Optimal control of shear-thinning fluids

Nadir Arada!

Abstract

The aim of this paper is to establish necessary optimality conditions for optimal control
problems governed by steady, incompressible Navier-Stokes equations with shear-dependent
viscosity. The main difficulty is related with the differentiability of the control-to-state map-
ping and is overcome by introducing a family of smooth approximate control problems, and
by passing to the limit in the corresponding optimality conditions.
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1 Introduction

This paper deals with optimal control problems associated with a viscous, incompressible fluid
described by the following partial differential equations that generalize the Navier-Stokes system

V- (t(Dy))+y-Vy+Vr=u in Q,
V.-y=0 in Q, (L.1)
y=0 onT,

where y is the velocity field, 7 is the pressure, 7 is the extra stress tensor, Dy = 1 (Vy + (Vy)T)
is the symmetric part of the velocity gradient Vy, u is the given body force and Q C IR" (n = 2
or n = 3) is a bounded domain with boundary I'. We assume that 7 : IR — IRg " has a

potential, i.e. there exists a function ® € C?(IR;}, IR;) with ®(0) = 0 such that
7is(n) = L — 20/ (|pf?) my;  for all y € IRLyE,  7(0) = 0.

(Here lR?yXW’f consists of all symetric (n x n)-matrices.) Moreover, we assume that the following

assumptions hold

A - There exists a positive constant v such that for all 7,j,k,£=1,--+ 'n

o a2
72’;;")‘ <~ (1 + \77|2) 2 for all n € ZR?yXT,’LL.

A, - There exists a positive constant v such that

a—2

) iCiC=> G Gy > v (L+ ) 7 [¢2 for all n, ¢ € RIS

Onij
ijkl
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These assumptions are usually used in the literature and cover a wide range of non-Newtonian
fluids. Typical prototypes of extra tensors used in applications are

a—2 —
=201+ = n o ) =200+

We recall that a fluid is called shear-thickening if o > 2 and shear-thinning if a@ < 2. For the
special case 7(n) = 2vn (o = 2), we recover the Navier-Stokes equation with viscosity coeficient
v>0.

The paper is concerned with the following optimal control problem

Minimize  J(u,y) = %/ ly —yal? dz + %/ u|® da
Q Q

Subject to  (u,y) € Ung x Wy *(Q) satisfies (1.1) for some 7 € L*(£)

(Pa)

where y4 is some desired velocity field, A is a positive constant, the set of admissible controls

U,q is a nonempty convex closed subset of LQ(Q) and f—fz < a < 2. Although the analysis
of several results can be more general, in order to simplify the redaction, we will assume that

Usa C {v € L*(Q) | |[v|l2 < U} for some U > 0.

The considered class of fluids is described by partial differential equations of the quasi-linear
type. It was first proposed by Ladyzhenskaya in [17], [18] and [19] as a modification of the
Navier-Stokes system (the viscosity depending on the shear-rate), and was similarly suggested
by Lions in [20]. Existence of weak solutions was proved by both authors using compactness
arguments and the theory of monotone operators. Since these pioneering results, much has been
done and we emphasize the works by Necas et al. who proved existence of weak and measure-
valued solutions under the less restrictive assumption o > nQ—fQ (see for example [25] and [11]).

In the absence of flow convection, optimal control problems governed by generalized Stokes
systems can be studied following the ideas developed in [4] and [6] for problems governed by
quasilinear elliptic equations. Similar underlying difficulties, consequence of the nonlinearity
of the extra-stress tensor, are related with the differentiability of the control-to-state mapping.
The corresponding analysis cannot be achieved in Sobolev spaces and the natural setting for the
linearized equation and the adjoint state equation involves weighted Sobolev spaces. The lack of
regularity of the state variable in the case of shear-thinnig fluids creates an additional difficulty
that can be overcome by considering a family of approximate problems falling into the case o = 2.
Differentiability of the approximate control-to-state mapping can then be established, allowing
to derive the approroximate optimality conditions, and the optimality conditions by passing to
the limit.

The case of problems governed by generalized Navier-Stokes equations is more delicate since
another difficulty arises in connection with the convective term and the uniqueness of the state
variable, guaranteed under some constraint on the data. It is similarly encountered when studying
problems governed by the Navier-Stokes equations for which the necessary optimality conditions
can be established by restraining all the admissible controls to satisfy this constraint (see for
example [10] and [26]).

The difficulties related with the nonlinearity of the extra stress tensor and the convective term
can be more easily handled (especially in the case of shear-thinning flows) if the gradient of the
velocity is bounded. The corresponding viscosity, although non constant, is also bounded and
the system can be studied as in the case of Navier-Stokes equations. These regularity results are
few, difficult to obtain in general and do not seem to be available for the three-dimensional case.
For the two-dimensional steady case, the boundedness of the gradient was proved by Kaplicky et
al. in [22] enabling Slawig to derive the corresponding optimality conditions in [27]. Similarly,



Wachsmuth and Roubi¢ek used the regularity results established in [21] to derive the optimality
conditions for a two-dimensional unsteady system describing the flow of shear-tickening fluids
(see [28]). Related to this aspect, we also mention Gunzburger and Trenchea who used the reg-
ularity results obtained in [14] to derive the optimality conditions for a problem governed by a
three-dimensional modified Navier-Stokes system coupled with Maxwell equations (see [15]).

There are few works dealing with these problems when no higher regularity results are available.
We mention the recent paper by De los Reyes [8], who considered a problem governed by the
Bingham nonlinear mixed variational inequality. Besides difficulties induced by the nonlinearity
of the viscoplastic and the convective terms, the non-regularity of the model has to be man-
aged. By exploiting the specific structure of the non-differentiable term, a family of regularized
problems is introduced, the corresponding optimality systems are derived and the optimality
conditions for the original problem are obtained by passing to the limit. We also mention our
work dealing with steady shear-thickening fluids where the restriction on the set of admissible
controls has been relaxed and the optimality conditions obtained under a precise condition on
the optimal control (see [2] and [3]).

In the case of shear-thinning fluids, the problems are more difficult to handle. The techniques
developped in [2] cannot be directly applied because of the combined effect of the convective
term and the nonlinear stress tensor. Moreover, unlike the case of problems governed by gen-
eralized Stokes systems and unless we restrict all the admissible controls, the differentiability of
the approximate control-to-state mapping is not guaranteed, the approximate control problem
does not fall in the case & = 2 and further analysis is needed. Let us finally mention that in [2],
[3] and in the present work, the considered potential is C?. Nevertheless, the problems are still
challenging especially in the case of shear-thinning flows. A further interesting aspect would be
the adaptation of the techniques developed in [8] to the case of a less regular potential. (In this
respect, see also the paper by Casas and Fernandez [5].)

In the present paper, we establish explicite estimates, carefully analyse the related equations
and derive optimality conditions without restraining the set of admissible controls. The only
constraint concerns the optimal control. The plan is as follows. Assumptions, notation and
some preliminary results are given in Section 2. Section 3 is devoted to existence and uniqueness
results for the state equation and to the derivation of corresponding estimates. Section 4 deals
with existence of an optimal control while necessary optimality conditions are given in Section
5. In Section 6, we introduce a family of approximate control problems, study the properties of
the corresponding control-to-state mapping and establish the approximate optimality conditions.
By passing to the limit, we prove the optimality conditions for the control problem in Section 7.

2 Notation and preliminary results

Throughout the paper Q C IR" (n=2 or n=3) is a bounded domain with a boundary T of class
C?. Since many of the quantities occuring in the paper are vector-valued functions, we will use
the same notation of norms for scalar, vector and matrix-valued functions for the sake of brevity.

2.1 Function spaces and classical inequalities

Let us define some useful function spaces. The space of infinitely differentiable functions with
compact support in Q will be denoted by D(€2). The standard Sobolev spaces are denoted by
Wke(Q) (k € IN and 1 < a < o0), and their norms by || - [|g,o. We set W2 (Q) = L*(Q) and
I“llee = |- In order to eliminate the pressure in the weak formulation of the state equation,



we will work in divergence-free spaces. Consider
V={peDQ) [V ¢=0},

and denote by V,, the closure of V in the L*-norm of gradients, i.e.
Vo= {e e Wi (@) | V- =0}.

Given y € Wg’a(Q), we can associate two weighted Sobolev spaces VY and HY, where VY is the
set of functions z € V4 such that the norm || - || defined by

Izl = |[(1+ 1Dyl = |

is finite, and HY is the completion of V in VY. It may be verified that V¥ and HY are Hilbert
spaces and that HY C VY. Moreover, we have Vo C HY C V, if o < 2, with continuous
injections. Weighted Sobolev Spaces of this type have been studied by Coffman et al. [7],
Murthy and Stampacchia [24].

Let us now collect some useful auxiliary results. We begin by three classical inequalities.
Lemma 2.1 (Poincaré’s inequality.) Let y be in Wol’a(Q) with 1 < a < 2. Then the following
estimate holds
Q) ifo=2
Iyl < CoallVull, — with Cpa=1 " " |
(= af|Q|” if a < 2.
Proof. See for example [12], Chapter 2. O

Lemma 2.2 (Sobolev’s inequality.) Let y be in WOI’Q(Q) with 1 < a < 2. Then the following

estimajte holds
|| || X = 9 a(n 1) || H
y ey (TL a)f y @

Proof. See for example [12], Chapter 2. O

Lemma 2.3 (Korn's inequality.) Let y be in Wy '*(Q) with 1 < o < 2. Then there exists a
positive constant Ck o <1 only depending on o and 2 such that

Cra VY[l < 1Dy,

Moreover, Cx o = %

Proof. See for example [25] and [16]. O
As a consequence, we have the following useful result.
Lemma 2.4 Let w be in L*(Q2) and y be in Wol’a( ) with =% < a < 2. Then the following

estimates hold
[(w, y)| < Cq [[wlly | Dyl

with
M‘Qﬁ if =2
Cao = a(n—1) (nt+2)a—2n .
WCKO(|Q‘ 2an Zfa<2

and where Ck o is the constant of Korn.



Proof. For a = 2, due to the Holder, the Poincaré and the Korn inequalities, we have
n— 1 2(n—1 1
(w,9)| < olly lglly < 222100 oll, V]l = %\mn Jwlly | Dyl

wich gives the first estimate. Similarly, if « <2 (and since o > ;=) we have L2(Q) = Wy *(Q)
and by using the Holder, the Sobolev and the Korn mequahtles we deduce that

(n+2)a—2n
()] < lwll s 9l na. < Q0 Jlwll; [[yl] oo
(n+2)a—2n
< 2& ) f|Q| 22 Jlwlly [Vyll, < Ca llwlly [ Dyll,
and the second estimate is proven. O

Finally, we point out some notable facts related with the trilinear form b defined by

b(y1,Y2,y3) = (Y1 - Vy2,93) -

Lemma 2.5 Let w, y and z be in WOI’O‘(Q) with 3f2 < a < 2. Then the following estimate
holds

1b(w,y,2)| < k1 [|[Dwll, [ Dyl D],
with

3
quﬁ ifoa=2

k1= (7L+2)a 3n

1 (a(n—1))?
C;’(,u in(n—a)? |Q

ifa<?2

and where Ck o is the constant of Korn.

Proof. For oo = 2, due to Lemma 1.1, Chapter VIII in [12], we have

_ 1
[b(w,y, 2)| < 22 QET [[Vwll, [Vyll, V2],

and the conclusion follows by using the Korn inequality. If @ < 2, Hoélder’s and Sobolev’s
inequalities together with classical embedding results show that if = 2o < -2 (and thus o > f—_&)

a—1 = n
then (421003
b (w,y,2)| < lwll 2o [[Vyllo [12]] 2o < (9] [wll e [Vyllo 2] 2o
1) (n+2)a—3n
< U0 =5 ||V, [Vl 1921
The conclusion follows by using the Korn inequality. (I

Lemma 2.6 Let w be in V, and let y and z be in Wy *(Q) with 2 <« <2 Then

b(w,y,z) = =b(w,z,y) and b(w,y,y) =0.

2.2 The stress tensor

Let us recall that assumptions A;-A5 imply the following standard continuity and monotonicity
properties for 7 (see [25], Chapter 5)

n? a=2
[T < &% L+ 10%) 7 |l (2.1)

() = 7(Q) - (1= Q) 2w (L4 1P| +1¢P)F In— ¢ (2.2)

The next auxiliary results deal with properties related with the tensor 7.



Lemma 2.7 Let 1 < a < 2 and let f € LT+ (Q), g € LY(Q) and h € L*() be non negative
functions satisfying
h(z)? < f(x)g(x) for a.e. x € Q.

Then,
2
102 < 11 gl

Proof. Taking into account the condition satisfied by f, g, h, integrating and using the Hoélder
inequality, we obtain

Inllg = /Q (h(2)?)* da < /Q f@)Fg@Fdw < |I£5]| o g% = 1712 ol

and the proof is complete. ([

Lemma 2.8 Let y and z be in Wy *(Q) with 1 < a < 2. Then

2
7(Dy)—71(Dz),D(y — 2)) > vIDy=2)la —.
(7 (Dy) =7 (D2), Dly = 2)) (1Q0+ I Dylig+ID=llg) ™

Proof. If @ = 2, then the result is a direct consequence of the monotonicity condition (2.2).
Assume then that o < 2. Since y and z belong to Wy *(Q2), by setting

2—«
2
’

f=(1+|Dy]* + |Dz|?) g=21(r(Dy)—7(Dy)):D(y—=2), h=I[D(y—=z)|

and taking into account the monotonicity condition (2.2), we can see that the assumptions of
Lemma 2.7 are fulfilled. Therefore

2—a

1Dy =22 < ||+ 1Dy + D225 | |4 (7 (Dy) =7 (D2)): Dy - 2],
2—«a
2—a
<5 (191 +IDyllg + [Dzllg) = (7 (Dy) — 7 (Dz) , D(y — 2))
and the result is proven. (I

Lemma 2.9 Let 1 < o <2 and let z and y be in H}(Q). Then

(231}

o 2
|a+1Dy® =D >
2 (Ql+lDyllg) =

Proof. The case a = 2 is obvious. In case o < 2, since y and z belong to Hg(£2), by setting

2—a a—2
2 2

f=Q+IDyP)* ., g=IDzP(1+|Dy’) 7, h=|Dz|,
we can see that the assumptions of Lemma 2.7 are satisfied and then

2—«a
121 < ||+ 1Dy2)

|22+ |DyP?)*5*
7oz 1

2-a a—2
< (190 + 1Dyllg) = 1Dt + Dyl =

which gives the result. O



3 State equation

This section is devoted to existence and uniqueness results for the state equation and to derivation
of explicite estimates useful for the subsequent analysis.
First mathematical investigations of (1.1) under conditions (2.1)-(2.2), were performed by J. L.

Lions who proved existence of a weak solution for o > n?’—fz (see [20] for more details). The

restriction on the exponent « ensures that the convective term belongs to L' when considering
test functions in V,, (cf. Lemma 2.5).

Multiplying equation (1.1) by test functions ¢ € V,, and integrating, we obtain the following
weak formulation.

Definition 3.1 Let u € L?(Q). A function y € V,, is a weak solution of (1.1) if

(7 (Dy), Dp) +b(y,y, ) = (u,¢) for all p € V.

Let us recall that, having a solution satisfying the formulation given in Definition 3.1, it is
standard to construct the corresponding pressure m € L§(€2) such that

1,
(1 (Dy), Do) +b(y.y, ) — (1, V -y, 0) = (u,p)  for all p € Wy *(Q).
We will involve the pressure only in the formulations of the theorems and lemmas but not in the
proofs, since it can always be reconstructed uniquely.
We begin by stating an existence result for the state equation and related useful estimates.

Theorem 3.2 Assume that A1-As are fulfilled with % < a < 2. Then foru € L*(), equation
(1.1) admits at least a weak solution y, € V,. Moreover, the following estimates hold

2-a
1Dyl < e (14 512) ™ e, )

1Dyl < (27 Col=) ™ 4 j0, (3.2)

2—a

where kg = Cyq (% + C’F)T with C,, defined in Lemma 2.4.
Proof. As already observed, existence of a weak solution for problem (1.1) with a > 7%:2 is well
known. To establish the estimates, we split the proof into two steps.

Step 1. Let us set ¢ = y,, in the weak formulation of (1.1) and use Lemma 2.8, Lemma 2.6 and
Lemma 2.4 to obtain

V|| Dy |12

< (7 (Dyu) , Dyu) = (u,yu) < Cq ”u”z HDyuHa

(121+IDyull2) =

If @ = 2, the estimate is direct. If a < 2, we have

2—«a
«@

Caollu o
1Dyull, < €12 (10 + || Dy, )|)

and thus .

1Dy < (SL2) ™7 (1) + 1Dyl (3.3)

On the other hand, the Young inequality yields

v

(L) ™ Dy 7 < (2 - @) Dy + (o — 1) (SLla) 9T 3



Combining (3.3) and (3.4), we deduce that

F=a)(a=1)

(0= 1) 1Dy 2% < (Cella) 77 [ (o 1) (el

and consequently

Cq a(il < Ca
Dl < (42 + () ™T) T el
2—a “ 2—«a
1] ao1) @ llull, | «=T el
<Colo7 00 1+ °
o 2—a 2—a
P e a—1
< Co ({24 0FT) T (1 Late) e

which gives (3.1).
Step 2. Let us now prove (3.2). Similar arguments together with (2.2) show that

| Dy = / |Dya()|” da + / Dy ()|" da
{z||Dyu(z)|>1} {z||Dy.(z)|<1}

Dy, (z 2
</ Gl o + [0
{z||Dyy (z)|>1}

< 225&/ Dl gy 4 |
{z]|Dyu(z)[>1} (+|Dyu(z)[?) 2

2—a

= F(Dya(e)) : Dya(x) da + |9
{z||Dyu(z)|>1}

22 (7(Dyu), Dyu) + 9] = 272" (%, ya) + 19

<
<2730, M | Dy, ||, + 9. (3.5)

The Young inequality yields

—_—

[e] a—1

255 0 1502 | Dy, < 25 (257 Cal%l2) ™ + LDyl (3.6)

and the claimed result follows by combining (3.5) and (3.6). O.
The next result deals with uniqueness of weak solutions.

Theorem 3.3 Assume that Ai-As are fulfilled with 3% < o < 2 and that u € L*(Q) satisfies

n+2
2(2—a)
R(l—i—m) el g, (3.7)
where & = Kikaks with k1 defined in Lemma 2.5, ko defined in Theorem 3.2 and k3 =

e

(A—a)a = _\ o
(3|Q| + 22(a=1) C’&"’l) . Then, equation (1.1) admits a unique weak solution y, € V.

Proof. Assume that y, and x, are two weak solutions of (1.1) corresponding to u. Setting
© = Yy — X in the corresponding weak formulation and taking into account Lemma 2.8 and
Lemma 2.6, we obtain

V|| D(Yu—Xu 2
1B =le < ((Dy.) = 7(Dxa): D (g — xu)
(12141 Dyu S+ 1Dxulls) =

=0 (Xu> Xur Yu — Xu) = b (Yus Yur Yu — Xu)
=-b (yu — Xus Xusr Yu — Xu) . (38)



Lemma 2.5 and estimate (3.1) then yield
2
10 (Yu = X Xus Yu = Xu)| < K1 [[1D (Yu = xa)llg 10Xl

2-a
< g (11802 ) T e D Gy, — ) (3.9)

On the other hand, by taking into account estimate (3.2), we have

2-a —a w P
19+ 10l + 1D < (31042 (250, el ) ™

(4—a)a -2 llull 25\ o
= (3101 +2x 25 B o (L)

< ks (1 n %) L (3.10)

By combining (3.8), (3.9) and (3.10), we deduce that

2-a
(= o (1 12) 7 2 ) i i <
K3(1+¥) ot

and thus y, = x,, if condition (3.7) is satisfied. O

Remark 3.4 Notice that in the case of the Navier-Stokes equations (o = 2), condition (3.7)
reduces to

lufo o V@8 (3.11)

2 1
v 4(n—1)2|Q| -1

Remark 3.5 Condition (3.7) is fulfilled if the term % is “small enough”, and can be inter-
preted either as a constraint on the size of ||ulla (small body force u) or as a restriction on the
viscosity parameter v (large viscosity parameter v).

4 Existence of an optimal control

Theorem 4.1 Assume that A1-A2 are fulfilled with HB% < «a < 2. Then problem (P,) admits
at least a solution.

Proof. The proof is split into three steps.

Step 1. Considering a minimizing sequence (ug,yx)x C Usa X Vo, let us establish related
estimates and preliminary convergence results. Since (uy)x is uniformly bounded in the closed
convex set Uyq, by taking into account (3.2) we obtain

[ Dyl < (2*0(,M) i< (2%“ca%)ﬁ 19| (4.1)
and the sequence (y ) is then bounded in V,,. On the other hand, the continuity condition (2.1)

implies that for n # 0

o

2 a=2 2 _ 2 —
[T < 255 W+ 0lP) 7 Il < Z5 Wl =2l = 2=l
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The previous inequality is also valid for |n| = 0 and implies

2
Im(Dyi)ll 22 < 275 1 Dykllg

which together with (4.1) show that sequence (7(Dyg))x is uniformly bounded in La-1(Q).
There then exist a subsequence, still indexed by k, u € Upg, y € Vi and 7 € La-T (Q) such that

(ug)r weakly converges to u in L?(Q), (yx), weakly converges to y in V, and (7(Dyy)), weakly

2n

converges to 7 in L& T (Q). Moreover, since a > by using compactness results on Sobolev

n+l
spaces, we deduce that (yx)x strongly converges to y in L=-T ().

Step 2. Let us now prove that (u,y) is an admissible pair for (P,). Taking into account the
convergence results obtained in Step 1, we deduce that for every ¢ € V, we have

b Yk, Y, ©) — by, u,0) <10k — v, Uk, )| + [0 (4, Y — ¥, )
= 1b(yr — ¥ yrs )| + 10 (Y, 0, Yk — v)]

(4.2)
< (IVyrlla llelloe + 1ylla 1Velloo) lyx = yll o

— 0 when k — +o0.
Moreover, by passing to the limit in the weak formulation corresponding to yi, we obtain
(7, Do) + b (y,y,¢) = (u,p) for all p € V
and by using the fact that V is dense in V,, and that y € L%(Q) if a > n?’—fz, it follows that
(7, Do) + b (y,y, ) = (u,p) for all p € V. (4.3)
In particular, by taking into account Lemma 2.6, we have
(7, Dy) = (7, Dy) + b (y,y,y) = (u,y). (4.4)
On the other hand, the monotonicity assumption (2.2) implies
(7 (Dyx) — 7 (D), Dyr — Dp) >0 for all p € V. (4.5)
Since (7 (Dyk), Dyx) = (uk, yx), by substituing in (4.5), we obtain
(uks yk) — (7 (Dyk) , D) — (1 (D) , Dyx — D) 20 for all ¢ € Vy
and by passing to the limit, we get
(u,y) — (7, D) — (1 (Dp) ,Dy — Dp) >0  for all p € V.
This inequality together with (4.4) then yields
(T—7(Dy),Dy — Dgp) >0 for all p € V,
and by setting ¢ = y — tv with ¢ > 0, we obtain
(T —71(Dy—tDvy),Dy) >0 for all ¢ € V.
Letting ¢t tend to zero and using the continuity of 7, we deduce that

(T—71(Dy),Dy) >0 for all ¢ € V,
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and thus
(7, DY) = (1 (Dy) , Dv) for all ¢ € V. (4.6)

Combining (4.3) and (4.6), we deduce that

(7 (Dy), De) +b(y,y,) = (w,0)  forallpeVy
showing that
ye —y  weakly in Wy ()
and that (u,y) satisfies (1.1).

Step 3. Finally, from the convexity and continuity of J, it follows the lower semicontinuity of
J in the weak topology and

J(u,y) < limkinf J(ug, yx) = inf(P,),

showing that (u,y) is a solution for (P,). O

5 Statement of the necessary optimality conditions

In order to obtain the necessary optimality conditions for (P,) stated in Theorem 5.1 below, a
family of problems (PZ). whose solutions converge towards a solution of (P,) is introduced and
the corresponding optimality conditions are derived in Section 6. We pass to the limit in these
conditions in Section 7.

Let us now formulate our main result.
Theorem 5.1 Assume that A1-As are fullfilled with n?’—fQ < a<2. Let u be a solution of (Py)

satisfying condition (3.7) and let § € V,, be the associated state. There then exists p € V,, such
that the following conditions hold

-V -(r(Dy))+y-Vy+VrT =10 n Q,
V.-y=0 in €,
y=20 on T,

—V (7' (DY) : Dp) —5-Vo+ (Vi) 'p+Vr=§—ys inQ,

V-p=0 in Q, (5.1)
p=0 on T,
(Pp+Au,v—u)>0 for all v € Uyg. (5.2)
Moreover, p satisfies
(" (Dy) : Dp, Dp) + (P V¥, p) < (§ — Ya, D) - (5:3)

Notice that the optimality conditions for (P,) are obtained under a constraint on the optimal
control, the same that guarantees uniqueness of the corresponding state. This result seems
interesting in the sense that we do not need to impose any other constraint on the admissible
set of controls. Notice also that for @ < 2, condition (5.3) implies that p belongs to V¥ and not
necessarily to HY. Therefore, the adjoint equation is to be understood in the distributional sense

(7' (DY) : Dp, D) + (V9)'p— 5 VD, @) = (G —yarp)  forall p e V.
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Let us finish this section by considering the case of the Navier-Stokes equations. It corresponds
to o =2 and V¥ = HY = V5. The first order optimality conditions we obtain in this case are less
restrictive than the ones obtained in [9], [10], [26] where all the admissible controls are subject
to a condition that ensures the uniqueness of the corresponding states. Condition (3.7) reduces
to (3.11) and guarantees uniqueness of both optimal state and optimal adjoint state. It implies
that the set U,q of admissible controls satisfies the property (C), introduced by Gunzburger et
al. [15], at (@, ). Our result can then be seen as a qualified version of the optimality conditions
already established by Abergel and Casas in [1] for a slightly different functional.

Corollary 5.2 Assume that the extra-stress tensor has the form 7(n) = 2vn. Let (u,y) be
a solution of (P,) with @ satisfying (3.11). There then exists a unique p € Va such that the
following conditions hold

—vAy+(g-V)g+ Vi =u in Q,
V.y= in €,
g= on T,

P+ a,v—u)>0 for all v € Uyy.

6 Approximate optimal control problem

When deriving the first order optimality conditions, we have to manage several combined diffi-
culties related with the local Lipschitz continuity (and thus with the Gateaux differentiability)
in adequate functional spaces of the control-to-state mapping u — .

To clarify the ideas, let us first assume that we are dealing with generalized Stokes systems (no
convective term). In the case a > 2, we can follow the ideas developed in [4] and [6] to study
optimal control problems governed by quasi-linear elliptic equations and prove that the sequence
(2p) p>0 defined by

— Yutp(v—u) ~Yu

Zp - ,

u,v € Uga, p €]0,1],

converges weakly in the weighted Sobolev space HY* and strongly in V,. To prove that the limit
belongs to H¥», it is essential that (2,),>0 be uniformly bounded in V,, C H¥*. If a < 2, we
can argue similarly and show that (z,),>0 is uniformly bounded in V,. Nevertheless, in this case
HY+ C V,, and we can only prove that there exist subsequences converging to elements wich are
solutions of a linearized system in the distributional sense and belonging to VY«. Differentiability
of the control-to-state mapping is equivalent to the equality of all these limit points and this
problem of uniqueness leads us to the problem of density of the function space V in V. To
overcome this difficulty, we can consider a family of approximate problems (P£) governed by the
following regularized equation

—eAy—V .- (r1(Dy)) +Vr=u in{, V-y=0 in 9, y=0 onT
Yutp(o—uw) ~Yu

p )p>0
lished in V4 (here y¢ denotes the solution of the previous equation corresponding to u), allowing

and falling into the case @ = 2. Adequate estimates for (zg = can be estab-
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to derive the approximate optimality conditions and to obtain optimality conditions for (P,) by
passing to the limit.

The case of problems governed by Navier-Stokes equations and generalized Navier-Stokes equa-
tions is more delicate since a direct adaptation of these arguments, managing the convective
term, may restrain not only u but also v (and by extension, all the admissible controls) to satisfy
condition (3.11) (see for example [10], [26] and [27]). This difficulty is overcome in the case
of shear-thickening and Navier-Stokes fluids by observing that, in order to establish uniform
estimates of (z,),>0 (consequence of the local Lipchitz continuity of the state with respect to
the control) in V,,, the terms we need to restrain are related to the convective term and only
depend on u. This fact is particularly important and enables us, when deriving the necessary
optimality conditions, to impose a constraint only on the optimal control (see [3]). In the case
of shear-thinning flows, the problems are even more difficult to handle because of the combined
effect of the convective term and the nonlinear stress tensor. Unlike the case of generalized Stokes
systems, obtaining uniform estimates for (zg) p>0 in Vo without restraining both v and v is not
an easy issue. In this section, by carrying out a careful analysis, we prove that uniform estimates
for (z;) p>0 can be established under a condition involving p and the regularization parameter
¢ and by imposing restriction (3.7) only on u. The approximate optimality conditions are then
derived.

6.1 Setting and approximate optimality conditions

For € > 0 and u in L?(9), consider the following problem

—eAy—V-(t7(Dy))+y-Vy+Vr=u in Q,
V.y=0 in Q, (6.1)
y=20 on I'.

Let (@, y) be a fixed solution of (P,) and assume that @ satisfies condition (3.7). Introduce the
cost functional

) = Hug) + 3 [ Ju=af do
Q
and the control problem
minimize I(u,y®
- (u,°)
subject to  (u,y®) € Usq x H} () satisfies (6.1) for some . € L?(1).

The main result of this section deals with the necessary optimality conditions for the approximate
problem (P%).

Theorem 6.1 Assume that A1-Asy are fulfilled with fo < a < 2. For each € > 0, there exists
at least one solution (u®,y%) of (PZ). Moreover, if u° satisfies (3.7), then there exists p° € Vs
such that

—eAyE =V - (1 (D)) +§° - V§F + Vs =a°  in Q,

V.y*=0 in §,

¥y =0 on T,
—eAp* =V - (7' (Dy) : Dp°) + (V§*)'p° —§° - VIF + V7i® = §° —ya in Q,
V-p¢=0 in Q, (6.2)
p"=0 on T,

P+ N+ 1D)a —a,v—a)>0  forallv € Uy. (6.3)
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6.2 Approximate state equation

In the following proposition we state an existence and uniqueness result for the approximate
state equation (6.1) and related a priori estimates.

Proposition 6.2 Assume that Ay-As are fulfilled with n?’—fg < a < 2. Then for u € L?(Q),

equation (6.1) admits at least a weak solution y5 € Va and the following estimates hold

2-a
1Dyl < ma (14 Il ) = ke, (6.4)
IDyils < (25 Caltla) ™ 410, (6.5)
2| Dy lly < C [ull, (6.6)
_1
22 1Dyl < Calula ((2°5°Cal282) ™ 4 jal? ). (6.7)

Moreover, if u satisfies condition (3.7), then the solution is unique.

Proof. The weak formulation associated with problem (6.1) reads as
(2eDy +7(Dy), D) +b(y,y,¢) = (u,0)  forall p € V5.

Since 2el + 7 satisfies assumptions A;-A, with exponent 2, classical arguments show that the
approximate system (6.1) admits at least a weak solution 3% in Va. Setting ¢ = y& in the weak
formulation of (6.1) yields

2 |DyS |12 + (T (Dys) . Dys) + b (y5, 5, v5) = (u,y5) -

Estimates (6.4) and (6.5) can then be obtained with arguments similar to those used in the proof
of Theorem 3.2. On the other hand, by taking into account the monotonicity condition (2.2),
Lemma 2.6 and Lemma 2.4, we obtain

2 2
2 | Dyglly < 22| Dyglly + (7 (Dyy,) s Dyg) = (u,y5) < Ca flully [ Dyl

which gives estimate (6.6). Similarly, by taking into account Lemma 2.4 and estimate (6.5) we
have
2
2 [[Dyy I3 < (u,yz) < Callully |1Dygll,

and estimate (6.7) is proven. The uniqueness result can be obtained with arguments similar to
those used in the proof of Theorem 3.3. O

Remark 6.3 Notice that the existence result as well as the estimates stated in Proposition 6.2
are valid for a €]1,2]. To prove the uniqueness result, we need to restrain the values of a in

order to guarantee the embedding of Wy * () into L%(Q) (cf. Lemma 2.5).

6.3 Linearized equation

We next investigate the following linearized equation
—eAz =V - (7" (DY) : Dz)+2z-Vys+y5-Vz+Vr=w inQ,
V-z=0 in €, (6.8)
z=0 onI,

where u € L?(Q), y5 € Va a corresponding solution of (6.1) and w € L?(Q).
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Proposition 6.4 Assume that A1-As are fulfilled with n3—+”2 <a <2 Letu € L*(Q) satisfying
(3.7) and let y<, € Vy be the corresponding solution of (6.1). For w € L?(Q), problem (6.8) admits

a unique solution z5,, in Va. Moreover, the following estimates hold

1D25ulla < Ca £ (1202 ) ful,

2 [ Dz lly < Co fwll,

u

2Dz, I3 < €2 (L) w3,

w v

where L(t) = % with R = K1Kaks.

v—Rt(14t) a1
Proof. Let us first recall that a function z is a weak solution of (6.8) if

2¢ (Dz, D) + (' (Dy5) : Dz, Do) + b (2,45, 0) + b(y5, 2,0) = (w, ) for all p € V5.
Consider then the bilinear form defined by
B(z1,22) = 2¢ (Dz1, Dz3) + (7' (DY) : D21, Dz3) + b (21,45, 22) + b (y5, 21, 22) -

Taking into account Lemma 2.6, we get

B(z,z) =2e||Dz||3 + (7' (Dy) : Dz, Dz) 4+ b(2,45,2) + b (y5, 2, 2)

=2 || Dz|l5 + (7' (Dy5) : Dz, Dz) +b(z,¥5, 2)

for every z € V5. On the other hand, by using assumption A, Lemma 2.9, estimate (6.5) and
arguing as in (3.10), we deduce that

(" (Dys) : Dz,Dz) > u/ (1+ |Dyi\2)%_1 |Dz|? da
> Dy 5 viDeln
—(1RHIDYEIE) e kg (1l ) e

Moreover, due to Lemma 2.5 and estimate (6.4), we have

2—«a
2 a-1 2
b2, ya ) < k[ Dyl 1D2I1 < e (14 L) ™7 el gDy

Therefore, we obtain

2—a

B(z,2) = 2¢ | D21} + ( — g (14 18le) T '“'2> ID=2 (6.9)

v v

o (14 L2z ) 57

which shows that B is coercive on V5 since u satisfies (3.7). Let us now prove that B is continuous.
Similarly, due to Ay, (6.4) and the fact that u satisfies condition (3.7), we have

a—2
S |(7' (Dy;) : Dz1, D)) §/§2(1+|Dy§|2) | Dz || Dz dx:

< [ IDa||Dzlds < Do)y D221,
Q
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and
b (21,45, 22) + b (y5, 21, 22)| < 261 | Dy |, | Dzl 1D 22
< 251|Q) =" | Dy, D21 1, | D22l
< 2m1a| 5 (1 + %)% Ll || Dz || Dol

2—a
< 2B | Doy | D22l
K3 (1+“TH2) a—1

< 2v|[Dzly [[Dz2ll,
for every z1, z9 € Va. Therefore,
B (21,22) < (26 + v+ 2v) [ D]y [ D225 -

The bilinear form B is then continuous and coercive on V5. Applying the Lax-Milgram theorem,
we deduce that problem (6.8) admits a unique solution z¢, in V5. Taking into account (6.9), we
obtain

2—«
o —

P 1 7
e — g (L 182 ) T Il ) D2g 2 < Bz 20) = (w0 25)
rs (1+ "72"2) a=1

< Co [|wlly 1Dzl -
This gives the first estimate which combined with (6.9) imply

Cy [[w]ly [ D254l

2¢[| D25 |13 < B (2 2i) <

Co[lwlly [ Dz

v

< cze (1) w3

and we derive the second and third estimate. O

6.4 Analysis of the control-to-state mapping

In order to study the local Lipschitz continuity of the approximate state with respect to the
control, we first establish some useful estimates.

Lemma 6.5 Assume that A1-As are fulfilled with n%lz < a <2. Letuy, up be in L?(Q) and let
Yy, and y;, be two corresponding solutions of (6.1). Then the following estimate holds

2 1% . 2
2¢ ||D (yi, — i) [l + (e i) 8 1D (v, = i)l

2

< (1 L2l ) Ll D (g, — 2 )12 4 Co flun = sl || D (3, — vi,) -

Proof. The arguments are very similar to those used in the proof of Theorem 3.3. For the
confort of the reader, we will give the principal ideas. Setting ¢ = y;,, —y;, in the corresponding
weak formulation and taking into account Lemma 2.8 and Lemma 2.6, we obtain

v||D(ys, —v3,)|?

22 ||D (u5, —vi,)|ls + -
£ || (yUI yu2)||2 (|Q‘+||Dyil||Z+||Dy"izHZ)2T
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<2 || D (45, — %) || + (7(Dys,) — 7(Dy2,), D (4, — )
=—b(ys, — V5, Vo, Vo, — Vo) + (w1 —u2,ys, —v5,) - (6.10)

Lemma 2.5 and estimate (3.1) then yield

|b(y21 7yi2’y227y21 7yi2)| S K1 HD (yil 7yi2)||i ||Dyi2||a

2
o 2

e (1 * @)i Leale || D (ye, — 2|0 (6.12)

IA

On the other hand, by taking into account estimate (3.2), we obtain
2—«a

T (2%°Cs |u5||2)ffil>“

1

oy (14 Mla . liela) 7 (6.12)

(120 + 1Dz, 15 + 1D 12)

IA

<SQ| + (247" calula)

a

IN

The conclusion follows by combining (6.10), (6.11), (6.12) and by taking into account Lemma
2.4. (]

A direct consequence of the previous lemma is that the control-to-state mapping G° : u — y5
is locally Lipschitz continuous in V5 if the following condition holds

2-a 2-a
B (1 + |\U21VH2 + ||u22y\|2> a-tl (1 + Huil\z)“’l ”uu22H2 <1

with & = k1kok3. Unlike the Navier-Stokes case or the shear-thickening case, where the corre-
sponding conditions only involve uy (see [3]), the previous sufficient constraint is quite restrictive
since it requires both controls u; and us to be sufficiently ”small”. It holds if both controls
uy and ug satisfies (3.7) and guarantees the Lipchitz continuity only for restricted admissible
controls.

To overcome this difficulty, we impose condition (3.7) only on us and refine the analysis of the
result obtained in Lemma 6.5.

Lemma 6.6 Assume that Ai1-Ay are fulfilled with % < a < 2. Letuy, u be in L?(Q) and
let y;,, and y5, be two corresponding solutions of (6.1). If ug satisfies condition (3.7), then the
following estimate holds

2-a
% HD (yil _ yiz) ||2 < vsy (max(\|u1\|22;\|u2\|2a0)) ot ||D (yzl — y22) H2 + Cy ||u1 — u2||2 (6.13)

with s =0 ifa =2 and so =1 if a < 2.

Proof. Let us first notice that if |Ju;[|, < [Juz|y, then

2—a 2-a
(1 + ||u21VH2 + Hu;l/\lz)ﬁ < (1 + Huin)ﬁ.

Due to Lemma 6.5, it follows that

2—a
2¢ | D (y3, — i)l + ( — kg (14 Ll ) 7 '"5'2> 1D (5, — vl
K3 —_—
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< Oy lur —ually || D (va, — i),
which by taking into account the fact that ug satisfies (3.7) gives (6.13). Similarly, observing
that 2=2 € [0,1] and that for z > y > 0 we have

2—a

(1+2) 5 = (149) 5 < sa (0 —y)

we deduce from Lemma 6.5 that if |Juq[], > |Juz|, then

2—a
2 HD (ylau - yiz)”i + <l/2—o¢ — K1K2 (1 + @) o |u5|2> HD (y'il - yiz)“i
Hg(lﬁ*%) a-1
e __ € 2 e _ € 2
< Aokl OGRS 0, s~ waly | o5, 351

2—a
Ka (1+ Hulz,H2) a—1 K3 <1+ ||u21U||2 + ||u22U||2) a—1

2—a
v (lalaZlel ) D (g, — g2, )| + Co llun = wally |19 (45, — i),

<
< el (Lol ) (g, g2 )4 ol vl [ (5, 32,
— K3 2v uy uz2/ 112 2 ul uz2/ 112
2—«a
< s (L0502 ) 7D (u2, — g2, Iy + Collun — wall 10 (05, — 95,
which gives the claimed result. O

Remark 6.7 From Lemma 6.6, we deduce that the Lipschitz continuity of G¢ in Vo holds if uy
and us satisfy

2—«a
. _ 0 a—1
Us., <mdx<”u1||22 l[uzl2, )) < 2%

v

with us satisfying condition (3.7). The previous inequality is obviously valid if « = 2 or if
[lut]l2 < |luille, but also if the difference ||ui||2 — ||uzll2 can be ”controlled”.

Let u, v be in Uyq with u satisfying condition (3.7) and let p in |0, 1[. Set u, = u+ p(v —u), and
let y;, be a solution of (6.1) corresponding to u, and yg be the solution of (6.1) corresponding

to u. In the remaining part of this section, and in order to simplify the notation, we set y* and
; _ oyt
y; instead of y; and yg and z; = -

Lemma 6.8 For every p such that

v 2—a
p<t(2)". (6.14)

the following estimate holds
€ HDZ/E) Hz

Proof. First recall that since u e v belong to U,gq, then ||ull, < U and |jv||, < U. Due to Lemma
6.6, we have

< Collu—v,.

2

2 ||z mosllnells=l20)) 51 | o+ Cylfo —

2—«

+ Callv — ulf2

lo—ulla )~ 2=
pet|[DZ5,

2—«

<wvsa (4)" pE || D2

2-a
< s, (Hup;Uqu) a—1 HDZZH2 n CQH'U _ ’U,H2
(

olly + Callv = ullo.
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Choosing p such that

2—« 2—a

vso (£)°7T pot <e

we obtain the claimed result. O

Remark 6.9 Notice that in the case a = 2, condition (6.14) holds for every p €)0,1[. Moreover,
a direct consequence of Lemma 6.8 is that (y;),>0 strongly converges to y° in H(Q).

Lemma 6.10 If (sz>k weakly converges to z° in Vo for some sequence (py )i converging to zero,
then

kBI—QI—loo 97 (b (ypkaypk7go) b(y67y6750)) = b(zaaysvw) =+ b(yEaZ€790)

lim — ( (Dypk) - T(Dys),Dcp) = (7'(Dy®) : Dz, Do)

k——4o0 Pk

forallpeV.

Proof. Since (pi)r converges to zero, we can assume without loss of generality that py satisfies
condition (6.14). The rest of the proof is split into two steps.

Step 1. Notice that

(0 (Y5 Y5 9) =0 (797, 0) — (b (25,5%,9) + b(yg,zs,w))‘

b(25,,95,,9) +b (5, 25, 0) — (b(25,5%,0) + b (47, 2%, ¢))|

< |b (Z;&)kvyf)kaso) - b(Zansva + |b (yev'z;ka‘p) - b(yev'zsaw)’
< |b(28, — 25,05, )|+ |b (2505, —v5 )|+ b (v°, 25, — 25, )|
< =5 =2l V95, lella + 1251 1V (5, = ), ella + [0 (7, 25, = 2%, )

The result is then a consequence of the strong convergence of (ygk)k to ¥ in H (), the weak
convergence of (zgk)k to ¢ in HZ(2) and its strong convergence in L*(2).

Step 2. To prove the second result, fix ¢ € V and use the mean value theorem to get

pik (T(Dy;k) — 7(Dy"), Dsp) = / / (Dy*(z) + 0D(y;, —y°)(v)) : Dz, (z) : Dp(x) d dz
= (7' (057) : Dz, Dy) = (Do 7' (077) . Dz, ) (6.15)

where 0#°(2) = 02°(x) (Dy5, (z) — Dy*(x)) + Dy*(z) with 0 < 69°(z) < 1 being a number

(depending on ¢(z)) arising when applying the mean values theorem to the integral in the
interval [0,1]. Convergence of (¢, )x to Dy® in L*(2) and continuity of 7’ imply that

Dy :7'(0;,) — Dy : 7' (Dy") a.e. in .
On the other hand, due to Ay, for all z € Q and 4,j,m,{=1,--- ,n

(7050 @))ne] <7 (1105, )T <

and thus
(D) 7/(05,)(@)),,,0| <7D IDigela)] < ny|Dg.
"j
Due to the dominated convergence theorem, we deduce that (Dgp T (ka)) . strongly converges

to Dy : 7/(Dy?) in L?(Q), which together with the weak convergence of (Dz5, ) to Dz¢ in L?(Q)
prove the claimed result. O



20

Proposition 6.11 If (z;‘;k)k weakly converges to z° in Va for some sequence (pi)r converging to
zero, then z¢ is the unique solution of the linearized problem (6.8) corresponding to (y°,v — u).

Moreover, (z;k)k converges strongly to z€ in V.

Proof. Since (pg)r converges to zero, we can assume without loss of generality that py satisfies
condition (6.14). The first assertion of the proposition is a direct consequence of Lemma 6.10
together with the density of V in V5. To prove the strong convergence, let us set

M¢(x) = 2eI + 7'(Dy* (z)), M (x) = 2el + 7'(05(2)),

where I denotes the identity matrix n x n and where o¢ is defined as in (6.15) with ¢ substituted

P
by y; — y°. Due to Ay, the matrices

M= () = MUEHMT@IT - oS () = M@M)L

are symmetric and positive definite. Applying the Cholesky method to M*(x) and ME’S(x),
we deduce the existence of lower triangular matrices L°(z) and L (x) such that

M=% (x) = L5(2)(L5(2))"  and  Mp¥(z) = Li(a)(Ly(2))"
Substituing in the weak formulation of (6.1), we obtain

2¢ (D(y;, — y°), D) + (1(Dy;) — 7(Dy), D) = b (y°, 4%, ) — b (15,55, ) + p(v —u, @)
for all ¢ € Va. Therefore, taking into account (6.15), Lemma 2.6, Lemma 2.5, Lemma 2.4,
Lemma 6.8 and estimate (6.6), we have
(L) D25, ||, = (M5, : Dz5,, D=5, )

PkH2 Pk’

= b (y ’Zpk’ Pk) - b(ZZk’y/EJk’ZZk) + (U - u’ZZk)
—b (Zpk’ypk7 ﬂk) + (U U’Zpk)

k1 |Dy5, ||, 1D25, |15 + Ca llo = ully || D=

IN

ol ol

c? oy c? % 2
2 (52 lup,ll2 +1) v —ully < S (Y5282 + 1) [l —ull;  (6.16)

€ 2¢e? €
and the sequence ((L5, )" Dz ) is then bounded in L*(€2). On the other hand, due to A; we
have

IN

’L;k ‘ | ()| < 2vne +C(v,n) for all x € Q.

Taking into account the convergence of (Dypk) ., to Dy® into L?(Q) and the continuity of 7/, we
deduce that M7 (x) converges to M*(x) and, consequently, LS, (x) converges to L°(z) for a.e.
x € Q. The dominated convergence theorem then implies

L, — L° strongly in L?(€) (6.17)

which together with the weak convergence of (z}, )x to 2° in Va, guarantees that (L;k)Tsz,k
weakly converges to (L)T Dz in L2(9). Moreover taking into account (6.16), we deduce that

||(L6 VI D2# ||2 < hmmf” L ZMHQ

Pk HQ = lim sup (M Dsz ) Dzzk)

SlimsupH(L; VI'Dze
k

= hmksup (_b (ZZIv,’ylE)k’ Zpk) + (U ) ZPk))

=—b(25,9%,2°) + (v—wu,25) = =b(y%,2°,2°) —b(2°,9°,2°) + (v — u, 2)

= (M®: D2#, D) = ||(L5)T D=2
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Weak convergence together with norm convergence implies strong convergence of ((sz )Tsz;k ke
to (L5)TDz® in L?(2). There then exist a subsequence, still indexed by pi, and a function
he € L?(2) such that

’(L;k (x))TDz;k (x)| < hf(z) for a.e. x € Q and k > ko,
(L5, (x))TDz;k (z) — (L5 (x))T D25 (z) for a.e. x € Q.
Therefore, taking into account Ay, we obtain
2¢| D22, ()|* < Mz (2) : D=5, (2) : D=5, (x) = (D=5, (2))T M5, (¢) D=5, (x)
= |(L5,)T (x)D=5, (x)’2 < (h%(z))? for a.e. z € Q and k > k.

Since (6.17) implies that ((LS, (x))T)f1 converges to ((Ls(ac))T)f1 for a.e. x € Q, we deduce

that
£ -1 €
Dz, (x) = (L5, (2)") (L5, (2)") Dz, (2)
— (L5 @)T) " ((L*(@))T) D*(2) = D2*(a)
for a.e. x € Q). The conclusion follows by applying the dominated convergence theorem. O

6.5 Proof of the approximate optimality conditions

Let us now prove Theorem 6.1. Existence of an optimal solution (@€, §°) for problem (PZ) can
be established arguing as in the proof of Theorem 4.1. Assume in the rest of the proof that @®
satisfies condition (3.7). For p €]0, 1] satisfying (6.14) and v € U,g, let ug = a° + p(v — u°),

Y, = yiz and z = #. Due to Lemma 6.8, we deduce that (z;)p is bounded in V5. There

then exist a subsequence (25 ) X and 2° € V5 such that (zzk) weakly converges to z° in V5. Due

Pk
to Proposition 6.11, z¢ is the unique solution of

k
—eAz—=V - (7' (Dy):Dz)+2-VyFE+y - Vz+Vr=v—a° inQ,
V-2=0 in Q,
z=0 on I,
and (25, ), strongly converges to 2¢ in Va. Therefore

lim Cew¥e) IET) e e 0N (A 1)EE — a0 — 7). (6.18)
k—+o00 Pk

On the other hand, since (uik,yzk) is admissible for (PZ) and (@®, ) is an optimal solution, we
deduce that .. .
lim I(ug, vy, )—1(a%,5%)

k—4-00 Pk

>0 for all v € Uyg. (6.19)

Let p° € V4 be the unique solution of (6.2) (existence and uniqueness of a solution can be obtained
with arguments similar to those used in the proof of Proposition 6.4). Setting ¢ = 2¢ and taking
into account the weak formulation of problem (6.8), we obtain
(¥° — ya,2°) = (2¢Dp®, D2°) + (7/(Dy°) : D2°, Dp°) + ((ngs)TﬁE — - VP, 2%)
= (2eD2°,Dp%) + (7' (D¥°) : D2°, Dp°) + (2° - V§©,9°) + (§° - V25, p°)
= (v—u,p%). (6.20)

The result follows by combining (6.18), (6.19) and (6.20). O
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7 Proof of the necessary optimality conditions

We begin this section by establishing a useful convergence result.

Proposition 7.1 Assume that Ai1-As are fulfilled with % < a < 2. Let (vg,yf)e) be an

admissible pair for (PS). There exists a subsequence (ex)r converging to zero and (u,y), an
admissible pair for (P,), such that

v, — u  weakly in L*(Q) and yf}’;k —y strongly in Wolo‘(ﬂ)

Proof. To simplify the redaction, let us set y. = y;_. Since (vc). is uniformly bounded in
L?(Q2), estimate (6.5) and arguments similar to those used in the proof of Theorem 4.1 show
that (y.). and (7(Dy.)). are uniformly bounded in V,, and L=-1 (Q), respectively. There then
exists a subsequence (e;)r converging to zero and u € L*(Q), y € V, and 7 € La-1(Q) such
that (v, )r weakly converges to u in L%((2), (ye, ), weakly converges to y in V, and (7(Dy.,)),
weakly converges to 7 in La-1 (). On the other hand, estimate (6.7) implies that (vVer Dyek)k
is bounded in L?(Q2) and that for ¢ € Vs, we have

lek (Dye,,» Do)| < ek IWVek Dye, |5 [[Dells — 0 when ¢, — 0. (7.1)

Taking into account (7.1) and passing to the limit in the weak formulation corresponding to ye, ,
we deduce that
(T, D) +b(y,y,0) = (u,p)  forallpeV

and thus for all ¢ € V,,. On the other hand, (2.2) gives
(1 (Dye,,) — 7 (Dy), Dy.,, — Dp) >0 for all p € V,,

and since
2
(T (Dyek) ’DyEk) = (UekvyEk-) — 2eg ||Dy5k ”2 ;

we obtain

(Uskaysk) - (T(Dysk) aD(P) - (T(D(p) ,Dysk - DSD) Z 26’6 ”DyEng Z 0

for all ¢ € V,,. By passing to the limit in the previous inequality, and arguing as in the proof of
Theorem 4.1, we can prove that

(7, Dp) = (1(Dy), D) for all p € V,

and thus y is a solution of (1.1) corresponding to u. To prove the strong convergence of (y., )k
to y in Wy *(Q), notice that estimate (6.5) together with (6.12) yield

V||D(ya,;y)Hz

(1 (Dye,) = 7 (Dy) , D (ye), — y)) > =
(1141 Dye, I+ Dyl|2) =

v|| Dy, —v)||? S v||Dye, —v)||?
a m3<1+Hg¢+HU€2k”2>% a N3(1+%)%

Therefore, by taking into account the previous convergence results, we deduce that

. 2
— = hmksuP ||D(y€k - y)“a

H3(1+%) a—1
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< limksup (1 (Dye,,) = 7(Dy), D (ye, —y)) < limksup (1 (Dye,.), D (ye, — v))
< hmksup ((Uekvyé‘k) - (T (Dyfk) ’ Dy)) < (ua y) - (7’:? Dy) =0

and the claimed result is proven. O

Next, we prove that the solutions of problems (PS) form an approximating family for (P,).

Proposition 7.2 Assume that A1-As are fulfilled with nj—_& < a<2. Let (a5, 5°) be a solution
of (PS). There exists a subsequence (ey) converging to zero such that

lim ||a* —all, =0, lim [|7** -9l , =0, lim (@, 5%%) = J (i, 7).

k——+o00 k—+o0o k—+o00

Proof. Setting v. = @ for all € > 0 and v. = %® and applying Proposition 7.1, we deduce that
there exists a subsequence (3)y, such that (y2*); converges in Wy *(Q) to § (the unique solution
of (1.1) corresponding to @), (u*), weakly converges in L?(f2) to some u and (7)) converges
in W, *(Q) to y (a solution of (1.1) corresponding to u). Using the lower semicontinuity of I
and the admissibility of (@, yg*) for (PS*), we obtain
2 2 2 e er -
21 = yally + 3 [lully + 5 [l — all; < lminf 1(@, 57)
< limsup I(a®*, §**)
k

s _ — 2 —12
<lim I3, y3) = 5 115 — wall, + 3 1l

and consequently
—112 _
J(u,y) + 5 lu—all; < J(@,7).

Since (u,y) is solution of (P,), we have J(u,y) < J(u,y) and thus v = 4. Recalling that @
satisfies condition (3.7), we deduce that y = § and thus

lim I(a%, ) = J(5,7).

k—+oco

Finally, observing that
Stimsup 3 —al} = lmsup (1@, 5) - §15% - vall} - 3 |5 13)
< J(@,9) = 3117 — yal3 — 5 lim inf 7|3
12 T
= % |all5 — %hmklnf la*]]5 <0

we conclude that (%)) converges to @ strongly in L?((). O

Proof of Theorem 5.1. Let (@, §°*) be the solution of (PS*) given in Proposition 7.2. Since @
satisfies condition (3.7), we deduce that there exists k1 € IN such that @ also satisfies condition
(3.7) for every k > k;i. The rest of the proof is split into two steps.

Step 1. Let us first prove (5.1) and (5.2). Due Theorem 6.1, there exists p° € V5 such that
—exdp = V- (7' (DF*) : Dp) + (Vi) = 7 - Vp+ Vi = 57 = ya,
V-p=0, (7.2)
Pr = 07
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P+ A+ D)@ —a,v—a*) >0 for all v € Uyg. (7.3)

With arguments similar to those used in the proof of Proposition 6.4, we obtain the following
estimates
— uck _ _
1D, < Cal (L) 57 — yall, < Cal (4) 177 — yalls (7.4)

— 2 uk — 2 — 2
26, | DI} < €22 (L5212) g — yall3 < C2£(4) 15 — vall3 -

v

Therefore, (p°* ), is bounded in V,, and (/2 Dp* )y, is bounded in L?(2). There then exist a
subsequence, still indexed by k, and p such that (p°*); weakly converges to p in V,, and, by
using compactness results on Sobolev spaces, (p©* )y strongly converges to p in L4(Q2) for every
q < 7. Moreover, for ¢ € V, we have

lex (DP™*, Dp)| < Vex |[Ver Dp°* ||y (| Dell, — 0 when g, — 0. (7.5)

Similarly, we may prove that

lim ((Vy) p* — g - Vp™,0) = (V9)'p—5- VD, o). (7.6)

k——+o00

Taking into account the convergence of (Dg"*); to Dy in L¥(Q) and the continuity of 7/, with
arguments similar to those used in the proof of Lemma 6.10, we deduce that

lim ||7/(Dy*) : Do — 7'(Dy) : Dg0||%1 =0.

k—+oo

This result together with the convergence of (Dpf); to Dp in the weak topology of L*(2) imply

lim (7/(Dy°*) : Do, Dp*) = ('(D%) : Dy, Dp). (7.7

k——+oo

Taking into account (7.5), (7.6) and (7.7), and passing to the limit in (7.2) and (7.3), we obtain

(7'(DY) : Do, Dp) + (V)P — 7 VD, ) = (§ — ya,p) forall p €V,

and
P+ Aa,v—1u)>0 for all v € Uyq

which gives the claim result.

Step 2. Let us now prove (5.3). Set
M(z) =7'(Dy(z)),  M®=7"(Dy(2)),

and M M T ME ME T
M () = M@HMENT  pres(g) = M@ @)

Due to Ay, the matrices M*(z) and M5 (z) are symmetric and positive definite. Applying the
Cholesky method, we deduce the existence of lower triangular matrices L(x) and L®(x) such that

M) = L@@)(L(@))T  and  M*S(2) = L(a) (L*(2)) "
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Therefore, setting ¢ = p* in the weak formulation of (7.2) and due to lemma 2.5, Lemma 2.4
and estimates (6.5) and (7.4) , we obtain

(ze)T Dp|[; = (M - Dp*, Dp)
= =25, | Dp* || — ((Vg=) T — g7 - VP, %) + (5 — ya, P°*)
= —2¢4 | Dp* || — (B - VI, ) + (5 — ya, D)
= (% - VI ) + (57 = ya, P
< w | DFHIIE 11 D5 |, + Ca 157 = wally 1D,
C2 (£(4) +m (27 Call=2) ™7 1 100%) £2(4) ) 157 - vl
C2 (L) +r (25 Ca() ™7 +120%) £2(9)) 77 ~ wall}

and the sequence ((L*)T Dp®*),, is bounded in L?(£2). On the other hand, due to A; we have

IN

IN

IN

L (2))? = [M**(z)| < C(v,n)  for all = € Q.

Taking into account the convergence of (Dy®*), to Dy in L*(£2) and the continuity of 7/, we
deduce that (M®*(x)), converges to M (z) and thus (L°*(x)), converges to L(z) for a.e. x € .
The dominated convergence theorem then implies the convergence of (L**), to L in L%(§2) for
every ¢ > 1 and in particular for ¢ = -%5. Since (Dp®*), weakly converges to Dp in L*(2), we
deduce that

(L)' Dp** — L"Dp  weakly in L*().

Therefore,
T =12 .. NT 1 — 2
|IL7 D[, < Timinf [|(27)" Dp*+|
< lim sup ||(L€’“)TD135’“ ||; = limsup (M*®* : Dp°*, Dp°*)
k k
< limsup — (p°* - V¥, p™*) + (§°* — ya, p°*)
k
and the claimed result is proven. ([
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