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_____________________________________________________________________________ 
 

Abstract 
 

Since for the case where at least two sets have an odd number of variables we do not have the 

exact distribution of the generalized Wilks Lambda statistic in a manageable form, adequate for 

manipulation, we develop in this paper a family of very accurate near-exact distributions for this 

statistic for the case where two or three sets have an odd number of variables. We first express 

the exact characteristic function of the logarithm of the statistic in the form of the characteristic 

function of an infinite mixture of Generalized Integer Gamma distributions. Then, based on 

truncations of this exact characteristic function, we obtain a family of near-exact distributions, 

which, by construction, match the first two exact moments. These near-exact distributions 

display an asymptotic behaviour for increasing number of variables involved. The 

corresponding cumulative distribution functions are obtained in a concise and manageable form, 

relatively easy to implement computationally, allowing for the computation of virtually exact 

quantiles. We undertake a comparative study for small sample sizes, using two proximity 

measures based on the Berry-Esseen bounds, to assess the performance of the near-exact 

distributions for different numbers of sets of variables and different numbers of variables in 

each set. 
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1. Introduction 

 

When two or more sets, among the m sets, have an odd number of variables, we do not have the 

exact distribution of the generalized Wilks Lambda statistic (Wilks, 1932, 1935), used in 
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multivariate analysis to test the independence among m (m  2) sets of variables, under the assumption of 

normality (and indeed also under the assumption of elliptically contoured or left orthogonal-invariant 

distributions), in a manageable form, adequate for further manipulation. The aim of this paper is 

thus to develop a family of very accurate near-exact distributions, which, by construction, will match the 

first two exact moments. The concept of near-exact distribution has already been introduced in a number 

of papers (Coelho, 2003, 2004; Grilo, 2005; Grilo and Coelho, 2007, 2010). These are distributions which 

lay very close to the exact distribution in terms of characteristic function (c.f.), probability density 

function (p.d.f.), cumulative distribution function (c.d.f.), moments and quantiles and which may be 

developed either based on factorizations or based on truncations of the exact distribution. In 

addition, these distributions are relatively easy to implement computationally, allowing for an easy 

calculation of near-exact quantiles. 

 

Let X  be a random vector with dimension p, where the random variables (r.v.’s) have a joint 

p-multivariate Normal distribution, ( , )pN   . Let us consider X  split into m subvectores, where the k-th 

has 
kp  variables, and where 

1

m

kk
p p


  is the overall number of variables. Then each subvector 

( 1,..., )kX k m  will have a joint 
kp -multivariate Normal distribution, ( , )

kp k kkN   . Symbolically, 

  1[ ,..., ,..., ] ~ ,k m pX X X X N      , (1) 

where the population mean vector and population variance-covariance matrix are given by 

11 1 1

11

1

[ ,..., ,..., ] ,                     

k m

k kk kmk m

m mk mm

   

   
 
 

          
 
 
    

. 

For a sample of size n + 1, the  2
1

th
n

 power of likelihood ratio test statistic, used to test the null 

hypothesis of independence of the m subvectores kX , 

 0 11: ( ,..., ,..., )kk mmH diag     , (2) 

is the generalized Wilks  statistic 

1

| |

| |
m

kk

k

V

V


 


 

where  .  stands for the determinant and V is either the Maximum Likelihood Estimator (MLE) of  or 

the sample variance-covariance matrix of X , and Vkk is either the MLE of kk or the sample 

variance-covariance matrix of kX  ),...,1( mk  . 

 

The generalized Wilks  statistic may be written as (Anderson, 2003, Theorem 9.3.2) 
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1

( 1,..., )

1

m

k k m

k







    (3) 

where 
( 1,..., )k k m  denotes the  Wilks  statistic used to test the independence between the k-th subvector 

and the vector formed by joining subvectores 1k   through m. In other words, for 1,..., 1k m  , 

( 1,..., )k k m  is the  Wilks  statistic used to test the null hypothesis, 

 
1

( )

0 , 1 ( ... ):[ ... ] 0 ,     1,  ...,  -1.
k k m

k

k k km p p pH k m
        (4) 

Then, using the result in Theorem 9.3.3 in Anderson (2003) and considering that the k-th subvector has pk 

variables ( 1,..., )k m , the distribution of 
( 1,..., )k k m  in (3), under the null hypothesis ( )

0

kH  in (4), is the 

same as 
1

kp

jj
X

 , where Xj are 
kp  independents r.v.’s with 

 
1

, ,           1,...,
2 2

k k

j k

n q j q
X Beta j p

   
 

 
 (5) 

for a sample of size n + 1  (with 
1 ... mn p p   ) and where 

1 ...k k mq p p   .  

 

Concerning the distribution of the generalized Wilks Lambda statistic we have to consider two cases: 

when there is at most one set with an odd number of variables among the m sets we have the exact 

distribution obtained by Coelho (1998) in the form of a Generalized Integer Gamma (GIG) distribution; 

and, when there are at least two sets with an odd number of variables among the m sets, situation in which 

we do not have the exact distribution of the generalized Wilks Lambda statistic in a manageable form, 

adequate for further manipulation. For this second case there are a few asymptotic distributions (Box, 

1949; Coelho, 2000; Anderson, 2003; Grilo and Coelho, 2010) and some near-exact distributions based 

on factorizations of the exact c.f. (Coelho, 2003, 2004; Coelho et al, 2006; Grilo, 2005; Grilo and Coelho, 

2010). In this paper we study the development of near-exact distributions for the generalized Wilks  

statistic specifically adapted for the case where there are two or three sets with an odd number of 

variables. We first express the exact c.f. of the logarithm of the generalized Wilks Lambda statistic under 

the form of an infinite mixture of GIG distributions, and then, based on truncations of this exact c.f., we 

obtain a family of near-exact distributions, as a finite mixture of a number of GIG distributions and a 

Generalized Near-Integer Gamma (GNIG) distribution, which, by construction, will match the two first 

exact moments. 

 

In Section 2 we introduce some distributions used in our work (GIG, GNIG and Logbeta distribution). In 

Section 3 we express the exact distribution of the generalized Wilks Lambda statistic under the form of an 

infinite mixture of GIG distributions and then, based on truncations of this exact c.f., we obtain in Section 

4, a family of near-exact distributions for this statistic. In Section 5, we use two measures of proximity to 

assess the performance of the near-exact distributions developed. In Section 6, we compare a member of 

the family of near-exact distributions, based on truncations, with the exact distribution and also with a 

near-exact distribution based on factorizations, developed in Grilo and Coelho (2010). Finally, we 

provide some concluding comments in Section 7. 
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2. Some distributions used 

 

We introduce here the GIG, GNIG and Logbeta distributions, which will be used in the sections ahead. 

 

Let Z be a r.v. with a GIG distribution of depth g, with shape parameters 
1,..., gr r   (where  is the set 

of positive integers) and all different rate parameters 
1,..., g   (Coelho, 1998, 2003), denoted by 

1 1( ,..., ; ,..., )g gZ GIG r r   . 

The p.d.f. of Z is given by 

 
1

( ) ( )e ,          ( 0)i

g
z

Z i

i

f z K P z z




   (6) 

where 

 
1

i

g
r

i

i

K 


  (7) 

and ( )iP z  is a polynomial of degree 1ir   in z, which may be written as 

 1

,

1

( )
ir

k

i i k

k

P z c z 



  (8) 

where 

 ,

1

1
( )

( 1)!

j

i

g
r

i r j i

ji
j i

c
r

 





 


  (9) 

and, for 1,..., 1ik r  , 

 , , ( )

1

( 1)!1
( 1, )

( 1)!i i

k
i

i r k i r k j

j i

r k j
c R j i c

k r k
  



  
 

 
 , (10) 

where 

 
1

1

( , ) ( ) ,   ( 0,..., 1)
g

n

i j i i

i
i j

R n j r n r   




    . (11) 

The c.d.f. of Z is given by 

 *

1

( ) ( ),           ( 0)
g

Z i

i

F z K P z z


   (12) 

with K given by (7) and where 

 
1

*

,

1 0

( 1)!
( ) 1 e

!

i

i

j jr k
zi

i i k k
k ji

zk
P z c

j








 

  
   

   
   (13) 

with ,   ( 1,..., ; 1,..., )i k ic i g k r   given by (9) through (11). 

 

If the r.v. Z has a distribution that is a mixture, with k components, of GIG distributions, the j-th 

component has weight j  with depth gj , we denote this fact by 

1 11 11 1 11 1 1 1( ; ,..., ; ,..., | ... | ; ,..., ; ,..., )
k kg g k k g k k g kZ MkGIG r r r r      . 

 



Wilks Λ - Near-exact distributions from truncation 

 

5 

Let us consider, now, 
1 1( ,..., ; ,..., )g gZ GIG r r    and ( , )X Gamma r   two independent r.v.’s with  

\r   and ,  { 1,..., }j j j g     . Then the r.v. W Z X   has a GNIG distribution with depth 

g + 1 (Coelho, 2004). Symbolically, 

 
1 1( ,..., , ; ,..., , )g gW GNIG r r r    . (14) 

The p.d.f. of W is given by 

 1

, 1 1

1 1

( )
( ) e ( , , ( ) ) ,        ( 0)

( )

j

j

rg
wr k r

W j k j

j k

k
f w K c w F r k r w w

k r


  

  

 

 
     

  
   (15) 

and the c.d.f. by 

 

1 1

1
*

, 1 1

1 1 0

( ) ( , 1, )
( 1)

            e ( , 1 , ( ) ),         ( 0)
( 1 )

j

j

r
r

W

r i irg k
w jr

j k j

j k i

w
F w F r r w

r

w
K c F r r i w w

r i



 


  




  

  
 

     
  

  

 (16) 

Where 

 *

,

1

and ( )j

g
r jk

j j k k
j j

c
K c k



    (17) 

with cj,k given by (9) through (11). In the above expressions 

1 1

0

1

1 1

0

( ) ( )
( , , )

( ) ( ) !

( )
                  = e (1 )      ( )

( ) ( )

j

j

zt a b a

b a j z
F a b z

a b j j

b
t t dt a b

b a a





  

  

  


 

  





 

is the Kummer confluent hypergeometric function (Abramowitz and Stegun, 1974). Nowadays we may 

find these functions, which have good convergence properties, in several software packages, like 

Mathematica™. 

The c.f. of W is given by 

 
1

( ) ( i ) ( i )j j

g
r rr r

W j j

j

t t t    




   , (18) 

where \r  ,   , jr   and ,  {1,..., }j j g    . If r  then the GNIG distribution of 

depth 1g   reduce into a GIG distribution of depth 1g  . This way we may look at the GNIG 

distribution as a generalization of the GIG distribution. 

 

Let X be a r.v. with Beta distribution, with parameters 0 and 0   , what we denote by 

( , )X Beta   . 

The h-th moment of X is 

 
( , ) ( ) ( )

( )           ( )
( , ) ( ) ( )

h B h h
E X h

B h

    


    

    
   

   
. (19) 

Then lnY X   is a r.v. with Logbeta distribution with parameters  and    (Johnson et al., 1995), 
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denoted by 

 ),(~ LogbetaY . (20) 

The p.d.f. of Y is 

 11
( ) e (1 e ) ,           ( 0)

( , )

y y

Yf y y
B

 

 

     . (21) 

Since the Gamma functions in (19) are still defined for any complex h (in strict sense), the c.f. of Y is 

given by 

i i ln i ( ) ( i )
( ) (e ) (e ) ( )

( ) ( i )

tY t X t

Y

t
t E E E X

t

  


  

     
   

   
 (22) 

where 1/ 2i ( 1)   and t . 

 

We may also write the c.f. of Y in (20) as 

 
1

0

1 1 (1 )
( ) ( )( i )

( , ) (1 ) ! ( )
Y

j

j
t j j t

B j j


  

   






  
   

  
 , (23) 

which is an infinite mixture of the c.f.’s of a (1, ) ( )Gamma j Exponential j     distribution with 

weights given by (Coelho et al., 2006), 

 

 

 

11
  ( 0,...).

, 1 !( )
j

j
j

B j j




   

  
 

  
 

 

 

3. The exact distribution of generalized Wilks Lambda statistic when a maximum of three sets have 

an odd number of variables  

 

In Theorem 1 we present the exact distribution of the generalized Wilks Lambda statistic for the case 

where two or three of the sets have an odd number of variables, expressed in the form of an infinite 

mixture of GIG distributions.  

 

Theorem 1 When there are two or at most three sets of variables with an odd number of variables among 

the m sets, then under (2) and for a sample of size n+1, the exact distribution of W = - ln   is an infinite 

mixture of GIG distributions, 2

2
2mq    of them with depth 2p   and the remaining  with depth 1p  , 

symbolically, 

** ** 2
1 , 2 1 2

*

1

1
1 2

; ,..., ; ,..., 1,..., 2 ;
!( ) 2

, 1
2 2

                                                                                 ,...,

m

m
p p

m m

p

q
W MGIG r r

p p c
B c

r

 



  
 


 

  
    

     
         

   

* 2
1 1 1; ,..., 0, 1

2

m
p p

q
r     

 


 

    
 




 

where 21

2

mn q
c  
  and 2 1m m mq p p   . The shape parameters **

jr are given by 
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 * *

2
** *

, 1,
1

 ,    1,..., 2
k k

m

j k j p m j p
k

r r r j p



  


    , (24) 

where 

 * *

2
*

, 1,
1

 ,    1,..., 2
k k

m

j k j p m j p
k

r r r j p


  


     (25) 

and *

1 1pr   , with 
1*

1

k

k ll
p p




 , and 

 
*

* *

*

,

* *

1, 1,

0

0 2,

k

k k

kk j p

km j p m j p

r if p j

r r if p j or j p



   

 

    
 (26) 

where, for 1,..., 2k m   and 
1 ...k k mq p p   , 

 
, 2

1 2

3 2

k j

k j

k j k j k k

h j , 
r

r h j , ..., p q


 

   
 (27) 

with 

 (  { , } ) 1k j k kh number of  elements of p q j   . (28) 

For 2

2
10  mq

or      

 
1,

2 2

1  2

3,..., 3

j

m j

j j m

h j ,
r

r h j q

 


 

  
 (29) 

with 

 1(  { 1, } ) 1j m mh number of  elements of p p j    , (30) 

and the rate parameters 
j are given by 

    ( 1,..., 2)
2

j

n p j
j p

 
    (31) 

and 1p c    ; while for 2

2
21,..., mq

 
  

 
1,*

1,

1, 2

1 2

{1,..., 3} \{2 },

m j

m j

m j m

r j
r

r j q









 

 
 

 
 (32) 

with 1,m jr   given by (29) and (30), since the rates parameters  ( 1,..., 2)j j p    are given by (31). 

 

Proof. From (19) and the independence of the kp  r.v.’s jX  in (5), under the null hypothesis ( )

0

kH  in (4), 

we may write 

( 1,..., )

1 1

11

122
[ ] ( ) ,   

1 1 2

22

k k

k

p p

h h k k

k k m j

j j k

n q jn j
h

n q p
E E X h

n q j n j
h



 

      
           

                  
  

  . 

Then, given the independence of 1m  statistics ( 1,..., )k k m  in (3), under the null hypothesis of 

independence of the m sets of variables in (2) (Anderson, 2003, Theorem 9.3.2), we obtain the h-th 

moment of generalized Wilks  statistic, for a sample size n + 1 , as  
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1 1 1

( 1,..., )

1 1 1 1 1

11

22
( ) [ ] ( )

1 1

2 2

k k

k

p pm m m
h h h

k k m j

k k j k j k

n q jn j
h

E E E X
n j n q j

h

  



    

      
    

   
    

       
     
   

    (33) 

and, since the Gamma functions in (33) are still valid for any strictly complex h, for a sample of size 

1n , the c.f. of the r.v. lnW     is given by  
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where 1/ 2i ( 1)   and t  (being  the set of reals). To factorize the c.f. of W in (34) we consider, 

without any loss of generality, that among the m sets of variables the last two or three sets are the ones 
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where the parameters  ( 1,..., 2; 1,..., 2)k j k kr k m j p q      are given by (27) and (28) and 
1m mq p  .  

We may write the part of )(tW  corresponding to the third factor in (35), where 
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where the parameters 1,m jr   are given by (29) and (30). Then replacing, in this c.f. expression, the part 

corresponding to the c.f. of a Logbeta distribution with parameters 21

2

mn q  
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2

mq   by its representation 

in the form of an infinite mixture of Exponential distributions in (22), we may write the c.f. of W as 
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where the parameters 
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jr  are given by (25). This way, we may finally write 
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which is the c.f. of an infinite mixture of GIG distributions, 2

2
2mq    of them with depth 2p  , with shape 

parameters **

jr  given by (24) and rate parameters j  given by (31) 2
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( 1,..., 2;  1,..., 2)mq

j p     , 

while the remaining GIG distributions have depth 1p  , with shape parameters *

jr  given by (25) and 
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1 1pr   , and the rate parameters 
j  given by (31) and 1p c     2
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while the exact c.d.f. is 



Wilks Λ - Near-exact distributions from truncation 

 

11 

2

2

2
22

*

1 1

*

0, 1
2

1
1 2

( ) ( ln )
!( )

, 1
2 2

1
2

                                                                       
!( )

m

m

q m

p

j

jm m

m

j
q

p

F u K P u
p p c

B c

p

K P
c

 


 



 



 










 



  

  
   
  

   
     

    

 
   
 




 


1

1

( ln )      (0 1)
p

j

u u






  






 

where, 

 

* ***

*

1
*

, *
1 0

( ln )( 1)!
( ln ) 1 ,

!

j

j

i ir i
j

j j i i
i ij

ui
P u c u

i




 







 

  
    

  
  

   (40) 

and 

 

*
1

*

,

1 0

( ln )( 1)!
( ln ) 1 ,

!

j

j

i ir m
j

j j m m
m ij

um
P u c u

i







 

  
    

    
   (41) 

and where 
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 are given by (9)-(11). 

 

 

4. A family of near-exact distributions for the generalized Wilks Lambda statistic when two or  

three sets have an odd number of variables 

 
The near-exact distributions developed in this section are based on truncations of the exact distribution of 

lnW    . They are manageable and expressed as finite mixtures, which equate the two first exact 

moments and which allow for an easy computation of near-exact quantiles. These distributions are 

obtained in Theorem 2. 
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variables then, under (2) and for a sample of size n+1, a family of near-exact distributions for W = - ln   

is given by a finite mixture of * 2n   distributions, where * 1n   components are GIG distributions and 

the last component is a GNIG distribution, with weights 

 *

1
1 2

  ( 0,1,... )

, 1 !( )
2 2

m

m m

p

n
p p

B c c




 

 

 
   
 

 
   

     
   

 (42) 

and 

*

* 1
0

1
n

n 


 




  . 

Symbolically, 

* * * *

1 , 1 1 1( 1) ( ; ,..., ; ,..., ; 0,..., 1)
ne

p pW M n GIG GNIG r r n          , 



L. M. Grilo & C. A. Coelho 

 

12 

where the shape and rate parameters are as follows: 

 for 2*

2
2mq

n    we have a finite mixture of * 2n   distributions, where * 1n   components are 

GIG distributions ( *n  with depth 2p   and one with depth 1p  ) and the last component is a 

GNIG distribution of depth 1p  ; for 2*

2
1,..., 2mq

n     the shape parameters **

jr  

)2,...,1(  pj  are given by (24) through (28) and the rate parameters  ( 1,..., 2)j j p    are 

given by (31); for 0   we have the ** *

j jr r   )2,...,1(  pj  given by (25) through (28) and 

*

1 1pr   , with the rates  ( 1,..., 2)j j p    given by (31) and 
1p c   ; 

 for 2*

2
2mq

n    we have a finite mixture of * 2n   distributions, where * 1n   components are 

GIG distributions, 2

2
2

mq 
  with depth 2p   and the remaining 2*

2
1 ( 2)mq

n     with depth 

1p  , and the last component is a GNIG distribution of depth 1p  ; for 2

2
1,..., 2mq

    the 

shape parameters **

jr  )2,...,1(  pj  are given by (24) through (28) and the rates 

 ( 1,..., 2)j j p    are given by (31), while for 2

2
0  1mq

and      we have the ** *

j jr r   

)2,...,1(  pj  given by (25) through (28) and *

1 1pr   , since the rates  ( 1,..., 2)j j p    are 

given by (31) with 1p c    ; 

 both for 2*

2
2mq

n    and 2*

2
2mq

n    we have for the GNIG distribution of depth 1p  , the 

** *

j jr r   )2,...,1(  pj  given by (25) through (28) and the rates  ( 1,..., 2)j j p    given by 

(31), with *

, 1pr r    and 
1p   , obtained in such a way that the two first moments of the 

near-exact distributions match the two first exact moments. 

 

Proof. Considering the c.f. of W in (37), and truncating the infinite mixture of Exponential distributions 

corresponding to the 
1mp -th Logbeta we may write, 
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where 21
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mn q
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  is the c.f. of  an )( clExponentia  distribution ,...)1,0(   and the weights   are given 

by 

1
1 2

  ( 0,1,...)

, 1 !( )
2 2

m

m m

p

p p
B c c





 

 

 
   
 

 
   

     
   

, 

then we approximate * ( )
n

R t  by 
1( )t , where 

1( ) ( i )r rt t      is the c.f. of a ( , )Gamma r   

distribution and the weight  is given by 

*

* 01
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n
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    . The parameters r and  of the Gamma 

distribution are obtained in such a way that the two first derivatives of * ( )
n

R t  and 
1( )t  with respect to 

t, at 0t  , are equal, i.e., in such a way that 
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 
  

that is, in such a way that the two first moments of the exact and near-exact distributions are equal. Thus, 

we approximate *( )t  by  

*
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Since we may write 
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the near-exact c.f. of W  may be given by  
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 (43) 

which is the c.f. of a finite mixture of * 2n   distributions, where * 1n   components are GIG 

distributions and the last one is a GNIG distribution. 

Then, we have to consider two situations: 

 2*

2
2mq

n   , case where (43) may be written as 
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 (44) 

which is the c.f. of a finite mixture of * 2n   distributions, where * 1n   components are GIG 

distributions ( *n  of them with depth 2p   and one with depth 1p  ) and the last one is a GNIG 

distribution of depth 1p  , with shape and rate parameters mentioned in the body of Theorem 2; 
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 (45) 

which is the c.f. of a finite mixture of * 2n   distributions, where * 1n   of them are GIG distributions, 

2

2
2mq    with depth 2p   and 2*

2
1 ( 2)mq

n     with depth 1p   and the last one is a GNIG distribution 

of depth 1p  , with shape and rate parameters mentioned in the body of Theorem 2.  

 

The near-exact c.f.’s obtained in this way are asymptotic for increasing values of n
*
, in the sense that they 

converge to the exact c.f., ( )W t , when *n  . The corresponding p.d.f.s and c.d.f.s may be obtained 

in a concise and manageable form, suitable for an expeditious computation of quantiles. 

 

Taking into account that, from (42), we have 

 
 

0

2

1 1

, mp cB c
  , 

then, from (44) and (6)-(17) in Section 2, we have, for 2*

2
2mq

n   , the near-exact p.d.f. and c.d.f. of   

given by 
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 for K , ( ln )jP u  , K  and ( ln )jP u  given by (38) and (39), * ( ln )
j

P u


  and 
*( ln )
j

P u  given by (40) 

and (41),   given by (42) and 

 ** 1

, 1 1

1

( )
( ln ) ( ln ) , , ( ) ln

( )

jr

k r

j j k j

k

k
P u c u F r k r u

k r
  



 
     

  
  

and 

 
1

*** *

, 1 1

1 0

( ln )
( ln ) , 1 , ( ) ln

( 1 )

j
r i ir k

j

j j k j

k i

u
P u c F r r i u

r i


 



 

  
     

    
  . 

 

 

 

 

5. Proximity measures to assess the quality of near-exact distributions 

 

 

We assess the proximity of the near-exact distributions developed using two measures, 1  and 2 , based 

on c.f.’s. These two proximity measures were already used by Grilo and Coelho (2007, 2010) and Coelho 
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and Mexia (2010), in situations where the expressions for the exact p.d.f. and c.d.f. are not known, and 

they are directly derived from the inversion formulas. Their expressions are 

 1

1
( ) ( )

2
W t t dt 







    (46) 

and 

 2

( ) ( )1

2

W t t
dt

t

 








    (47) 

where ( )W t represents the exact c.f. of r.v. W and ( )t  the near-exact c.f. under study. The measure 2  

in (47) may be seen as directly derived from Berry-Esseen bound. The use of these measures enables us to 

obtain an upper bound on the absolute value of the difference of the densities or the cumulative 

distribution functions, since 

 
0

1max ( ) ( )
w

Wf w f w


      and     
0

2max ( ) ( )
w

WF w F w


   , 

where ( )Wf w  and ( )WF w  are, respectively, the exact p.d.f. and c.d.f. of W evaluated at 0w   and ( )f w  

and ( )F w  are, respectively, the near-exact p.d.f. and c.d.f. of W, corresponding to )(t . 

 

Smaller values of the measures 
1  and 

2  correspond to better approximations. This way, these 

measures are an useful tool for evaluating and comparing the performance of the near-exact distributions 

proposed. 

 

 

 

6. Comparative numerical study 

 

 
In order to assess the quality of the family of near-exact distributions M(n

*
+1)GIG+GNIG, based on 

truncations of the exact c.f. and which equate the first 2 exact moments, we use the proximity measures 

1  and 2  in (46) and (47). We analyze the proximity of the near-exact distributions developed to the 

exact distribution and also compare them with the near-exact M2GNIG distribution, used in , presented in 

Grilo and Coelho (2007, 2010), based on a factorization of the exact c.f. and which equates the first 4 

exact moments. We consider here the near-exact M2GNIG distribution, since this was the best 

performing approximation among the asymptotic and near-exact distributions, based on factorizations, 

presented in Grilo and Coelho (2007, 2010). 

 

We analyse the behaviour of these near-exact distributions for different values of m, that is, for different 

numbers of sets of variables and also for different numbers of variables in each set.  In Table 1 we have a 

summary of the particular cases studied, for a sample size of n = 25: the case of 3 sets (all with an odd 

number of variables) and the case of 4 sets (in which only one has an even number of variables). 

 

In Tables 2 through 7 we have, in alternative sequence, values for proximity measures 1 and 2 and 

some quantiles for the near-exact distributions, for the cases presented in Table 1. 
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Table 1: Number of sets, number of variables in each set and sample size. 
 

No. of 

sets 

No. of variables 

per set 

Total no. 

of variables 

Sample 

size 

3m   

 

1 2 35, 7 and 3p p p    
 

15p   

25n   
1 2 35, 7 and 9p p p    21p   

4m   1 2 3 45, 7, 3 and 6p p p p     21p   

 

 

We consider in our study a member of the family with five hundred terms. This is, for the truncation  

n
*
+1 = 499 we obtain, as member, the near-exact M499GIG+GNIG distribution. In the calculations of the 

values of both proximity measures we use the exact c.f. in (34) and the near-exact c.f. in (43). In Table 2 

we have m = 3 sets, all with an odd number of variables, where the global number of variables is 15 and 

the sample size is 25, making the difference between them equal to 10 ( 10 pn ). The values of the 

measures show that the near-exact M499GIG+GNIG distribution beats the near-exact M2GNIG 

distribution, although this last one equated more moments. In Table 4 we also have m = 3, but the global 

number of variables is 21 and the sample size is again 25, reducing the difference between them, which is 

now equal to 4 pn . When we increase the number of variables in one of the sets, the performance of 

both near-exact distributions becomes even better, with a larger improvement in the near-exact 

distribution based on the truncation of the exact distribution, developed in this paper. In Table 6 we 

consider m = 4 sets, 3 of which with an odd number of variables, being the global number of variables  

again equal to 21. Once again we may see the better performance of the near-exact distribution 

M499GIG+GNIG based on truncations, with lower values for both proximity measures. However, when 

the number of sets of variables increases the quality of the approximation given by the near-exact 

distribution M499GIG+GNIG becomes a bit worse. Anyway, we may always surpass this minor 

drawback increasing the number of terms considered in the truncations.  

 

In Tables 3, 5 and 7 we have some quantiles of the M499GIG+GNIG and M2GNIG near-exact 

distributions. As we may see in Grilo and Coelho (2010) and in Coelho and Mexia (2010), smaller values 

of measures 1 and 2 are associated with smaller differences among quantiles.  

 

Table 2: Values of measures 1 and 2 for near-exact distributions. 

Case 
1 2 33 with 5, 7, 3 and 25m p p p n     . 

 

Near-exact 

distributions 

Proximity measures 

1  2  

 
M499GIG+GNIG (2 moments) 4.585E-17 5.612E-18 

M2GNIG (4 moments) 6.369E-11 3.135E-12 

                

    
Table 3: Some quantiles of near-exact distributions, for 1 2 33 with 5, 7, 3 and 25m p p p n     . 

 

Near-exact 

distributions 
Quantile 

0.90 0.95 0.99 

 
M499GIG+GNIG (2m.) 5.070602126803278 5.372467667062496 5.971703532356292 

M2GNIG (4 m.) 5.070602126798732 5.372467667053351 5.971703532349906 
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Table 4: Values of measures 1 and 2 for near-exact distributions. 

Case 
1 2 33 with 5, 7, 9 and 25m p p p n     . 

 

Near-exact 

distributions 
Proximity measures 

1  
2  

 
M499GIG+GNIG (2 moments) 2.512E-20 3.072E-21 

M2GNIG (4 moments) 1.416E-12 1.328E-13 

               

 

                        

Table 5: Some quantiles of near-exact distributions, for 
1 2 33 with 5, 7, 9 and 25m p p p n     . 

 

Near-exact 

distributions 

Quantile 

0.90 0.95 0.99 

 
M499GIG+GNIG (2m.) 12.348022863501802 12.910964910802633 14.024583497046132 

M2GNIG (4 m.) 12.348022863501334 12.910964910801998 14.024583497046136 
                  

 

Table 6: Values of measures 1 and 2 for near-exact distributions. 

Case 
1 2 3 44 with 5, 7, 3, 6 and 25m p p p p n      . 

 

Near-exact 

distributions 

Proximity measures 

1  2  

 
M499GIG+GNIG (2 moments) 4.935E-18 6.340E-19 

M2GNIG (4 moments) 1.192E-12 2.077E-14 

         

 

Table 7: Some quantiles of near-exact distributions, for 
1 2 3 44 with 5, 7, 3, 6 and 25m p p p p n      . 

 

Near-exact 

distributions 
Quantile 

0.90 0.95 0.99 

 
M499GIG+GNIG (2m.) 13.298396053836127 13.871917262346954 15.003949956414504 

M2GNIG (4 m.) 13.298396053835702 13.871917262346372 15.003949956414496 
         
 

 

 

 

 

7. Conclusions and final remarks 

 

The expression obtained for the exact distribution of the generalized Wilks  statistic needs a very large 

number of terms in the series of the exact distribution GIG to obtain accurate enough approximations to 

the exact p.d.f., c.d.f., moments and quantiles. For the same accuracy, this number is much larger than the 

number of terms needed in the finite mixture of the near-exact M(n
*
+1)GIG+GNIG distributions, for a 

similar accuracy. This way, this family of near-exact distributions, which equates the first two exact 

moments and lays very close to the exact distribution, is very useful for practical purposes, mainly for 

small sample sizes. 

 

We have to point out the excellent performance of the family of near-exact distributions 

M(n
*
+1)GIG+GNIG for small values of n and for small values of n – p. For higher values of n or n – p, 

we may consider the near-exact distribution M2GNIG, based on factorizations of the exact c.f., as an 

alternative.  
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We should stress here the wide range of application of the near-exact distributions obtained, since they 

apply not only to the case of underlying multivariate Normal distributions but also to the cases of 

underlying elliptically contoured and left orthogonal-invariant distributions. Such very precise 

approximate distributions may indeed be necessary and adequate for cases where, for some reason, one 

may need extra precision that the usual asymptotic distributions available are not able to provide. 
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