
Factorization of linear elliptic boundary value problems in non
cylindrical domains

Jacques Henry a, Bento Louro b, Maria do Céu Soares c,
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Abstract

We present a method of factorization for linear elliptic boundary value problems considered in non cylindrical
domains. We associate a control problem to the boundary value problem which regularizes it. The technique of
change of variables is used to study this problem. To cite this article: J. Henry et al., C. R. Acad. Sci. Paris, Ser.
I.

Résumé

Factorisation de problèmes aux limites linéaires elliptiques dans un domaine non cylindrique. Nous
présentons une méthode de factorisation de problèmes aux limites elliptiques linéaires dans un domaine non
cylindrique. On associe au problème elliptique un problème de contrôle qui en fournit une régularisation. La
technique de changement de variables est utilisée pour étudier ce problème de contrôle. Pour citer cet article : J.
Henry et al., C. R. Acad. Sci. Paris, Ser. I.

1. Introduction

In [1] Angel and Bellman proposed a method based on spatial invariant embedding for transforming a
second-order elliptic boundary value problem in a rectangle, in a system of first-order decoupled initial
value problems which can be solved by a two-step process. In [4], Henry and Ramos gave a complete
justification for this transformation, in the case of the Poisson equation in an n-dimensional cylindrical
domain. The invariant embedding was performed using the coordinate along the axis of the cylinder.
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do Céu Soares).

Preprint submitted to C. R. Acad. Sci. Paris, Ser. I. (accepted for publication)



The Neumann to Dirichlet (NtD) operator on a section of the cylinder was shown to satisfy a Riccati
equation. The method is similar to the one used by [5], for deriving the optimal feedback for optimal
control problems of parabolic equations. Its justification is based on a Galerkin method. A shorter proof
was given in [2]. In this study, we generalize this method to non cylindrical domains. The relationship
with a control problem is used to regularize the Riccati equation. We use a change of variables in order
to set the problem in a cylindrical domain. It was shown, in the case of the cylinder, that the LU block
factorization of matrix of the problem discretized by finite differences, can be viewed as a discretization
of the factorized version of the boundary value problem. Other discretizations lead to new numerical
schemes.

2. Elliptic boundary value problem in a non cylindrical domain

We denote the elements of RN by (x1, x2, . . . , xN ) = (x, y), where x = x1 and y = (x2, . . . , xN ) to
stress the particular role of x1. For each x ∈ [0, a], let Ox be a bounded open set in RN−1. We shall call
a quasi-cylinder with respect to x, a set Ω defined in RN by Ω = ∪0<x<a(x,Ox), where y ∈ RN−1 is the
coordinate in the section. We make the following regularity assumption on Ω: as in [3], we assume that
each Ox has a C2 boundary and that there exist C2 diffeomorphims Tx in RN−1, Tx(Oa) = Ox, where
Tx denotes the flow associated with the speed field − ∂

∂xTx(y) = V (x, Tx(y)), continuous with respect to
x ∈ [0, a], y ∈ RN−1 and verifying Ta(y) = y. We also consider Σ = ∪0<x<a(x, ∂Ox) to be the “lateral
boundary” of the domain. Further, Γ0 = {0} × O0 and Γa = {a} × Oa are the “faces” of the domain.

We consider the Poisson problem

(P0)


−∆u = −∂

2u

∂x2
−∆yu = f, in Ω

u|Σ = 0,

−∂u
∂x
|Γ0

= 0, u|Γa
= u1,

where f ∈ L2(Ω) and u1 ∈ H
1/2
00 (Oa) (see [6] for the definition of this space). This problem has a

unique solution in L2(0, a;H2(Ox)
⋂
H1

0 (Ox))
⋂
H1(0, a;L2(Ox)), which is the space of functions verifying∫ a

0

‖u‖2H2(Ox)dx <∞, u|∂Ox
= 0 and

∫ a

0

(
‖u‖2L2(Ox) +

∥∥∥∥∂u∂x
∥∥∥∥2

L2(Ox)

)
dx <∞.

As in [4], we want to factorize this problem by invariant embedding in the family of similar problems

(Ps,h)

−∆us = f in Ωs = ∪0<x<s(x,Ox),

us|Σs
= 0, −∂us

∂x
|Γ0

= 0, us|Γs
= h,

(1)

where h ∈ H1/2
00 (Os), Γs = {s} × Os and s ∈]0, a[.
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By linearity of (P0), for every s ∈]0, a[ we define the Dirichlet to Neumann map through P (s)h+w =
∂u
∂x |Γs .

In Theorem 5.3 we arrive to a Riccati equation satisfied by this operator, after a change of variables.

3. Optimal control framework and regularization

We can formulate (P0) as an optimal control problem:

(OC0)


∂u

∂x
= v in Ω, u|Σ = 0, u|Γa = u1,

inf
v
J (v) =

1

2

∫
Ω

(|∇yu−∇yud|2 + |v|2)dxdy,

where u stands for the state, v for the control and ud is given almost everywhere by−∆yud(x) = f(x) in Ox,

ud|∂Ox = 0.

This is an ill-posed problem, since J is not defined for every v ∈ L2(Ω).
In order to overcome this difficulty, we make a parabolic regularization of (OC0):

(OCε)


∂uε
∂x

+
√
ε∆yuε = v in Ω, uε|Σ = 0, uε|Γa = u1,

inf
v
J (v) =

1

2

∫
Ω

(|∇yuε −∇yud|2 + |v|2)dxdy.

We can prove (see [5]) that this control problem has a unique solution, uε, in L2(0, a;H1
0 (Ox)).

The adjoint state pε is given by:−
∂pε
∂x

+
√
ε∆ypε = −∆yuε − f, in Ω,

pε|Σ = 0, pε|Γ0
= 0,

and vε = −pε is the optimality condition.
The problem (OCε) corresponds to the regularization of (P0) with a 4th-order operator in y:

(Pε)


−∂

2uε
∂x2

−∆yuε + ε∆2
yuε = f, in Ω,

uε|Σ = 0, −∂uε
∂x
|Γ0

= 0, uε|Γa
= u1,

(
∂uε
∂x

+
√
ε∆yuε)|Σ = 0.

4. Change of variables

The derivation with respect to s of the invariant embedding (1), as done in [4], is not obvious as P acts on
a space of functions depending on s. To avoid this problem, we are going to make a change of coordinates,
following [3]. Using the flow Tx, the quasi-cylindrical domain Ω can be mapped isomorphically from the
cylinder Q =]0, a[×Oa, by the change of variables (x, Y ) 7→ (x, y) = (x, Tx(Y )), Y ∈ Oa. Let DTx be the
jacobian of the transformation Tx and Jx = det(DTx). Set A(x)z = −J−1

x ∇Y .(Jx(DTx)−T (DTx)−1∇Y z)
and B(x)z = −(DTx)−T∇Y z.V ◦ Tx, where z(x, Y ) = u(x, Tx(Y )) = u ◦ Tx(Y ).
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Being in the framework of [3], by the change of variables the regularized problem (OCε) becomes
∂zε
∂x
−
√
εA(x)zε +B(x)zε = v ◦ Tx in Q,

zε|Σ̃ = 0, zε|Γa = u1,

inf
v
J (v) =

1

2

∫
Q

((DT−1
x (∇Y zε −∇Y zd))2 + |v ◦ Tx|2)JxdxdY ,

(2)

with zd = ud ◦ Tx and Σ̃ =]0, a[×∂Oa.
Now the adjoint state is given by−

∂qε
∂x
−
√
εA?(x)qε +B?(x)qε = A(zε − zd), in Q,

qε|Γ̃0
= 0, qε|Σ̃ = 0,

where Γ̃0 = {0} × Oa and the optimality condition becomes v ◦ Tx = −qε. The invariant embedding
with respect to the subdomains Qs =]0, s[×Oa furnishes a linear operator P̃ε(s) ∈ L(L2(Oa), L2(Oa)),

such that the traces on {s}×Oa satisfy −qε = P̃εzε + rε, so that zd verifies
∂zε
∂x
−
√
εA(x)zε +B(x)zε =

P̃ε(x)zε + rε.
Then we can prove, as in [3], that P̃ε satisfies the well posed Riccati equation in the cylinder Q, in the

following sense

(
dP̃ε

dx
ϕ, ψ)Jx

+(
√
εA(x)ϕ, P̃ε(x)ψ)Jx

+ (
√
εP̃ε(x)ϕ,A(x)ψ)Jx

− (B(x)ϕ, P̃ε(x)ψ)Jx

−(P̃ε(x)ϕ,B(x)ψ)Jx + (P̃ε(x)ϕ, P̃ε(x)ψ)Jx = (A(x)ϕ,ψ)Jx , ∀ϕ,ψ ∈ H1
0 (Oa),

with P̃ε(0) = 0.

5. Convergence results

We can prove the following theorem:
Theorem 5.1 As ε −→ 0, for x = s and a fixed zε(s) = h ∈ H1

0 (Oa), we have zε → z, in H1(Qs), and√
εAzε → 0, in L2(Qs).

Then, using (2), we can prove that

Theorem 5.2 As ε −→ 0, (
∂zε
∂x

+B(x)zε)|x=s → (
∂z

∂x
+B(x)z)|x=s in L2(Oa). This implies that, for

h ∈ H1
0 (Oa), P̃εh −→ P̃ h, in L2(Oa).

As a consequence, we obtain the desired result:
Theorem 5.3 The Dirichlet-Neumann operator P̃ satisfies

(
dP̃

dx
ϕ, ψ)Jx

− (B(x)ϕ, P̃ (x)ψ)Jx
− (P̃ (x)ϕ,B(x)ψ)Jx

+

+(P̃ (x)ϕ, P̃ (x)ψ)Jx = (A(x)ϕ,ψ)Jx , ∀ϕ,ψ ∈ H1
0 (Oa).

(3)

Problem (P0) is now equivalent to the factorized formulation, with P̃ given by (3),
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dr

dx
−B?r + P̃ r = −Azd, r(0) = 0,

dz

dx
+B(x)z − P̃ z = r, z(a) = u1, in Q.

Acknowledgements

This work was partially supported by Financiamento Base 2010 ISFL-1-297 and project PTDC/MAT/
109973/2009 from FCT/MCTES/PT.

References

[1] E. Angel, R. Bellman, Dynamic programming and partial differential equations, Academic Press, 1971.

[2] N. Bouarroudj, J. Henry, B. Louro, M. Orey, On a direct study of an operator Riccati equation appearing in boundary

value problems factorization, Applied Mathematical Sciences 46, 2 (2008), 2247–2257.

[3] G. Da Prato, J.P. Zolésio, An optimal control problem for a parabolic equation in non cylindrical domains, Systems &

Control Letters 11 (1988), 73–77.

[4] J. Henry, A.M. Ramos, Factorization of second order elliptic boundary value problems by dynamic programming,
Nonlinear Analysis. Theory, Methods & Applications 59 (2004), 629–647.
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