
A class of semi-parametric probability weighted
moment estimators

Frederico Caeiro and M. Ivette Gomes

Abstract In this paper we deal with the semi-parametric estimation of the right
tail 1−F . Through the use of probability weighted moments based on the largest
observations, we study a class of estimators for the extreme value index γ , the scale
parameter C and the Value-at-Risk at a level p, the size of the loss occurred with a
small probability p.

1 Introduction

Let X1,X2, . . . ,Xn be a set of n independent and identically distributed (i.i.d.) random
variables (r.v.’s), from a population with distribution function (d.f.) F . We assume
that F is a heavy tailed model with a Pareto-type tail, i.e.,

F(x) := 1−F(x) ∼ (C/x)1/γ , x→ ∞, (1)

where C and γ are unknown scale and shape parameters, respectively. Then F is a
regularly varying function with a negative index of regular variation equal to −1/γ ,
and we are in the max-domain of attraction of the Extreme Value distribution

EVγ(x) = exp{−(1+ γx)−1/γ}, 1+ γx > 0.

Suppose that we are interested in the estimation of a high quantile of probability
1− p, or equivalently, in the estimation of the Value-at-Risk (VaR) at a level p, the
size of the loss occurred with a small probability p,

Frederico Caeiro
Faculdade de Ciências e Tecnologia da UNL, 2829-516 Caparica and CMA, e-mail: fac@fct.unl.pt

M. Ivette Gomes
FCUL, Campo Grande, 1749-016 Lisboa, and CEAUL e-mail: ivette.gomes@fc.ul.pt

1



2 Frederico Caeiro and M. Ivette Gomes

VaRp ≡ χ1−p := F←(1− p) = inf{x : F(x)≥ 1− p}, (2)

with the notation F← standing thus for the generalized inverse function of F .
In Section 2 we present some already studied semi-parametric estimators and

introduce a new class, to be studied in this paper. In Section 3, after a few technical
details, we study the asymptotic behaviour of the estimators under consideration.
Finally, Section 4 is dedicated to a small-scale simulation study.

2 Estimators under study

Under the largest observations framework, and whenever dealing with Pareto-type
tailed models, the classical semi-parametric estimators of γ and C are the Hill esti-
mator ([4]) and Weissman estimator ([7]), with functional expressions

γ̂
H
k,n :=

1
k

k

∑
i=1

(lnXn−i+1:n− lnXn−k:n) , k = 1,2, . . . ,n−1, (3)

and

ĈW,H
k,n := Xn−k:n

(
k
n

)γ̂H
k,n

, k = 1,2, . . . ,n−1, (4)

where Xi:n denotes the i-th ascending order statistic. These estimators are pseudo-
maximum likelihood estimators and have usually a high asymptotic bias which
makes the choice of k very difficult. This problem led researchers to deal with bias
reduction and study new estimators with smaller mean squared error (MSE).
Since heavy-tailed models only have mean value if γ < 1, methods based on sam-
ple moments are rarely considered when we work with such distributions. But in
many practical fields like in finance or insurance, for example, we usually have a
positive EVI smaller than one, and even smaller than 1/2. In this article, we again
consider the probability weighted moments (PWM) method, a generalization of the
Method of Moments (Greenwood et al. [3]). This method is know for being more
efficient than the maximum likelihood method for small to moderate sample sizes
(Landwher et al. [6], Hosking and Wallis [5]). The PWM of a r.v. X are defined by
Mp,r,s := E(X p(F(X))r(1−F(X))s), where p, r and s are any real numbers. When
r = s = 0, Mp,0,0 are the usual noncentral moments. It is usual to work with one of
the two particular and simple cases:

ar := M1,0,r = E(X(1−F(X))r) or br := M1,r,0 = E(X(F(X))r). (5)

Given a sample of size n, the unbiased estimators of ar and br are, respectively,

âr =
1
n

n−r

∑
i=1

(n−i
r

)(n−1
r

)Xi:n =
1
n

n

∑
i=1

(n− i)(n− i−1) . . .(n− i− r +1)
(n−1)(n−2) . . .(n− r)

Xi:n, (6)
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and

b̂r =
1
n

n

∑
i=r+1

(i−1
r

)(n−1
r

)Xi:n =
1
n

n

∑
i=1

(i−1)(i−2) . . .(i− r)
(n−1)(n−2) . . .(n− r)

Xi:n. (7)

Caeiro and Gomes ([1]) studied the PWM estimators for the parameters of a
Pareto tail, based on the top k largest observations, Xn:n ≥ Xn−1:n ≥ . . . ≥ Xn−k+1:n.
The PWM estimators, valid for γ < 1, and based on the largest values, are

γ̂
PWM

k,n = 1− â1(k)
â0(k)− â1(k)

, Ĉ
PWM

k,n =
â0(k) â1(k)

â0(k)− â1(k)

( k
n

)γ̂
PWM
k,n

, (8)

with k = 2, · · · ,n and âs(k) := 1
k ∑

k
i=1
( i−1

k−1

)s
Xn−i+1:n, s = 0,1.

To overcome the restriction γ < 1 of the previous estimators, we will study the
PWM estimators based on the moments

ar,s := E(X r(1−F(X))s) or br,s := E(X r(F(X))s). (9)

The constant r will be a parameter that allow us to extend the domain of validity of
the previous PWM estimators. The PWM estimators, valid for γ < 1

r , and based on
the largest values, are

γ̂
PWM(r)

k,n =
1
r

(
1−

âr,1(k)
âr,0(k)− âr,1(k)

)
, k = 2, · · · ,n, (10)

and

Ĉ
PWM(r)

k,n =
(

âr,0(k) âr,1(k)
âr,0(k)− âr,1(k)

) 1
r ( k

n

)γ̂
PWM(r)
k,n

, k = 2, · · · ,n, (11)

with âr,s(k) := 1
k ∑

k
i=1
( i−1

k−1

)s (Xn−i+1:n)r, s = 0,1. The parameter r can also be used
as a tuning parameter, controlled at our ease to reduce the bias or the MSE.

Since χ1−p := F←(1− p) ∼ Cp−γ , as p → 0, the classical and PWM high
quantile estimators, based on the largest values, are

Q̂
W,H

k,n (p) := Xn−k:n

( k
np

)γ̂H
k,n

, (12)

and

Q̂
PWM(r)

k,n (p) =
(

âr,0(k) âr,1(k)
âr,0(k)− âr,1(k)

) 1
s ( k

np

)γ̂
PWM(r)
k,n

. (13)

3 Asymptotic properties

To guarantee the consistency of many semi-parametric estimators, we usually need
to assume that k is intermediate, i.e.,
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k = kn→ ∞ and k/n→ 0, as n→ ∞. (14)

To obtain information on the non-degenerate distributional behaviour of semi-
parametric estimators, we assume a second-order condition,

lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=
xρ −1

ρ
⇔ lim

t→∞

U(tx)
U(t) − xγ

A(t)
= xγ xρ −1

ρ
, (15)

valid for all x > 0, where ρ ≤ 0 is a second-order parameter controlling the speed
of convergence of U(tx)/U(t) to xγ .

Hill’s estimator is well studied in the literature. Under the above second order
condition in (15) and for intermediate k, we get (de Haan and Peng [2]):

γ̂
H
k,n

d= γ +
γ√
k

ZH
k +

A(n/k)
1−ρ

(1+op(1)), (16)

with Zk =
√

k
(
∑

k
i=1 Ei/k−1

)
, and {Ei} i.i.d. standard exponential r.v.’s.

More generally than Theorem 3.1 in Caeiro and Gomes [1], but with a similar
proof, we now state the following theorem.

Theorem 1. Under the second-order framework, in (15), and for intermediate k, the
asymptotic distributional representation

γ̂
PWM(r)
k,n

d= γ +
σPWM(r)√

k
ZPWM(r)

k +bPWM(r)A(n/k)(1+op(1)) (17)

holds, for γ < 1/2r ,r > 0, where Z•k is a standard normal r.v., and

σ
2
PWM(r)

=
γ2(1− rγ)(2− rγ)2

(1−2rγ)(3−2rγ)
, bPWM(r) =

(1− rγ)(2− rγ)
(1− rγ−ρ)(2− rγ−ρ)

. (18)

Corollary 1. If we further assume that
√

k A(n/k)→ λ , finite and not necessarily
null, √

k(γ̂•k,n− γ) d−→ N
(
λ b• ,σ

2
•

)
, as n→ ∞, (19)

with • denoting H or PWM(r), σ2
H

= γ2 and bH = 1
1−ρ

.

Remark 1. Notice that σ2
H

< σ2
PPWM(r)

, for every γ > 0 and r > 0. On the other hand,
bPPWM(r) < bH , unless ρ = 0.

In Figure 3 we provide a picture of σPWM(r) (left) and bPWM(r) (right) as function of
r. These functions have opposite behaviour: The variance increases with r, but the
bias decreases with r. The choice of the “optimal” r that minimizes the MSE is not
obvious and is a subject outside the scope of this paper.

We now state the following two theorems, related with the asymptotic behaviour,
at optimal levels, of the estimators of the scale parameter C and high quantiles.
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Fig. 1 Left: σPWM(r) , as function of r for γ = 0.25, Right: bPWM(r) , as function of r for γ = 0.25
and three different values of ρ .

Theorem 2. Under the conditions of Theorem 1, but with ρ < 0, if we further as-
sume ln(k/n) = o(

√
k) and

√
kA(n/k)−→ λ , then

√
k

ln(k/n)

(
Ĉ

W,H

k,n

C
−1

)
d=
√

k
(

γ̂
H

k,n− γ

)
(1+op(1)), (20)

and √
k

ln(k/n)

Ĉ
PWM(r)

k,n

C
−1

 d=
√

k
(

γ̂
PWM(r)

k,n − γ

)
(1+op(1)), r > 0. (21)

Theorem 3. Under the conditions of Theorem 1, but with ρ < 0, if p = pn is
a sequence of probabilities such that cn = k/(np) −→

n→∞
∞, lncn = o(

√
k) and

√
kA(n/k)−→ λ , then,

√
k

lncn

(
Q̂

W,H

k,n (p)

χ1−p
−1

)
d=
√

k
(

γ̂
H

k,n− γ

)
(1+op(1)), (22)

and

√
k

lncn

 Q̂
PWM(r)

k,n (p)

χ1−p
−1

 d=
√

k
(

γ̂
PWM(r)

k,n − γ

)
(1+op(1)), r > 0. (23)

Remark 2. The previous theorems allow us to conclude that the asymptotic dom-
inant behaviour of the scale parameter and high quantiles estimators is thus fully
determined by the asymptotic behaviour of γ̂•k,n.
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4 Finite sample behaviour: small-scale simulation study

We have implemented a Monte Carlo simulation of 5000 runs for the shape param-
eter estimators γ

H

k∗,n, γ̂
PWM(r)

k∗,n and high quantile normalized estimators Q̄
W,H

k∗,n(p) :=

Q̂
W,H

k∗,n(p)/χ1−p and Q̄
PWM(r)

k∗,n (p) := Q̂
PWM(r)

k∗,n (p)/χ1−p with p = 1/n and r∈{0.25,1,1.25}.
To work with the exact same number of top o.s., we have considered k∗ = k for
the classical estimators and k∗ = k + 1 for the PWM estimators. We have only
considered Burr underlying parents with d.f. F(x) = 1− (1 + x−ρ/γ)1/ρ , x > 0
with (γ,ρ) ∈ {(0.25,−1.0),(1.25,−1.0)}. For every estimator we have simulated,
the mean value, the root mean squared error (RMSE) the optimal level, k∗0 =
argmink RMSE, and the optimal sample fraction, k∗0/n. For simplicity, we shall
denote the shape parameter estimators by H and PWM(r) and the normalized high
quantile estimators by W-H and PWM(r).

To illustrate the finite sample behaviour of the estimators, we present, in Figures
2, 3, 4, and 5, the simulated mean values (E) and root mean square errors (RMSE)
patterns as functions of k∗ for a sample size n = 500. In Table 4 we present the
simulated sample fraction and mean values/RMSE of the above mentioned estima-
tors, at their simulated optimal levels. For Burr models with (γ,ρ) = (1.25,−1),
we present the simulated results of the PWM(r) estimators with r=0.25 and 1. But
for this model, we need to have r < 0.8 to assure the consistency of the PWM(r)
estimators.
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Fig. 2 Simulated mean values (left) and root mean squared errors (right), as functions of k∗, of
the estimators γ̂

H

k∗,n and γ̂
PWM(r)

k∗,n , n = 500, from a Burr(0.25,−1) parent.
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Fig. 3 Simulated mean values (left) and root mean squared errors (right), as functions of k∗, of
the estimators γ̂
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k∗,n , n = 500, from a Burr(1.25,−1) parent.
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Fig. 4 Simulated mean values (left) and root mean squared errors (right), as functions of k∗, of
the normalized estimators Q̄
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k∗,n (p), n = 500, from a Burr(0.25,−1) parent.
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the normalized estimators Q̄
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k∗,n (p), n = 500, from a Burr(1.25,−1) parent.
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Table 1 Burr parent: Simulated optimal sample fraction and mean values/RMSE, at their simulated
optimal levels for the high quantile normalized estimators Q̄

W−H

k∗,n (p) and Q̄
PWM(r)

k∗,n (p) with p = 1/n.

(γ,ρ) = (0.25,−1.0) (γ,ρ) = (1.25,−1.0)
n k∗0/n E RMSE n k∗0/n E RMSE

50 0.0400 0.9569 0.2086 50 0.0400 1.3431 3.1957
100 0.2100 1.0471 0.1984 100 0.2000 1.7620 2.4345
200 0.1750 1.0505 0.1800 200 0.1750 1.6919 1.9448

W-H 500 0.1280 1.0460 0.1499 500 0.1260 1.5083 1.3346
1000 0.1100 1.0479 0.1313 1000 0.1100 1.4479 1.0342
2000 0.0905 1.0443 0.1128 2000 0.0755 1.3237 0.8255
5000 0.0710 1.0407 0.0926 5000 0.0698 1.2974 0.6254

50 0.5600 1.0295 0.1889 50 0.4200 0.3722 0.7233
100 0.4600 1.0413 0.1813 100 0.2200 0.4005 0.6844
200 0.3750 1.0471 0.1674 200 0.0900 0.4421 0.6446

PWM(1) 500 0.2840 1.0487 0.1445 500 0.0300 0.4738 0.6222
1000 0.2310 1.0483 0.1280 1000 0.0170 0.4648 0.6248
2000 0.1845 1.0449 0.1111 2000 0.0100 0.4471 0.6336
5000 0.1374 1.0399 0.0912 5000 0.0050 0.4274 0.6483

50 0.0400 0.9674 0.2098 50 0.1000 1.1564 1.8126
100 0.3500 1.0491 0.1895 100 0.0300 1.0993 1.6142
200 0.2950 1.0527 0.1703 200 0.0150 1.1045 1.5402

PWM(0.25) 500 0.2160 1.0480 0.1430 500 0.0060 1.1096 1.4340
1000 0.1790 1.0478 0.1264 1000 0.0040 1.1548 1.4836
2000 0.1420 1.0428 0.1085 2000 0.2600 1.4928 1.0606
5000 0.1120 1.0400 0.0890 5000 0.1588 1.3177 0.6786

50 0.8600 1.0402 0.1621
100 0.6000 1.0346 0.1681
200 0.4650 1.0398 0.1629

PWM(1.25) 500 0.3440 1.0439 0.1492
1000 0.2860 1.0473 0.1356
2000 0.2335 1.0465 0.1206
5000 0.1722 1.0415 0.0984
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