, L]) and satisfy (4.2) and (4.3). Then, for small ε, there
holds

fε(t) ≥ η0 t
2 − c

√
ε (4.17)

Moreover, the convergence fε → f0 holds uniformly on bounded subsets of R.

Proof. By (2.25) and the boundedness of function ξ(s), it holds
∣

∣Λ0

(

εξ(s)
)

− (λ0 + ε ϕ(s))
∣

∣ ≤
C ε2 . Since by (4.3) we have ϕ(s0 + ε1/4t) ≥ µ0 + ε1/2η0 t

2, it follows that

Λ0

(

εξ(s0 + ε1/4t)
)

− (λ0 + ε µ0) ≥ ε3/2η0 t
2 − C ε2 ,

which, after dividing by ε3/2, leads to lower bound (4.17). Moreover, for every t, we write
the following Taylor expansion (at third order in ε1/4): ξ(s0 + ε1/4t) = ξ(s0) + ε1/4 t ξ′(s0) +

ε1/2 t2

2
ξ′′(s0 + ε1/4θ t) , being θ a suitable value in (0, 1). Then, inserting in (2.25), we are led to

|fε(t) − f0(t)| ≤
t2

2

∣

∣

∣

(

ϕ′′(s0 + ε1/4θ t)
)

− ϕ′′(s0)
∣

∣

∣ + C ε3/2 ,

and fε → f0 uniformly on compact subsets, thanks to the uniform continuity of ϕ′′ on [0, L].

Proof of Proposition 4.4. The conditions i), ii) of Proposition 5.2 are established in Step 1.
The Γ− convergence of Ĝε (condition iii)) is proved by checking the lower bound inequality in
Step 2 and the upper bound inequality in Step 3.

Step 1 (Coercivity and compactness) Looking at the expression (4.12), since γ, γ0, γL are non
negative (see (2.11)), we obtain

Ĝε(v̂) ≥
∫

ω

∫

Iε

1

β̄ε

|v̂′ + ε1/4(∇yv̂ ·R y)τ̄ε|2 dt dy

+
1

ε3/2

[
∫

ω

∫

Iε

β̄ε

(

|∇y v̂|2 − (λ0 + εµ0)|v̂|2
)

dt dy +

∫

∂ω

∫

Iε

β̄εγ|v̂|2 dt dσ
]

.

(4.18)

On the other hand, by (2.16), (2.19) and (4.16), we have the sharp lower bound

1

ε3/2

[
∫

ω

∫

Iε

β̄ε

(

|∇y v̂|2 − (λ0 + εµ0)|v̂|2
)

dt dy +

∫

∂ω

∫

Iε

β̄εγ|v̂|2 dt dσ
]

≥
∫

ω

∫

Iε

fε β̄ε |v̂|2 dt dy, ,

from which follows that

Ĝε(v̂) ≥
∫

ω

∫

Iε

[

1

β̄ε

|v̂′ + ε1/4(∇y v̂ ·R y)τ̄ε|2 + β̄ε fε |v̂|2
]

dt dy . (4.19)
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In particular, for small ε, as β̄ε ≥ 1/2 whereas fε ≥ −c by (4.17), the condition i) of Proposition
5.2 is fulfilled by Ĝε.

In order to check condition ii), consider a bounded sequence {v̂ε} in L2(R × ω) satisfying
sup Ĝε(v̂ε) < +∞. Then, in view of (4.17), (4.18) and (4.19), we obtain

∫

Iε×ω

|∇y v̂ε|2 ≤M ,

∫

Iε×ω

∣

∣

∣v̂′ε + ε1/4(∇yv̂ε ·R y) τ̄ε

∣

∣

∣

2

≤M ,

∫

Iε×ω

t2|v̂ε|2 dt dy ≤M (4.20)

for a suitable constant M independent of ε (notice that, by definition, the condition Ĝε(v̂ε) < +∞
implies v̂ε = 0 a.e. in (R\Iε)×ω). Possibly after extracting a subsequence of {v̂ε}, we may assume
that v̂ε ⇀ v̂ weakly in L2(R × ω). Then, by (4.20), for every finite η > 0, {v̂ε} is weakly compact
in H1((−η, η) × ω)) so that by Rellich-Kondrachov Theorem, there holds

lim
ε

∫

(−η,η)×ω

|v̂ε|2 =

∫

(−η,η)×ω

|v̂|2 .

By exploiting the third inequality in (4.20) and as v̂ε = 0 outside Iε, we obtain

∫

R×ω

|v̂|2 dt dy ≤ lim inf
ε→0

∫

Iε×ω

|v̂ε|2 dt dy ≤ lim sup
ε→0

∫

Iε×ω

|v̂ε|2 dt dy ≤
∫

|t|≤η

|v̂|2 dt dy +
M

η2
,

from which folllows the strong convergence of v̂ε in L2(R × ω) by sending η to infinity.

Step 2 (Lower bound inequality.) Let {v̂ε} be a sequence such that v̂ε → v̂ in L2(R × ω). We
have to establish

lim inf Ĝε(v̂ε) ≥ Ĝ(v̂) . (4.21)

Up to a subsequence we may assume that lim inf
ε→0

Ĝε(v̂ε) = lim
ε→0

Ĝε(v̂ε) < +∞. Then, as noticed

in Step 1, the sequence {v̂ε} is bounded in H1
loc(R × ω) since estimates (4.20) hold. Therefore,

the limit v̂ is an element of H1
loc(R × ω). Let us pass to the lower limit in inequality (4.19): since

β̄ε → 1 uniformly, while τ̄ε remains bounded, and fε converges pointwise to f0 and satisfies a
uniform lower bound (see Lemma 4.5), with the help of Fatou’s Lemma we obtain

lim inf
ε→0

Ĝε(v̂ε) ≥
∫

R×ω

(

|v̂′|2 + f0(t)|v̂|2dt
)

dy . (4.22)

On the other hand, from (4.18) and since Ĝε(v̂ε) is uniformly bounded, one has

∫

Iε×ω

β̄ε

(

|∇y v̂ε|2 − (λ0 + εµ0)|v̂ε|2
)

dt dy +

∫

Iε×∂ω

β̄ε γ(y) |v̂ε|2 dt dσ(y) ≤ C ε3/2 .

It follows that the function hε(t) :=
∫

ω

(

|∇y v̂ε(t, ·)|2 − λ0|v̂ε(t, ·)|2
)

dy+
∫

∂ω
γ(y) |v̂ε(t, ·)|2 dσ(y) ,

which by the definition of λ0 is nonnegative, does converge to zero in L1
loc(R). We notice that

the function h0(t) :=
∫

ω

(

|∇y v̂(t, ·)|2 − λ0|v̂(t, ·)|2
)

dy+
∫

∂ω
γ(y) |v̂(t, ·)|2 dσ(y) is nonnegative as

well. Moreover, since v̂ε → v̂ strongly in L2(R × ω) and weakly in H1
loc(R × ω), for every R > 0,

there holds 0 = lim infε→0

∫

|t|<R
hε(t) dt ≥

∫

|t|<R
h0(t) dt. This implies that h0(t) = 0 a.e. and

therefore v̂(t, ·) is an eigenvector associated with λ0 (see (2.20)). It follows that v̂ can be written in
the form v̂(t, y) = w(t)u0(y) with w ∈ H1

loc(R). Plugging this expression of v̂ into the right hand
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side of (4.22) we obtain that w belongs to H1(R) ∩ L2(R; t2dt) and, in view of (4.14) and (4.15),
we see that (4.22) is nothing else but the lower bound inequality (4.21).

Step 3 (Upper bound inequality.) Let v̂ ∈ L2(R×ω). We have to construct a sequence {v̂ε} such
that v̂ε → v̂ and lim sup

ε→0
Ĝε(v̂ε) ≤ Ĝ(v̂). We may assume that Ĝ(v̂) < +∞ so that we can write

v̂(t, y) = ŵ(t)u0(y) for a suitable element ŵ ∈ H1(R) ∩ L2(R; t2dt).

We consider v̂ε defined by v̂ε = χε(t) ŵ(t)u0(y), being χε on Iε × ω. Then, substituting in the
formula (4.12) and taking into account that w is bounded while β̄ε → 1 uniformly and

∫

ω
u2

0 = 1,
we infer, after some computations, that

lim sup
ε→0

Ĝε(v̂ε) =

∫

R

|ŵ′|2 dt + lim sup
ε→0

1

ε3/2

∫

Iε

Φε

(

ξ(s0 + t ε1/4)
)

|ŵ|2 dt ,

where for every ξ ∈ R
2 we have set:

Φε(ξ) :=

∫

ω

(1 − εξ · y)
(

|∇yu0|2 − (λ0 + εµ0)|u0|2
)

dy +

∫

∂ω

(1 − εξ · y) γ |u0|2 dσ .

In view of (4.15) , we are reduced to show that

lim sup
ε→0

1

ε3/2

∫

Iε

Φε

(

ξ(s0 + t ε1/4)
)

|ŵ|2 dt ≤
∫

R

ν2
0 t

2 |ŵ|2 dt . (4.23)

Since u0 satisfy (2.20), the ε0 order term in Φε(ξ) vanishes. By writing relation (2.36) with ψ = u0

and recalling (2.21) , we get Φε(ξ) = ε (ξ · ρ0 − µ0) + ε2µ0

∫

ω
ξ · y dy . Thus, by (4.2), we have the

estimate
∣

∣

∣

∣

1

ε3/2
Φε

(

ξ(s0 + t ε1/4)
)

− ϕε(t)

∣

∣

∣

∣

≤ C
√
ε where ϕε(t) :=

ϕ((s0 + t ε1/4) − ϕ(s0)

ε1/2
.

Therefore, the concluding inequality (4.23) is achieved provided

lim
ε→0

∫

Iε

ϕε(t) |ŵ|2 dt =

∫

R

(ν0)
2 t2 |ŵ|2 dt .

This is a consequence of the dominated convergence Theorem, since ϕε(t) → (ν0)
2t2 and, by (4.3),

it holds |ϕε(t)| ≤ 1
η0
t2 whereas

∫

R
t2|ŵ|2 dt < +∞.

Proof of Theorem 4.1. We observe that, by (2.15)and (4.13), there holds for every u ∈ H1(Ωε)
∣

∣

∣

∣

1

ε3/2

[

Fε(u) − (λ0 + εµ0)

∫

Ωε

u2 dx

]

− Ĝε(v̂)

∣

∣

∣

∣

≤ C ε3/2 ‖v‖2
H1(QL) ≤ C ′ ε ‖v̂‖2

H1(Iε×ω) (4.24)

where v(s, y) = u ◦ ψε(s, y) and v̂(t, y) = ε1/8 v(s0 + ε1/4t). The asymptotic behavior of
νi

ε = 1
ε3/2 [λε

i − (λ0 + εµ0)] is therefore ruled by the functional Ĝε to which we apply Proposition
4.4. The proof follows by using exactly the same line as in the proof of Theorem 3.1.

Proof of Theorem 4.2. We introduce Ĥε : L2(R × ω) → R defined by

Ĥε(v̂) :=
1

ε1/2
Ĝε(v̂) −

1

ε1/2

∫

Iε×ω

β̄ε ν0|v̂|2dtdy .
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For v̂ ∈ H1(Iε × ω) and v̂ vanishing in (R \ Iε) × ω, the expression of Ĥε(v̂) reads

Ĥε(v̂) = Âε(v̂) + B̂ε(v̂) + Ĉε(v̂) , where

Âε(v̂) :=

∫

Iε×ω

1

β̄ε

∣

∣

∣

∣

1

ε1/4
v̂′ + (∇y v̂ ·R y)τ̄ε

∣

∣

∣

∣

2

dt dy

B̂ε(v̂) :=
1

ε2

[∫

Iε×ω

β̄ε

(

|∇y v̂|2 − (λ0 + εµ0 + ε3/2ν0)|v̂|2
)

dt dy +

∫

Iε×∂ω

β̄εγ|v̂|2 dt dσ
]

Ĉε(v̂) :=

∫

Iε×∂ω

τ̄2
ε

2
γ (y · ẏ)2|v̂|2 dt dσ +

∫

ω

(

γ0

∣

∣

∣v̂
(−s0
ε1/4

, y
)∣

∣

∣

2

+γL

∣

∣

∣v̂
(L− s0
ε1/4

, y
)∣

∣

∣

2
)

dy

(4.25)

Setting

θε := inf

{

Ĥε(v̂)
∫

R×ω
β̄ε|v̂|2 dtdy

}

, (4.26)

we claim that

|θε − θε
0| ≤ C

√
ε where θε

0 := λε
0 −

λ0

ε2
− µ0

ε
− ν0
ε1/2

. (4.27)

Indeed, by dividing the inequality (4.24) by
√
ε, we infer that for every u ∈ H1(Ωε) it holds

∣

∣

∣

∣

1

ε2

[

Fε(u) − (λ0 + εµ0 + ε3/2ν0)

∫

Ωε

|u|2 dx
]

− Ĥε(v̂)

∣

∣

∣

∣

≤
√
ε ‖v̂‖2

H1(Iε×Ω) ,

being v̂(t, y) = ε1/8 u ◦ ψε(s0 + ε1/4t, y) in Iε × ω and zero in (R \ Iε) × ω. The claim follows by
comparing the Rayleigh quotients associated with θε and θε

0, respectively.

Let ξ̄ε(t) := ξ(s0 + ε1/4t) and let χξ̄ε(t) be the solution of (2.22) for z = ξ̄ε(t). We consider the
approximating sequence (v̂ε) defined on Iε × ω as follows

v̂ε(t, y) :=
(

ŵ0(t) + ε1/4ϕ̂(t)
) (

u0(y) + ε χξ̄ε(t)(y)
)

, (4.28)

and zero outside Iε×ω, where the function ϕ̂, specified later, will be a suitable linear combination of
the eigenfunctions {ŵi , i = 1, 3} defined in (4.7). In particular, in order that the total energy Ĥε(v̂ε)
remains finite, we will need that

∫

R
ϕ̂ŵ0 =

∫

R
t2ϕ̂ŵ0 = 0. Thanks to the normalization condition on

functions u0, ŵ0, and recalling that β̄ε → 1 uniformly, one checks that lim
ε→0

∫

R×ω

β̄ε|v̂ε|2 dt dy = 1.

Thus, by (4.26) and (4.27), the upper bound inequality of Proposition 4.2 is established once we
have shown that

lim sup
ε→0

Ĥε(v̂ε) ≤ θ0 . (4.29)

We will establish successively the following convergences:

lim
ε→0

(

Âε(v̂ε) −
ν0

2
√
ε

∫

Iε

|ŵ0|2 −
2

ε1/4

∫

Iε

ŵ′
0ϕ̂

′
)

= τ̃2(s0)

∫

ω

|∇u0 ·Ry|2 − C2 τ̃
′(s0) +

∫

R

|ϕ̂′|2 dt
(4.30)
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lim
ε→0

(

B̂ε(v̂ε) +
ν0

2
√
ε

∫

Iε

|ŵ0|2 +
2

ε1/4

∫

Iε

ŵ′
0ϕ̂

′
)

=
1

2
M0 ξ(s0) · ξ(s0) +

ρ0 · ξ(4)(s0)
32(ν0)2

+

+

∫

R

(ν2
0 t

2 − ν0)|ϕ̂|2 dt +

∫

R

ρ0 · ξ(3)(s0)
3

t3 ŵ0 ϕ̂ dt

(4.31)

lim
ε→0

Ĉε(v̂ε) =
1

2
τ̃2(s0)

∫

∂ω

γ|u0|2(y · ẏ)2 dσ . (4.32)

Adding up the three previous equalities, we infer that

lim sup
ε→0

Ĥε(v̂ε) ≤ 1

2
M0ξ(s0) · ξ(s0) + C1 τ̃

2(s0) − C2 τ̃
′(s0) +

ρ0 · ξ(4)(s0)
32 ν2

0

+ E(ϕ̂) (4.33)

where the last term, to be minimized with respect to ϕ̂ ∈ H1(R), is given by

E(ϕ̂) :=

∫

R

|ϕ̂′|2 dt+

∫

R

[

ν2
0 t

2 − ν0
]

|ϕ̂|2 dt + 2

∫

R

h(t) ϕ̂ dt with h(t) :=
ρ0 · ξ(3)(s0)

6
t3 ŵ0.

It turns out that h is orthogonal to ŵ0 and can be expressed as a linear combination of normalized
eigenvectors ŵ1, ŵ3 introduced in (4.7). In fact, we have

ŵ1

ŵ0
(t) = (ν0)

1/2 t√
2

,
ŵ3

ŵ0
(t) = (ν0)

3/2 t3

4
√

3
− (ν0)

1/2

√
3

4
t ,

and, consequently,

h(t) =
ρ0 · ξ(3)(s0)

(ν0)3/2

(

1√
2
ŵ1(t) +

2√
3
ŵ3(t)

)

.

Applying Lemma 5.1, we deduce that the minimum of E(ϕ̂) is reached for a suitable linear
combination ϕ̂opt of ŵ1 and ŵ3. Taking into account that ν3 −ν0 = 6ν0 , ν1 −ν0 = 2ν0 and
recalling (4.4), we have

min E = − 17

36

[

ρ0 · ξ(3)(s0)
(ν0)4

]2

= − 17

9

[

ρ0 · ξ(3)(s0)
ρ0 · ξ′′(s0)

]2

.

Then, plugging ϕ̂ = ϕ̂opt into the definition (4.28) of v̂ε and in view of (4.10), the upper bound
inequality (4.29) follows directly from (4.33).

It remains to show claims (4.30), (4.31) and (4.32).

Let us plug v̂ε into the three expressions in (4.25), taking into account that for all t ∈ Iε it holds

v̂′ε(t, y) = (ŵ′
0+ε

1/4ϕ̂′)(t) (u0+ε χξ̄ε
)(y)+ε5/4 ŵ0(t)χξ̄ε

(ξ̄ε)
′(t) , ∇y v̂ε(t) = (ŵ0+ε

1/4ϕ̂)(t) (∇yu0+ε∇yχξ̄ε
).

In particular, we have the following estimates:

|v̂′ε(t, y)−(ŵ′
0+ε

1/4ϕ̂′)(t)u0(y)‖L2(Iε×ω) ≤ C ε , |∇y v̂ε(t, y)−(ŵ0+ε
1/4ϕ̂)(t)∇yu0(y)‖L2(Iε×ω) ≤ C ε .

22



Thus, as |1 − βε| ≤ Cε and observing that, by (4.8) and the exponential decay of ŵ0, we have
|
∫

Iε
(|ŵ′

0|2 − ν0

2 |ŵ0|2)| ≪
√
ε, it follows that the left hand side of (4.30) has the same asymptotic

behavior as

Lε :=
1√
ε

[
∫

Iε×ω

∣

∣

∣
(ŵ′

0 + ε1/4ϕ̂′)(t)u0(y) + ε1/4 (ŵ0 + ε1/4ϕ̂)(t) (∇yu0 ·Ry))τ̄ε
∣

∣

∣

2

−
∫

Iε

(|ŵ′
0|2 + 2ε1/4ŵ′

0ϕ̂
′)

]

.

After straightforward computations, taking into account that τ̄ε → τ̃(s0) uniformly and integrating
with respect to y ∈ ω, we obtain

lim
ε→0

Lε = τ̃2(s0)

∫

ω

|∇u0 ·Ry|2 + lim
ε→0

[

Jε(ϕ̂) +
rε
ε1/4

]

, (4.34)

where Jε(ϕ̂) :=
∫

Iε
(|ϕ̂′|2 + 2C2

∫

Iε
(ŵ′

0ϕ̂+ ŵ0ϕ̂
′) τ̄ε dt and rε := 2C2

∫

Iε
(ŵ′

0(t)ŵ0(t)) τ̄ε dt.

Integrating by parts, and as the boundary terms are exponentially small (ϕ̂ is a linear combination
of ŵ1, ŵ3), it holds that

lim
ε→0

∫

Iε

(ŵ′
0ϕ̂+ ŵ0ϕ̂

′) τ̄ε dt = − lim
ε→0

∫

Iε

ŵ0ϕ̂ τ̃
′(s0 + ε1/4t) ε1/4 dt = 0 ,

lim
ε→0

∫

Iε

|ŵ′
0|2 τ̄ε dt = − lim

ε→0

∫

Iε

|ŵ0|2 τ̃ ′(s0 + ε1/4t) ε1/4 dt = −τ̃ ′(s0) ,

where in the last integral we use dominated convergence. Therefore, we obtain that

lim
ε→0

rε ε
−1/4 = −C2 τ̃

′(s0) , lim
ε→0

Jε(ϕ̂) =

∫

R

|ϕ̂′|2 dt .

Then (4.30) follows from (4.34).

The derivation of (4.32) is straightforward since

Ĉε(v̂ε) =
1

2

(∫

∂ω

γ|u0|2(y · ẏ)2 dσ
) (∫

Iε

τ̄2
ε |ŵ0|2 dt

)

+

(∫

ω

γ0|u0|2 dy
)

∣

∣

∣
ŵ0(−

s0
ε1/4

)
∣

∣

∣

2

+

(∫

ω

γL|u0|2 dy
) ∣

∣

∣

∣

ŵ0(
L− s0
ε1/4

)

∣

∣

∣

∣

2

,

where the expressions in the last line vanish as ε→ 0 due the exponential decay of ŵ0.

Eventually we finish the proof by establishing the claim (4.31). Let us insert βε = 1 − ε(ξ̄ε(t) · y)
and v̂ε given by (4.28) in the expression of B̂ε (see (4.25)). By using the assertion ii) of Proposition
2.1, we have

lim
ε→0

1

ε2

[
∫

Iε×ω

β̄ε

(

|∇y v̂ε|2 − (λ0 + ερ0 · ξ̄ε(t))|v̂ε|2
)

dt dy +

∫

Iε×∂ω

β̄εγ|v̂ε|2 dt dσ
]

= lim
ε→0

1

ε2

∫

Iε

|ŵ0 + ε1/4ϕ̂|2Eεξ̄ε(t)(u0 + χεξ̄ε(t)) dt

= lim
ε→0

∫

Iε

1

2

(

M0 ξ̄ε(t) · ξ̄ε(t)
)

|ŵ0 + ε1/4ϕ̂|2 dt

=
1

2
M0 ξ(s0) · ξ(s0)
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where in the last line we used dominated convergence, the exponential decay of ŵ0 and
∫

R
|ŵ0|2 = 1.

Thus, recalling the definition of B̂ε in (4.25), we deduce that

lim
ε→0

(

B̂ε(v̂ε) +
ν0

2
√
ε

∫

Iε

|ŵ0|2 +
2

ε1/4

∫

Iε

ŵ′
0ϕ̂

′
)

=
1

2
M0 ξ(s0) · ξ(s0) + lim

ε→0
Uε(ϕ̂) , (4.35)

where we have set

Uε(ϕ̂) :=

∫

Iε

(

(ρ0 · ξ̄ε) − µ0 − ν0
√
ε

ε

)

|ŵ0 + ε1/4ϕ̂|2 dt+ ν0
2
√
ε

∫

Iε

|ŵ0|2 +
2

ε1/4

∫

Iε

ŵ′
0ϕ̂

′ . (4.36)

As ξ(s) is of class C4([0, L]), we may use the following Taylor expansion at fourth order in ε1/4

(recall that ν2
0 = 1

2
ρ0 · ξ′′(s0) and ξ̄ε(t) = ρ0 · ξ(s0 + ε1/4t))

(ρ0 · ξ̄ε)(t)− µ0 − ν0
√
ε = ε1/2 (ν2

0 t
2 − ν0) + ε3/4 t

3

6
ρ0 · ξ(3)(s0) + ε

t4

24
ρ0 · ξ(4)(s0) + o(ε) .

Then, taking into account the exponential decay of functions ŵ0, ϕ̂, the integrals over Iε in (4.36)
can be substituted with the same integrals over all R and we obtain the following expansion:

Uε(ϕ̂) =
1√
ε

∫

R

(ν2
0 t

2 − ν0 +
ν0
2

) |ŵ0|2 dt

+
1

ε1/4

∫

R

2(ν2
0 t

2 − ν0) ŵ0 ϕ̂+
t3

6
(ρ0 · ξ(3)(s0)) |ŵ0|2 dt

+

∫

R

[

(ν2
0 t

2 − ν0) |ϕ̂|2 +
2 t3

6
(ρ0 · ξ(3)(s0)) ŵ0ϕ̂+

t4

24
(ρ0 · ξ(4)(s0) |ŵ0|2

]

dt

+ o(ε1/4)

By (4.8) the first term in 1√
ε

vanishes. Observing that t3|ŵ0|2 and ŵ0 ϕ̂ are odd functions, we see

that the second term (in 1
ε1/4 ) vanishes as well and we conclude that

lim
ε→0

Uε(ϕ̂) =

∫

R

[

(ν2
0 t

2 − ν0) |ϕ̂|2 +
t4

24
(ρ0 · ξ(4)(s0) |ŵ0|2

]

dt .

The claim (4.31) follows from (4.35).

5. APPENDIX

5.1. Some elementary results.

Lemma 5.1. Let A : H → H be a positive linear self-adjoint operator with compact resolvent.
Let 0 < ν0 < ν1 ≤ ν2 ≤ · · · be the eigenvalues where the first one ν0 is assumed to be simple. Let
{e0, e1, e2, · · · ek · · ·} be a basis of associated eigenvectors. Then:

i) For every λ, the following implication holds

|λ− ν0| <
ν1 − ν0

2
=⇒ ‖Av − λv‖ ≥ |λ− ν0| ‖v‖ ∀v ∈ H .
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ii) For every h ∈ H such that (h|e0) = 0, there holds

min
v∈H

{(Av|v) − ν0 (v|v) + 2(h|v)} = −
∞
∑

k=1

|(h|ek)|2
νk − ν0

.

Proof. The assertion i) is a consequence of the inequality ‖Av−λv‖ ≥ inf i∈N |λ− νi|} ‖v‖ (valid
whenever A is a self-adjoint operator). To show ii), we observe that, for every v =

∑

k ck ek, the
energy E(v) to be minimized can be written as

E(v) =

∞
∑

k=1

(νk − ν0)|ck|2 + 2(h|ek)ck .

The minimum is achieved by taking ck = − (h|ek)

νk − ν0
for k ≥ 1 and c0 arbitrary.

5.2. The Γ-convergence method. In this section we present a general result that enables
us to guarantee the spectral convergence of our problem, throughout the Γ-convergence of the
corresponding energy functional. The proof can be found in [2]. We begin by recalling the
definition of Γ-convergence. Consider a quadratic functional G : L2(QL) → L2(QL). We say
that the sequence {Gε} Γ-converges to G in H = L2(QL) if the following two conditions hold:

(i) (lower bound) For any v and {vε} such that vε → v in H, lim inf
ε→0

Gε(vε) ≥ G(v);

(ii) (upper bound) For every v, there exists a sequence {ṽε} such that ṽε → v in H and
lim sup

ε→0
Gε(ṽε) ≤ G(v).

It turns out that such a Γ-limit G always exists, possibly after extracting a subsequence. Also, the
Γ-convergence of {Gε} is unchanged if we subsitute Gε by its lower semicontinuous envelope (with
respect to the strong topology in H) and the Γ-limit G enjoys the lower semicontinuity property as
well. For further features on Γ-convergence theory, we refer to the monograph by G. Dal Maso [5],
where particular issues concerning the case of quadratic functionals and related linear operators
are detailed (see Section 12 in this book). The relationship with the strong compact resolvent
convergence of operators is summarized in the following

Proposition 5.2. Let Aε : Hε → Hε be a sequence of self-adjoint operators where Hε coincides
algebraically with a fixed Hilbert space H endowed with a scalar product (·|·)ε such that

aε ‖u‖2 ≤ (u|u)ε ≤ bε ‖u‖2,

being aε, bε suitable constants such that aε, bε → 1 and (·, ·), ‖·‖ represent the usual scalar product
and norm in H, respectively. Let Gε : H → (−∞,+∞] be a lower semicontinuous quadratic form
satisfying Gε(v) = (Aεv|v)ε, if v ∈ D(Aε), and assume that the three following conditions hold:

i) Gε(v) ≥ −c0 ‖v‖2 for a suitable constant c0 ≥ 0.

ii) If sup
ε
{Gε(vε) + ‖vε‖} < +∞, then {vε} is strongly relatively compact in H.

iii) Gε does Γ−converge to G.

Then, the limit functional G determines a unique closed linear operator A0 : H → H with compact
resolvent, with domain D(A0) (a priori non dense in H) and such that G(v) = (A0v, v) for all
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v ∈ D(A0). Furthermore, the spectral problems associated with Aε converge in the following sense:
let µε

i , v
ε
i and µi, vi be such that

vε
i ∈ H , Aεv

ε
i = µε

iv
ε
i , µε

0 ≤ µε
1 ≤ · · · ≤ µε

i · · · , (vi
ε|vj

ε)ε = δi,j ,

vi ∈ H , A0v
i = µivi , µ0 ≤ µ1 ≤ · · · ≤ µi · · · , (vi|vj) = δi,j .

Then, as ε→ 0, µε
i → µi for every i ∈ N. Moreover, up to a subsequence, {vε

i } converges strongly
to eigenvectors associated to µi. Conversely, any eigenvector vi is the strong limit of a particular
sequence of eigenvectors of Aε associated to µε

i .
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[3] B. Chenaud, P. Duclos, P. Freitas, D. Krejčǐŕık, Geometrically induced discrete specrtum in
curved tubes. Differential Geometry and its Applications, no. 23 (2005), 95-105.

[4] R. Dautray, JLL Lions, Analyse mathmatique et calcul numrique, Volume 5, Masson, Paris,
1988

[5] G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations
and their Applications 8, Birkhäuser Boston Inc., Boston, 1993.
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