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Abstract

Some asymptotic expansions non necessarily related to the central limit theorem
are studied. We first observe that the smoothing inequality of Esseen implies the
proximity, in the Kolmogorov distance sense, of the distributions of the random
variables of two random sequences satisfying a sort of general asymptotic relation.
We then present several instances of this observation. A first example, partially
motivated by the the statistical theory of high precision measurements, is given by
a uniform asymptotic approximation to (g(X + µn))n∈N, where g is some smooth
function, X is a random variable and (µn)n∈N is a sequence going to infinity; a
multivariate version is also stated and proved. We finally present a second class of
examples given by a randomization of the interesting parameter in some classical
asymptotic formulas; namely, a generic Laplace’s type integral, randomized by the
sequence (µnX)n∈N, X being a Gamma distributed random variable.

1 Introduction

In this work we explore some asymptotic uniform approximations, for distribution func-
tions, that do not require a central limit theorem as a starting point. The matter under
investigation is well illustrated by the following example. Let X,Y be standard inde-
pendent Gaussian variables, µ and ν parameters and α, β ≥ 3; the (exact) distribution
of the random variable (µ + X)α × (ν + Y )β is not easily described but, for instance,
performing a simulation experiment with varying and growing µ = ν parameter, we get
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Figure 1.1: Simulated (µ+X)α × (ν + Y )β with increasing µ = ν (α = 3, β = 5).

the results in the next figure. A natural intuition is that as µ = ν increase the empirical
distribution of (µ + X)α × (ν + Y )β gets closer and closer to a Gaussian distribution.
In section 3.3 we will show that, as µ and ν increase independently, the distribution of
(µ + X)α × (ν + Y )β is well approximated, in the Kolmogorov distance sense, by the
distribution of µανβ +

(
αµα−1νβX + βνβ−1µαY

)
which is Gaussian.

Asymptotic expansions related to limit theorems, both in the central and non-central
case, are the main subject of asymptotic analysis for random variables and their distri-
butions. Complementarily, asymptotic relations for random variables appear in the
probability and statistics literature in a variety of aspects, mostly in asymptotic ex-
pansions for normalized sums of random variables like Gram-Charlier and Edgeworth
expansions, the so-called delta method, the theory of quadratic differentiability in the
mean of Le Cam (see [Le Cam 86]) and the stochastic differentiability of Hoffmann-
Jørgensen ([Hoffmann-Jørgensen 92]), among others. The use of asymptotic expansions
for the detailed study of a distribution, which otherwise could be impossible to per-
form, is an ancient and established subject in probability theory, at least, since Edge-
worth ([Edgeworth 04]) and the first edition of ([Cramer 99]) in 1946. In the classic
and masterful exposition of [Feller 71], the subject is treated as being mainly related
to the central limit theorem. A more recent and encyclopedic presentation, is given in
[Bhattacharya et al. 76]. Although somehow outdated, [Wallace 58] is a synthetic pre-
sentation of various aspects of asymptotic expansions depending on a parameter com-
monly linked to the sample size. An analytical expository presentation in the context of
astronomy and astrophysics is given in [Blinnikov et al. 98] confirming the contemporary
interest of the theme for practical applications.

We must refer next other aspects of the theme of asymptotic expansions which are,
somehow, related to our approach. Asymptotic expansions for normalized sums of an
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i.i.d. sequence of random variables, assuming that this sum has a stable limit distribu-
tion, are discussed in [Inzhevitov 83], [Kristof 82]. Nonuniform bounds to the remain-
der term of asymptotic expansions for normalized sums of i.i.d. sequences of random
variables with common distribution function F , assuming that F belongs to the do-
main of attraction of a stable distribution function, are presented in [Christoph 91].
In [Barbe et al. 05], the sum of independent heavy-tailed random variables satisfying
an asymptotic smoothing condition is considered. The asymptotic expansion and the
correspondent error bounds for a random variable that may be written as the product
of two independent random variables, one of which may be a multivariate normal distri-
bution among others with a smooth density function, is studied in [Fujikoshi et al. 89],
[Fujikoshi et al 90], [Fujikoshi et al. 89b] and [Fujikoshi et al. 05]. An asymptotic for-

mula for (1/λ)
∫ λ
0 f(Xt)dt is given in [Khaniyev et al. 04], when λ goes to infinity, that

quantity being a path mean functional for bounded measurable functions f and a semi-
Markov random walk X. The important subject of asymptotic expansions for quadratic
forms, for example, of the type

∑
ajkXjXk with the random variables Xi forming an

i.i.d. sequence and {ajk} a symmetric matrix, is studied in [Götze et al. 05] and com-
plemented in a long series of papers there referenced.

The approximate normality discussed ahead as an application of section 3.1 was first
observed in [Ramos 07] and was highlighted in [Areia et al. 08] by means of a simula-
tion study. In [Mexia et al. 10], under the hypothesis of asymptotic linearity detailed in
section 3.2, results similar to those in section 3 are obtained; the convergence is in proba-
bility, instead of convergence in the Kolmogorov distance sense obtained here, and there
is no usable information on the rate of convergence. By observing that uniform integra-
bility of the relevant family of functions follows from the asymptotic linearity hypothesis,
the extension of these results to moment convergence is proved in [Fonseca et al. 10].
In [Esquivel et al. 09] there is a partial announcement of some of the results here pre-
sented and also a simulation study which clarifies the statistical quality of the asymptotic
approximation given in one of the examples of section 4.

2 Asymptotics for random variables

Following an idea of [Pestana 07] apropos the study in [Ramos 07] and [Ramos et al. 07],
we start by considering a generic question in the asymptotic theory for random variables.
Given that Xn = Yn +Zn what are the appropriate conditions to impose on the relation
Zn � Yn in order to get

Xn
d
≈ Yn as n� 1 .

That is, under what conditions may we approximate the distribution of Xn, which may
be hard to compute, by the distribution of Yn (in a sense to be determined, preferably,
in the Kolmogorov distance sense), for large n? We observe that writing for n� 1 that
Xn = Yn + Zn with Zn � Yn is a sort of asymptotic equality between the sequences
of random variables (Xn)n≥1 and (Yn)n≥1. We refer to [De Bruijn 81] or [Zorich 04 II,
p. 595–641] for an exposition of traditional asymptotic analysis and section 4 for some
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examples of asymptotic relations for random variables. It is to be noticed that, to the best
of our knowledge, a comprehensive theory of asymptotic relations for random variables is
not yet available although some authors tackled this topic in particular points. See, for
instance, [Hoffmann-Jørgensen 94, p. 443] with the definition of a stochastic remainder
term.

Remark 1. The answer for the question above is not, in general, an usual convergence
result issue (e.g. a central limit theorem) due to the fact that, possibly, the limiting
values X∞, Y∞ and Z∞ are not defined.

Always with Xn = Yn+Zn, one possible sense to be given to the expression Zn � Yn
is as follows.

∀ε > 0 lim
n→+∞

P[|Zn| > ε |Yn|] = 0 . (2.1)

For context’s sake we quote next a general result giving a first answer to the question
above, under the conditions given by formula (2.1), for non negative random variables.
It is a nice easy result but with limited practical usefulness as, in general, we don’t
control the rate convergence of the error term δn(ε).

Theorem 2.1 ([Ramos 07] p. 12). Suppose that Xn, Yn, Zn ≥ 0 are as above, that
is, satisfying (2.1). For all 0 < ε < 1 There exists a sequence (δn(ε))n∈N such that
limn→+∞ δn(ε) = 0 and:

FYn

(
x

1 + ε

)
− δn(ε) ≤ FXn(x) ≤ FYn

(
x

1− ε

)
+ δn(ε)

Proof. See [Ramos et al. 07] or observe that with δn(ε) := P[|Xn − Yn| > ε |Yn|] :

FYn

(
x

1 + ε

)
≤ P

[
Yn ≤

x

1 + ε
,Xn ≤ (1 + ε)Yn

]
+ δn(ε) ≤ FXn + δn(ε)

and that

FXn ≤ P
[
Xn ≤ x, Yn ≤

1

1− ε
Xn

]
+ δn(ε) ≤ FYn

(
x

1− ε

)
+ δn(ε) .

Remark 2. With An(ε) :=
⋂+∞
m=n {|Xm − Ym| < ε |Ym|} the result above may also be

proved with δn(ε) := 1 − P[An(ε)]. In any case, the practical usefulness of the result is
limited to the cases where a detailed estimate of the asymptotic behavior of Xn − Yn is
available.

The next results are obvious consequences of theorem 2.1 that allow a complete
answer to the generic question above, whenever the sequence (Yn)n∈N converges in dis-
tribution to some random variable.
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Theorem 2.2. If Xn, Yn, Zn ≥ 0 are as above, that is, satisfying (2.1). then for all
0 < ε < 1:

lim
n→+∞

F|Yn|

(
x

1 + ε

)
≤ lim

n→+∞
F|Xn|(x) ≤ lim

n→+∞
F|Xn|(x) ≤ lim

n→+∞
F|Yn|

(
x

1− ε

)
.

Proof. Just apply theorem 2.1 to the sequences (|Xn|)n∈N, and (|Yn|)n∈N.

The next result is a well known Slutsky’s type result which follows immediately from
theorem 2.2 .

Corolary 1. Let (Xn)n∈N, (Yn)n∈N, (Zn)n∈N be sequences of random variables such
that Xn = Yn + Zn and for all ε > 0 we have that limn→+∞ P[|Zn| > ε |Yn|] = 0. If

Yn
d−→ Y then Xn

d−→ Y .

From here on we do not suppose that condition (2.1) is satisfied. The next important
technical lemma will give us a way of proving the asymptotic approximation of the
relevant distributions, in the Kolmogorov distance sense, as soon as we can control the
asymptotic behavior of the product of a central moment of the remainder term by the
maximum of the density of the first term of the asymptotic formula.

Lemma 1 (Esseen’s type estimate). Let (Xn)n∈N, (Yn)n∈N and (Zn)n∈N be sequences
of random variables such that for each n ≥ 1 we have that Xn = Yn + Zn, Yn admits a
density F ′Yn and that for some δ ∈]0, 1] we have E[|Zn|δ] < +∞. Then:

sup
x
|FXn(x)− FYn(x)| ≤ Cδ ·

(
E

[
|Zn|δ

] 1
δ · sup

x
F ′Yn(x)

) δ
1+δ

. (2.2)

with Cδ = (1/π)2
2−δ
1+δ 24

δ
1+δ (1 + 1/δ).

Proof. With Xn = Yn + Zn, we apply the estimate
∣∣eix − 1

∣∣ = 2 |sin(x/2)| ≤ 21−δ |x|δ
valid for all 0 ≤ δ ≤ 1 to write:

|φXn(t)− φYn(t)| =
∣∣E [eitYn (eitZn − 1

)]∣∣ ≤ 21−δ |t|δ E
[
|Zn|δ

]
,

so that for 0 ≤ δ ≤ 1:∫ T

0

∣∣∣∣φXn(t)− φYn(t)

t

∣∣∣∣ dt ≤ 21−δT δ

δ
E[|Zn|δ] .

Now, by Esseen’s smoothing inequality (see [Esseen 45] or as quoted in [Feller 71, p.
538] or [Shiryaev 96, p. 296]) for all T > 0:

sup
x
|FXn(x)− FYn(x)| ≤ 2

π

∫ T

0

∣∣∣∣φXn(t)− φYn(t)

t

∣∣∣∣ dt+
24

πT
sup
x

∣∣F ′Yn(x)
∣∣ ,
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giving an estimation which depends mainly on E
[
|Zn|δ

]
and on supx

∣∣F ′Yn(x)
∣∣, that is

sup
x
|FXn(x)− FYn(x)| ≤ 22−δT δ

δπ
E[|Zn|δ] +

24

πT
sup
x

∣∣F ′Yn(x)
∣∣ . (2.3)

Let us define mn = E

[
|Zn|δ

]
and Mn = supx F

′
Yn

(x). Then the right hand side of

(2.3) takes the form AnT
δ + BnT

−1 with An = 22−δ

δπ mn and Bn = (24/π)Mn. This

expression attains its minimum for T =
(
Bn
δAn

) 1
δ+1

. Choosing this minimizer we will

have formula (2.2) as wanted.

As a consequence, we have the following immediate corollary, a first general result
which we next show to have several particular relevant applications to specific situations.

Theorem 2.3. Let (Xn)n∈N, (Yn)n∈N and (Zn)n∈N be sequences of random variables
such that for each n ≥ 1 we have that Xn = Yn + Zn, Yn admits a density F ′Yn and that

for some δ ∈]0, 1] we have E[|Zn|δ] < +∞. Then, if

lim
n→+∞

E

[
|Zn|δ

] 1
δ · sup

x

∣∣F ′Yn(x)
∣∣ = 0 ,

we have that:
lim

n→+∞
sup
x
|FXn(x)− FYn(x)| = 0 , (2.4)

that is, we have the uniform approximation, for large values of n, of the distribution
function of Xn by the distribution function of Yn.

3 Linear transform approximation results

In this section we study some approximation results, instances of theorem 2.3, con-
sidering cases where the first two terms in the asymptotic expansion define an affine
transformation of the initial random variable. The driving tool, both in the univariate
and multivariate cases, is to consider asymptotic Taylor type expansions. A first idea
to deal with the problem studied in this question would be to apply some form of the
delta method (see [Oehlert 92]). Nevertheless, as already pointed out in remark 1 the
delta method relies on the central limit theorem which, in general, is not applicable to
the situation under scrutiny.

Our interest in a statistical perspective of high precision measurements, in section 3.3
drove the discussion of the examples in section 3.1.
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3.1 The univariate case

We recall briefly the notion of regularly varying function which will be used in the
following (see [Galambos et al. 73] or [Bingham et al. 78, p. 12]). A positive measurable
function R is regularly varying (at +∞) if and only if for some B > 0 and some finite ρ
it admits the representation

∀x ≥ B R(x) = xρ exp

(
η(x) +

∫ x

B

ε(t)

t
dt

)
,

with η and ε bounded measurable functions such that limx→+∞ η(x) = c ∈ R and
limt→+∞ ε(t) = 0. It is natural to say that R is regularly varying at −∞ if R(−x) is is
regularly varying at +∞. This will be the sense of the hypothesis made in the following
theorem.

Theorem 3.1. Let g : R −→ R be a C2(R) function and X a real valued random variable
such that:

1. With g′(x) 6= 0 for x large enough, we have that limn→+∞ g
′′(x)/g′(x) = 0 ;

2. |g′′| is a regularly varying function at +∞ and at −∞ admitting an integral repre-
sentation given by:

∀ |x| ≥ B
∣∣g′′(x)

∣∣ = |x|ρ exp

(
η(|x|) +

∫ |x|
B

ε(t)

t
dt

)
(3.1)

with B > 0, ρ > 1 some constants, η and ε measurable and bounded functions such
that limt→+∞ ε(t) = 0;

3. X has a density bounded by a constant D1 > 0;

4. X has an absolute moment of order 2ρ, that is, E[|X|2ρ] < +∞.

Then, for any non-random real sequence (µn)n∈N verifying limn→+∞ µn = +∞ we have
that for some n ∈ N large enough on, and for some constant D2 bounding:

E
[∣∣∣∣∫ 1

0
(1− t)g

′′(µn + tX)

|g′′(µn)|
dt

∣∣∣∣] ,
that

sup
x∈R

∣∣Fg(X+µn)(x)− Fg(µn)+g′(µn)X(x)
∣∣ ≤ C ρ

ρ+1
(D1D2)

ρ
2ρ+1 E[|X|2ρ]

1
2ρ+1

∣∣∣∣g′′(µn)

g′(µn)

∣∣∣∣ ρ
2ρ+1

,

thus showing that for large n, the law of g(X + µn) may be approximated, in the Kol-
mogorov distance sense, by the law of g(µn) + g′(µn)X with a rate of convergence given

by |g′′(µn)/g′(µn)|ρ/2ρ+1.
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Proof. The theorem being a consequence of lemma 1, we expose the proof in three steps.

• First step: The density of g(µn) + g′(µn)X is bounded by D1/ |g′(µn)|.

We have that

Fg(µn)+g′(µn)X(x) =


FX

(
x− g(µn)

g′(µn)

)
if g′(µn) > 0

1− FX
(
x− g(µn)

g′(µn)

)
if g′(µn) < 0

thus ensuring that

sup
x∈R

(
F ′g(µn)+g′(µn)X(x)

)
=

1

|g′(µn)|
· sup
x∈R

F ′X

(
x− g(µn)

g′(µn)

)
≤ D1

|g′(µn)|

with D1 independent of n (note that, necessarily, limN→+∞ |g′(µn)| = +∞).

• Second step: Defining Zn as the integral remainder term of the Taylor expansion
of g(X + µn) we show that with δ = ρ/(ρ+ 1) < 1 we have:

E
[
|Zn|δ

] 1
δ ≤ E

[
|X|

2δ
1−δ
] 1−δ

δ E
[∣∣∣∣∫ 1

0
(1− t)g′′(µn + tX)dt

∣∣∣∣] . (3.2)

The Taylor expansion of g with integral remainder allows us to write:

g(µn +X) = g(µn) + g′(µn)X +X2

∫ 1

0
(1− t)g′′(µn + tX) dt.

For the record, with the notations of previous sections we have Xn := g(µn + X),
Yn := g(µn) + g′(µn)X and

Zn := X2

∫ 1

0
(1− t)g′′(µn + tX) dt

which is a random variable with a not easily described distribution. Considering δ =
ρ/(ρ+ 1) observing that 2δ/(1− δ) = 2ρ and, with 1

δ−1 + 1
(1−δ)−1 = 1, applying Hölder

inequality in order to estimate E[|Zn|δ] we get

E[|Zn|δ] = E

[
X2δ ·

(∫ 1

0
(1− t)g′′(µn + tX) dt

)δ]
≤

≤ E
[
|X|

2δ
1−δ
]1−δ

·E
[∣∣∣∣∫ 1

0
(1− t)g′′(µn + tX)dt

∣∣∣∣]δ .
thus obtaining formula (3.2). Now aiming at applying lemma (1) we have as a conse-
quence of formula (3.2) that

E
[
|Zn|δ

] 1
δ · sup

x∈R

∣∣F ′Yn(x)
∣∣ ≤ E

[
|X|2ρ

] 1
ρ
D1

∣∣∣∣g′′(µn)

g′(µn)

∣∣∣∣E [∣∣∣∣∫ 1

0
(1− t)g

′′(µn + tX)

|g′′(µn)|
dt

∣∣∣∣] .
8



• Third step: The announced result will be proved if we show that

E
[∣∣∣∣∫ 1

0
(1− t)g

′′(µn + tX)

|g′′(µn)|
dt

∣∣∣∣]
is bounded by a constant D2. As limn→+∞ |g′′(µn + tX)/g′′(µn)| = 1, by the
continuity of g′′, this is a consequence of Lebesgue dominated convergence theorem
if we show that the integrand is bounded uniformly in n by an integrable function
with respect to P⊗ λ.

In the representation given in formula (3.1), let us consider bounds Mη > 0 and Mε > 0
for the functions η and ε, respectively. Also, as limt→+∞ ε(t) = 0, let xρ > 0 be such
that for |x| ≥ xρ we have |ε(x)| ≤ ρ− 1. Let us first observe that:

µn ≥ max(B, xρ)⇒
∣∣g′′(µn)

∣∣ ≥ e−MηBρ . (3.3)

This results from having for |x| ≥ max(B, xρ):

η(|x|)+

∫ |x|
B

ε(t) + ρ

t
dt ≥ −Mη+log(

|x|
B

)⇒ η(|x|)+

∫ |x|
B

ε(t)

t
dt ≥ −Mη+log(

|x|
B

)(1−ρ) .

As a second observation we also have that for |x| ≥ B:

exp

(
η(|x|) +

∫ |x|
B

ε(t)

t
dt

)
≤ eMη

(
|x|
B

)Mε

, (3.4)

this resulting from having:

η(|x|) +

∫ |x|
B

ε(t)

t
dt ≤

∣∣∣∣∣η(|x|) +

∫ |x|
B

ε(t)

t
dt

∣∣∣∣∣ ≤ |η(|x|)|+
∫ |x|
B

|ε(t)|
t

dt ≤Mη + log(
|x|
B

)Mε .

Now, for |µn + tX| ≤ max(B, xρ) we have, by the continuity of g′′,∣∣∣∣g′′(µn + tX)

g′′(µn)

∣∣∣∣ ≤ sup
|x|≤max(B,xρ)

∣∣g′′(x)
∣∣ · 1

e−MηBρ
< +∞ .

Also for the complementary case, that is, for |µn + tX| > max(B, xρ) and µn ≥ max(B, xρ):

∣∣∣∣g′′(µn + tX)

g′′(µn)

∣∣∣∣ =
|µn + tX|ρ exp

(
η(|µn + tX|) +

∫ |µn+tX|
B

ε(t)
t dt

)
|µn|ρ exp

(
η(µn) +

∫ µn
B

ε(t)
t dt

)
≤
∣∣∣∣1 +

tX

µn

∣∣∣∣ρ e2Mη exp

(∫ |µn+tX|
B

ε(t)

t
dt−

∫ µn

B

ε(t)

t
dt

) (3.5)

9



We will now split in two sub-cases the estimation of the exponential right-hand term of
formula (3.5) of this second case. Let us suppose first that |µn + tX| ≥ µn ≥ max(B, xρ).
Then as ∫ |µn+tX|

B

ε(t)

t
dt−

∫ µn

B

ε(t)

t
dt =

∫ |µn+tX|
µn

ε(t)

t
dt ≤

∣∣∣∣∣
∫ |µn+tX|
µn

ε(t)

t
dt

∣∣∣∣∣ ≤
≤
∫ |µn+tX|
µn

|ε(t)|
t

dt ≤ log

(∣∣∣∣1 +
tX

µn

∣∣∣∣ρ)
we have that

exp

(∫ |µn+tX|
B

ε(t)

t
dt−

∫ µn

B

ε(t)

t
dt

)
≤
∣∣∣∣1 +

tX

µn

∣∣∣∣ρ . (3.6)

In the complementary sub-case, that is, whenever max(B, xρ) < |µn + tX| < µn, as:∫ |µn+tX|
B

ε(t)

t
dt−

∫ µn

B

ε(t)

t
dt = −

∫ µn

|µn+tX|

ε(t)

t
dt ≤

∣∣∣∣∣
∫ µn

|µn+tX|

−ε(t)
t

dt

∣∣∣∣∣ ≤
≤
∫ µn

|µn+tX|

|ε(t)|
t

dt ≤ log

(∣∣∣∣1 +
tX

µn

∣∣∣∣−ρ
)

also, we have that:

exp

(∫ |µn+tX|
B

ε(t)

t
dt−

∫ µn

B

ε(t)

t
dt

)
≤
∣∣∣∣1 +

tX

µn

∣∣∣∣−ρ . (3.7)

Finally, gathering the results in formulas (3.6) and (3.7) we have that:∣∣∣∣g′′(µn + tX)

g′′(µn)

∣∣∣∣ ≤ ∣∣∣∣1 +
tX

µn

∣∣∣∣ρ e2Mη ·max

(∣∣∣∣1 +
tX

µn

∣∣∣∣ρ , ∣∣∣∣1 +
tX

µn

∣∣∣∣−ρ
)

=

= e2Mη max

(∣∣∣∣1 +
tX

µn

∣∣∣∣2ρ , 1
)
≤ e2Mη22ρ

(
1 +

|X|2ρ

max(B, xρ)2ρ

)
,

(3.8)

which allow us to conclude as E[|X|2ρ] < +∞.

Remark. A characterization of the largest class of functions g for which an approximation
similar to the one obtained in theorem 3.1 is an interesting problem. Some restriction
on the growth of g is necessary; for instance, for r > 0, the function g(x) = exp(xr) will
satisfy the hypothesis 1 of the theorem if and only if r < 1. In this case, using the fact
that for 0 < s < 1:

∀x ≥ 0 (1 + x)s − 1 ≤ sx sup
y∈[0,x]

1

(1 + y)1−s
= sx ,

10



it is easy to see that a theorem similar to theorem 3.1 holds for a non negative random
variable X under the condition that for some c > 0 we have E[exp(cX)] < +∞, that is,
for X having a exponential decaying tail. Also, if a function g with g′ > 0 and g′′ ≥ 0
satisfies the hypothesis 1 of the theorem then, as a consequence of Gronwall lemma, it
will be bounded at infinity by an exponential. In fact, if for any given ε > 0 and tε such
that for t ≥ tε we have that g′′(t) ≤ εg′(t) and so for t ≥ tε:

g′′(t) ≤ εg′(tε) + ε(g′(t)− g′(tε)) = εg′(tε) + ε

∫ tε

tε

g′′(s)ds ,

by Gronwall lemma it follows that for t ≥ tε, we will have g′′(t) ≤ εg′(tε)eεt.

3.2 The multidimensional case

We will use next the following notations. For an integer r, x = (x1, . . . xr) or x0 =
(x0,1, . . . x0,r) will denote generic points of Rr. By X = (X1, . . . Xr) we will denote a
vector of random variables, FX(x) being its distribution function, fX(x) the correspond-
ing density and fXi(xi) for i ∈ {1, . . . r} a marginal density. Let µn = (µn,1, . . . µn,r)
be a vector such that for every i ∈ {1, . . . r}, limn→+∞ µn,i = +∞. Let g : Rr 7→ R

be a C2(Rr) map. Recall that Dg(x0) the differential of g at a generic point x0 is a
linear form over Rp which whenever applied to a point x−x0 ∈ Rr admits the following
representation:

Dg(x0)(x− x0) =
r∑
i=1

∂g

∂xi
(x0)(xi − x0,i) .

Similarly, the second differential D2g(x0) of g at a generic point x0 is a bilinear form
over Rp×Rp which whenever applied to a point (x−x0)2 ∈ Rr×Rr admits the following
representation:

D2g(x0)(x− x0)(2) =
r∑
i=1

r∑
j=1

∂2g

∂xi∂xj
(x0)(xi − x0,i)(xj − x0,j)

We will also use the notations Dg(x) for the gradient of g taken at a point x, that is,
for the vector ( ∂g∂x1 (x), . . . , ∂g∂xr (x)), and D2g(x) for the Hessian matrix of g a point x,

that is, for the matrix (∂2g/∂xi∂xj(x))i,j,∈{1,...,r} and also ‖Dg(x)‖ and
∣∣∣∣∣∣D2g(x)

∣∣∣∣∣∣,
respectively, for the corresponding norms.

In the following we will need some results on random vectors in Euclidean spaces
and their densities, via Hausdorff measures. A very complete reference we will follow
is [Hoffmann-Jørgensen 94, chapter 8]. The classical reference for Hausdorff measure and
some of its applications is [Federer 69]. Friendly and very readable texts on the subject
are [Evans et al. 92] and [Mattila 95]. For reference purposes we state very briefly some
definitions and important results used next. For A ⊆ Rr let |A| denote the diameter of
A, that is, |A| = sup{|x− y| : x, y ∈ A}. For δ > 0 and s ∈]0, r] let

λδr,s(A) := inf
A⊆
⋃+∞
i=1 Ai , |Ai|≤δ

+∞∑
i=1

π
s
2

2sΓ( s2 + 1)
× |Ai|s ,

11



and λr,s(A) := limδ→0 λ
δ
r,s(A) = supδ>0 λ

δ
r,s(A). Then λr,s is the s-dimensional Hausdorff

outer measure inRr. A first important result is that the λr,s measurable sets, in the sense
of Carathéodory, form a σ-algebra containing the Borel sets of Rr. Other remarkable
properties of Hausdorff measuresare the following: λr,s is a regular Borel measure and
for every affine isometry M : Rr 7→ Rr and every A ⊆ Rr we have λr,s(M(A)) = λr,s(A).
Furthermore, as a consequence of the isodiametric inequality we have that λr,r coincides
with the Lebesgue measure over Rr. Finally we have the following consequence of the
change of variables theorem (see [Hoffmann-Jørgensen 94, p. 11, formula 8.8.6]). For
M : Rr−1 7→ R

r smooth Borel function, h : Rr−1 7→ R Borel function and B ⊂ Rr−1
such that M is injective on B and with JM (y) being the Jacobiant of M evaluated at y:∫

M(B)
h(x) dλr,r−1(x) =

∫
B
h(M(y)) JM (y) dy (3.9)

The following result is the multivariate analog of theorem 3.1.

Theorem 3.2. Let g : Rr 7→ R be a C2(Rr) function and X = (X1, . . . , Xr) a Rr

valued random variable such that:

1. With Dg(x) 6= 0 for x large enough, we have limn→+∞
∣∣∣∣∣∣D2g(x)

∣∣∣∣∣∣ / ‖Dg(x)‖ = 0;

2.
∣∣∣∣∣∣D2g(x)

∣∣∣∣∣∣ is a multivariate almost radial regularly varying function admitting
an integral representation given by:

∀x, ‖x‖ ≥ B
∣∣∣∣∣∣D2g(x)

∣∣∣∣∣∣ = ‖x‖ρ exp

(
η(x) +

∫ ‖x‖
B

ε(t)

t
dt

)
(3.10)

with B > 0 and ρ > 1 some constants, η : Rr 7→ R and ε : R 7→ R measurable and
bounded functions such that limt→+∞ ε(t) = 0;

3. One of the marginals of X say, from now on and with no generality loss, Xr has
a density fXr bounded by a constant D1 > 0;

4. With fXr bounded by a constant, the density of X satisfies for some constant D1:

∀x = (x1, . . . xr) ∈ Rr fX(x) ≤ D1f(X1,...,Xr−1)(x1, . . . xr−1) ;

5. With fXr bounded by a constant,

∀x, ‖x‖ ≥ B ∂g

∂xr
(x) 6= 0 ;

6. X has an absolute moment of order 2ρ, that is, E[‖X‖2ρ] < +∞;

12



Then, for any vector µn = (µn,1, . . . µn,r) such that for every i ∈ {1, . . . r} we have
limn→+∞ µn,i = +∞ we have that for some n ∈ N large enough on, and for some
constant D2 bounding:

E

[∫ 1

0
(1− t)

∣∣∣∣∣∣D2g(µn + tX)
∣∣∣∣∣∣

|||D2g(µn)|||
dt

]
,

that

sup
x∈Rr

∣∣Fg(X+µn)
(x)− Fg(µn)+Dg(µn)·X(x)

∣∣ ≤
≤ C ρ

ρ+1
(D1D2)

ρ
2ρ+1 E[‖X‖2ρ]

1
2ρ+1

(∣∣∣∣∣∣D2g(µn)
∣∣∣∣∣∣

‖Dg(µn)‖

) ρ
2ρ+1

,

thus showing that for large n, the law of g(X + µn) may be approximated, in the Kol-
mogorov distance sense, by the law of g(µn) + Dg(µn) · X with a rate of convergence

given by the sequence
(∣∣∣∣∣∣D2g(µn)

∣∣∣∣∣∣ / ‖Dg(µn)‖
)ρ/(2ρ+1)

.

Proof. The proof follows the same steps as the proof of the theorem for the univariate
version. The only step requiring some different ideas being the first one.

• First step: The density of g(µn) +Dg(µn) ·X is bounded by D1/ ‖Dg(µn)‖.
We will need some notations for what follows. Let Fn : Rr 7→ R be the linear form
defined by:

∀x = (x1, . . . , xr) Fn(x) = Dg(µn) · x =

r∑
n=1

∂g

∂xi
(µn) · xi

and for each y ∈ R let Tn(x) = g(µn) + Fn(x) and so:

T−1n (y) :=

{
x ∈ Rr : g(µn) +

r∑
n=1

∂g

∂xi
(µn) · xi = y

}
= F−1n (y − g(µn)) .

Considering x
y−g(µn)
0 ∈ F−1n (y − g(µn)) and Kn := F−1n ({0}) we have that T−1n (y) =

x
y−g(µn)
0 +Kn. With the hypothesis assuring that (∂g/∂xr)(µn) 6= 0, we have that:

x = (x1, . . . , xr) ∈ Kn ⇒ x =

(
x1, . . . , xr−1,−

∑r−1
n=1

∂g
∂xi

(µn) · xi
∂g
∂xr

(µn)

)
, (3.11)

and, as a consequence, if we define the matrix M by

M :=



1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . 0
. . . . . . . 1 0

−
∂g
∂x1

(µn)

∂g
∂xr

(µn)
−

∂g
∂x2

(µn)

∂g
∂xr

(µn)
−

∂g
∂x3

(µn)

∂g
∂xr

(µn)
−

∂g
∂x4

(µn)

∂g
∂xr

(µn)
. . . −

∂g
∂xr−1

(µn)

∂g
∂xr

(µn)
1


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we will have that M : Rr 7→ Kn has determinant equal to 1 and so defines a invertible
linear transformation. It now immediate to verify that

x = (x1, . . . , xr) ∈M−1(Kn)⇔ xr = 0 . (3.12)

We now proceed to show the conclusion stated in the first step. For that purpose, we
observe that as a consequence of the co-area formula (see the second transformation
formula in [Hoffmann-Jørgensen 94, p. 11] or proposition 3 [Evans et al. 92, p. 119])
as Tn is a smooth regular Borel function then Tn(X) = g(µn) + Dg(µn) ·X admits a
density with respect to λ1,1 given, for every y ∈ Tn(Rr) by:

fTn(X)(y) =

∫
T−1
n (y)

fX(x)

JTn(x)
dλr,r−1(x) ,

where JTn(x) is the absolute Jacobiant of Tn, and such that fTn(X)(y) = 0 for y /∈ Tn(Rr).
Observing that JTn(x) = ‖DTn(x)‖ = ‖Dg(µn)‖ is constant, we only have to estimate
the integral of the density of X with respect to λr,r−1 For that, we first observe that by
a trivial change of variables and by the fact that Hausdorff measure λr,r−1 is invariant
by translations that:

I : =

∫
T−1
n (y)

fX(x) dλr,r−1(x) =

∫
x
y−g(µn)
0 +Kn

fX(x) dλr,r−1(x) =

=

∫
Kn

fX(z + x
y−g(µn)
0 ) dλr,r−1(z) .

Now consider h = h
x
y−g(µn)
0

such that h : Rr 7→ R is defined for z ∈ Rr by h(z) =

fX(z + x
y−g(µn)
0 ). As by (3.12) we have M−1(Kn) = {xr = 0} in Rr, and also as the

transformation M is linear and so its Jacobiant is JM = det(M t ·M) = det(M ·M t) = 1,
applying formula (3.9) we have that:

I =

∫
Kn

fX(z + x
y−g(µn)
0 ) dλr,r−1(z) =

∫
M(M−1(Kn))

h(z) dλr,r−1(z) =

=

∫
M−1(Kn)

h(M(x))JM dx1 . . . dxr−1 =

=

∫
{xr=0}

h

(
x1, . . . , xr−1,−

∑r−1
i=1

∂g
∂xi

(µn) · xi
∂g
∂xr

(µn)

)
dx1 . . . dxr−1 =

=

∫
{xr=0}

fX

(
x1 + [x

y−g(µn)
0 ]1, . . . ,−

∑r−1
i=1

∂g
∂xi

(µn) · xi
∂g
∂xr

(µn)
+ [x

y−g(µn)
0 ]r

)
dx1 . . . dxr−1 =

=

∫
{xr=0}

fX

(
x1, . . . , xr−1,−

∑r−1
i=1

∂g
∂xi

(µn) · xi
∂g
∂xr

(µn)
+ [x

y−g(µn)
0 ]r

)
dx1 . . . dxr−1 ≤

≤ D1

∫
Rr−1

fX (x1, . . . , xr−1) dx1 . . . dxr−1 ≤ D1 .
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where in the two last lines we have made a trivial change of variable by translation and
next used the hypothesis on the density of X.

• Second step: Defining Zn as the integral remainder term of the Taylor expansion
of g(X + µn)

g(µn +X) = g(µn) +Dg(µn) ·X +

∫ 1

0
(1− t)D2g(µn + tX) ·X2 dt ,

we show that with δ = ρ/(ρ+ 1) < 1 we have:

E
[
|Zn|δ

] 1
δ ≤ E

[
‖X‖

2δ
1−δ
] 1−δ

δ E
[∫ 1

0
(1− t)

∣∣∣∣∣∣D2g(µn + tX)
∣∣∣∣∣∣ dt] . (3.13)

This proof follow exactly the same proof as presented for the univariate case.

• Third step: The announced result will be proved if we show that

E

[∫ 1

0
(1− t)

∣∣∣∣∣∣D2g(µn + tX)
∣∣∣∣∣∣

|||D2g(µn)|||
dt

]
,

is bounded by a constant D2. As limn→+∞
∣∣∣∣∣∣D2g(µn + tX)

∣∣∣∣∣∣ / ∣∣∣∣∣∣D2g(µn)
∣∣∣∣∣∣ = 1,

by the continuity of D2g, this is a consequence of Lebesgue dominated convergence
theorem if we show that the integrand is bounded uniformly in n by an integrable
function with respect to P⊗ λ.

In the representation given in formula (3.1), let us consider bounds Mη > 0 and Mε > 0
for the functions η and ε, respectively. Also, as limt→+∞ ε(t) = 0, let xρ > 0 be such
that for ‖x‖ ≥ xρ we have |ε(x)| ≤ ρ− 1. Let us first observe that:

µn ≥ max(B, xρ)⇒
∥∥D2g(µn)

∥∥ ≥ e−MηBρ . (3.14)

This results from having for ‖x‖ ≥ max(B, xρ):

η(x) +

∫ ‖x‖
B

ε(t) + ρ

t
dt ≥ −Mη + log(

‖x‖
B

)⇒ η(x) +

∫ ‖x‖
B

ε(t)

t
dt ≥

≥ −Mη + log(
‖x‖
B

)(1−ρ) .

As a second observation we also have that for ‖x‖ ≥ B:

exp

(
η(x) +

∫ ‖x‖
B

ε(t)

t
dt

)
≤ eMη

(
‖x‖
B

)Mε

, (3.15)

this resulting from having:

η(x) +

∫ ‖x‖
B

ε(t)

t
dt ≤

∣∣∣∣∣η(x) +

∫ ‖x‖
B

ε(t)

t
dt

∣∣∣∣∣ ≤ |η(x)|+
∫ ‖x‖
B

|ε(t)|
t

dt ≤

≤Mη + log(
‖x‖
B

)Mε .
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Now, for ‖µn + tX‖ ≤ max(B, xρ) we have by the continuity of D2g:∥∥∥∥D2g(µn + tX)

D2g(µn)

∥∥∥∥ ≤ sup
‖x‖≤max(B,xρ)

∥∥D2g(x)
∥∥ · 1

e−MηBρ
< +∞ .

Also for the complementary case, that is, for ‖µn + tX‖ > max(B, xρ) and µn ≥
max(B, xρ):∥∥D2g(µn + tX)

∥∥
‖D2g(µn)‖

=
‖µn + tX‖ρ exp

(
η(‖µn + tX‖) +

∫ ‖µn+tX‖
B

ε(t)
t dt

)
‖µn‖

ρ exp
(
η(µn) +

∫ ‖µn‖
B

ε(t)
t dt

)
≤
(
‖µn + tX‖
‖µn‖

)ρ
e2Mη exp

(∫ ‖µn+tX‖
B

ε(t)

t
dt−

∫ ‖µn‖
B

ε(t)

t
dt

)
(3.16)

We will now split in two sub-cases the estimation of the exponential right-hand term
of formula (3.15) of this second case. Let us suppose first that ‖µn + tX‖ ≥ µn ≥
max(B, xρ). Then as∫ ‖µn+tX‖

B

ε(t)

t
dt−

∫ ‖µn‖
B

ε(t)

t
dt =

∫ ‖µn+tX‖
‖µn‖

ε(t)

t
dt ≤

∣∣∣∣∣
∫ ‖µn+tX‖
‖µn‖

ε(t)

t
dt

∣∣∣∣∣ ≤
≤
∫ ‖µn+tX‖
‖µn‖

|ε(t)|
t

dt ≤ log

(
‖µn + tX‖
‖µn‖

)ρ
we have that

exp

(∫ ‖µn+tX‖
B

ε(t)

t
dt−

∫ ‖µn‖
B

ε(t)

t
dt

)
≤
(
‖µn + tX‖
‖µn‖

)ρ
. (3.17)

In the complementary sub-case, that is, whenever max(B, xρ) < ‖µn + tX‖ < µn, as:∫ ‖µn+tX‖
B

ε(t)

t
dt−

∫ ‖µn‖
B

ε(t)

t
dt = −

∫ ‖µn‖
‖µn+tX‖

ε(t)

t
dt ≤

∣∣∣∣∣
∫ ‖µn‖
‖µn+tX‖

−ε(t)
t

dt

∣∣∣∣∣ ≤
≤
∫ ‖µn‖
‖µn+tX‖

|ε(t)|
t

dt ≤ log

(
‖µn + tX‖
‖µn‖

)ρ
also, we have that:

exp

(∫ ‖µn+tX‖
B

ε(t)

t
dt−

∫ µn

B

ε(t)

t
dt

)
≤
(
‖µn + tX‖
‖µn‖

)−ρ
. (3.18)
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Finally, gathering the results in formulas (3.17) and (3.18) we have that:∥∥∥∥D2g(µn + tX)

D2g(µn)

∥∥∥∥ ≤ (‖µn + tX‖
‖µn‖

)ρ
e2Mη ·max

((
‖µn + tX‖
‖µn‖

)ρ
,

(
‖µn + tX‖
‖µn‖

)−ρ)
=

= e2Mη max

((
‖µn + tX‖
‖µn‖

)2ρ

, 1

)
≤ e2Mη22ρ

(
1 +

‖X‖2ρ

max(B, xρ)2ρ

)
,

(3.19)

which allow us to conclude as E[‖X‖2ρ] < +∞.

Remark. In [Mexia et al. 10] asymptotic linearity for a a C2(Rr) function g : Rr 7→ R

is defined by requiring that

∀d > 0 lim
u→+∞

sup
‖x‖≥u

(
1

‖Dg(x)‖
sup

‖x−y‖≤d

∣∣∣∣∣∣D2g(y)
∣∣∣∣∣∣) = 0 .

It is easy to see that if g is assimptotically linear then limn→+∞
∣∣∣∣∣∣D2g(x)

∣∣∣∣∣∣ / ‖Dg(x)‖ =
0. On the other hand, for all fixed d ≥ 0 and x ≥ 0 with x−d > 0 there exists λx ∈ [0, 1]
such that, by the continuity of g′′:

1

|g′(x)|
sup

y∈[x−d,x+d]

∣∣g′′(y)
∣∣ ≤ |g′′(λx(x− d) + (1− λx)(x+ d))|

|g′(x)|
=
|g′′(x+ (1− 2λx)d)|

|g′(x)|
=

=
|g′′(x+ (1− 2λx)d)|

|g′′(x)|
|g′′(x)|
|g′(x)|

,

and so, as 1 − 2λx ∈ [−1, 1], if limx→+∞ |g′′(x)| / |g′(x)| = 0, g will be assimptotically
linear, thus showing the equivalence of the two hypothesis, at least in the univariate
case.

3.3 An application to high precision measurements

Let us convey briefly an informal approach to a statistical perspective of high precision
measurements. We are given a sequence of non degenerate square integrable random
variables V1, . . . Vn, . . . , the observations, with mn = E[Vn], σn =

√
E[V 2

n ]−E[Vn]2 and
µn = mn/σn. Suppose we are interested in determining the asymptotic behavior of the
laws either of the random variables of the sequence (g(Vn))n∈N or of the sequence of
reduced observations (g(Vn/σn))n∈N. In either case, if the standardized observations
Wn = (Vn −mn)/σn all have the same distribution say, the distribution of some deter-
mined random variable V , we may always write:

Vn = σn

(
Vn −mn

σn
+
µn
σn

)
d' σn (V + µn) . (3.20)

17



Now, one main idea in high precision measurements is to consider that limn→+∞ σn = 0
and that the sequence (mn)n∈N is bounded, or even constant, so that limn→+∞ µn = +∞.
This means that as the number of observations grows, the coefficient of variation (defined,
in the literature, to be equal to 1/µn) gets smaller.

Formula 3.20 shows that the asymptotic behavior of the laws of the reduced obser-
vations is given by the asymptotic behavior of the laws of the random variables of the
sequence (g(V + µn))n∈N.

For the asymptotic behavior of the laws of the sequence (g(Vn))n∈N, suppose fur-
thermore that for all x, y the function g verifies g(xy) = g(x)g(y) and that g(x) 6= 0,
for x 6= 0, in order to eliminate trivial solutions of this functional equation 1. Thus,
obtaining an asymptotic approximation in distribution for g(Vn) amounts to obtaining
an asymptotic approximation in distribution for Xn := g(V +µn). In fact, if for some Yn

we have Xn
d
≈ Yn as µn � 1 we will also have g(Vn) = g(σn)Xn

d
≈ g(σn)Yn as µn � 1.

As a particular case of this last train of thought, we consider that X has a standard-
ized normal distribution and we get the law of of a polynomial on a standardized normal
random variable approximated by the normal law of its linear part. This amounts in fact
to a linearization procedure. We will write X ∈ N (m,σ) to denote a Gaussian random
variable with mean m and standard deviation σ.

Corolary 2. Let Xn := (µn +X)α with X ∈ N (0, 1), α ≥ 2 and Yn = µαn + αµα−1n X ∈
N (µαn, αµ

α−1
n ) and so, even when α is integer and

Zn =
α∑
k=2

(
α

k

)
µα−kn Xk ,

Zn is a random variable with a non trivial distribution. We have that the law of (µn+X)α

is approximately normal for large values of µn. As a Gaussian has moments of all orders,
the rate of convergence is (1/(µn)(1/2)+ε) for all ε > 0.

Proof. Apply theorem 3.1 considering g(x) = xα.

The following multidimensional particular case is also relevant for STATIS data anal-
ysis methodology (see [Ramos 07]).

Corolary 3. With the notations of theorem 3.2 and of subsection 3.2, consider:

Xn := X(µn) :=

r∏
i=1

(µn,i +Xi)
αi

Then with Yn := Y (µn) given by:

r∏
i=1

µαin,i +
r∑
i=1

 r∏
j 6=i,j=1

µ
αj
n,j

αiµ
αi−1
n,i Xi ∈ N

 r∏
i=1

µαin,i ,
r∑
i=1

 r∏
j 6=i,j=1

µ
αj
n,j

αiµ
αi−1
n,i


1Any continuous solution of this functional equation is of the form g(x) = |x|α or g(x) = sign(x) |x|α,

for some α (see [Itô 93, p. 1443]). For having g ∈ C2(R) we may infer that g(x) = xα, for some α ∈ N,
is an acceptable solution
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we have the uniform approximation limn→+∞ supx |FXn(x)− FYn(x)| = 0, that is, for
sufficient large n the law of Xn is approximately normal. The rate of convergence is, at
least, (

∑r
i=1(1/µ

2
n,i))

(1/4)+ε) for all ε > 0.

Proof. See the appendix for a straightforward but lengthy calculation.

4 Non linear approximations

In previous sections, theorem 2.3 was used in instances where the main tool was the
Taylor formula applied to get an asymptotic approximation by a linear transform of the
initial random variable. In this section, we show in some examples that other types of
asymptotic expansions may be treated with the same methodology.

We will write X ∈ G(p, δ, b) if the density of X is given by:

∀x ∈ R f(p,δ,b)(x) =
1

δpΓ(p)
(x− b)(p−1)e−

x−b
δ 1I[b,+∞[(x) ,

1I[b,+∞[ being the indicator function of the interval [b,+∞[. Recall that for such a random
variable we have E[X] = pδ + b, V[X] = pδ2 and

sup
x∈R

f(p,δ,b)(x) = sup
x∈R

f(p,δ,0)(x) =
1

δΓ(p)
(p− 1)(p−1)e−(p−1) .

In our first example. we study an integral transform of a rescaled random variable having
such a gamma distribution.

Proposition 1. Let X ∈ G(p, δ, b) with b > 0, p ≥ 2, (µn)n∈N a sequence of non negative
numbers such that limn→+∞ µn = +∞ and consider for some fixed a > 0:

Xn :=

∫ a

0

e−µnXt

1 + t2
dt .

Then, for µn > 0 we have that for the constant C1 in formula (2.2) and for some constant
e = e(p, δ, b, a)

sup
x

∣∣∣FXn(x)− F 1
µnX

(x)
∣∣∣ ≤ C1

√
e

µ
1
2
n

which implies that, for µn sufficiently large, the law of Xn may be approximated by the

law of 1/(µnX), uniformly, with rate of convergence order µ
1/2
n .

Proof. By an integration by parts we have the first terms of the asymptotic expansion
for the relevant integral.∫ a

0

e−λt

1 + t2
dt =

1

λ
− e−λa

λ(1 + a2)
+

1

λ

∫ a

0
e−λt

2t

(1 + t2)2
)dt
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As a consequence and as the the rational function in the integral is bounded by 3
√

3/8
we have, with c(a) := 3

√
3/8 + 1/(ae(1 + a2)) that:∣∣∣∣∫ a

0

e−λt

1 + t2
dt− 1

λ

∣∣∣∣ ≤ e−λa

λ(1 + a2)
+

3
√

3

8λ2
≤ c(a)

λ2
.

the bound on the right being justified as the rational term term containing a verifies,
for all λ > 0:

1

λ2

(
λe−λa

(1 + a2)

)
≤ 1

λ2
1

ae(1 + a2)

and that the term inside the parenthesis, as a function of λ > 0, is bounded by a constant
depending only on a. Now, as E[1/X2] ≤ 1/b2 + 1/(δ2p(p − 1)), we get E[|Zn|] ≤
c(a) · c(a, δ, p, b)/µ2n, with c(a, δ, p, b) being another constant depending only on a, δ, p
and b. The distribution function of the random variable Yn = 1/(µnX) is given by:

FYn(x) = 1− 1

δpΓ(p)

∫ 1
µnx

b
(t− b)p−1e−

t−b
δ dt .

This implies that the corresponding density is given by:

fYn(x) = F ′Yn(x) =
1

δpΓ(p)

(
1

µnx
− b
)p−1

e
− 1
δ

(
1

µnx
−b
)

1

µnx2
.

Let us determine the stationary points of this density. Considering u(x) := 1/(µnx)− b
we have with M = 1/(δpΓ(p)) and g(u) = up−1(u + b)2e−

u
δ that fYn(x) = Mµng(u(x))

and so f ′Yn(x) = Mµng
′(u(x))u′(x). As we have always u′(x) = −1/µnx

2 6= 0 we
have that the stationary points of fYn are those of g(u), that is, those points satisfying
u2 − (δ(p+ 1)− b)u− (p− 1)b = 0, that is the points

u± = u±u(p, δ, b) =
δ(p+ 1)− b±

√
(δ(p+ 1)− b)2 + 4(p− 1)b

2

Now considering the regularity of fYn = g(u) it is clear that

sup
x∈[0,+∞[

fYn(x) = Mµn max(g(u+), g(u−)) = µnd(p, δ, b) ,

with d(p, δ, b) a constant depending only on p, δ and b. Considering now the constant
e = c(a) · c(a, δ, p, b) · d(p, δ, b) we have the result stated.

Our second example has its source in the general theme of Laplace integrals. Often,
the asymptotic behavior of models in the applied sciences is studied using this kind of
integrals. The example presented here amounts to a randomization of these models.

Proposition 2. Let α > 0, β > 0, a ∈]0,+∞[, f ∈ C0([0, a[) such that f(0) 6= 0 and
f(x) =x→0 f(0) + O(x) and X ∈ G(p, δ, b) with b > 0 and p > (β + 1)/α. Suppose
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that (µn)n∈N is a sequence of non negative numbers such that limn→+∞ µn = +∞ and
consider:

Xn :=

∫ a

0
tβ−1f(t)e−µnXt

α
dt and Yn :=

f(0)

α(µnX)
β
α

Γ(
β

α
) .

we have that for any λ0 > 0 fixed, for any µn > λ0/b, for the constant C1 in formula (2.2)
and for some constant c = c(α, β, p, δ, b, a, λ0, f):

sup
x
|FXn(x)− FYn(x)| ≤ C1

√
c

µ
1
2α
n

which implies that, for µn sufficiently large, the law of Xn may be approximated by the

law of Yn, uniformly, with rate of convergence of order µ
1/(2α)
n .

Proof. Let R(x) be such that for some ε > 0 and for x ∈ [0, ε] we have f(x) = f(0)+R(x)
and |R(x)| ≤ Cx for some constant C. By observing that∫ +∞

0
tβ−1e−λt

α
dt =

1

αλ
β
α

Γ(
β

α
) (4.1)

we have that:∣∣∣∣∫ a

0
tβ−1f(t)e−λt

α
dt− f(0)

αλ
β
α

Γ(
β

α
)

∣∣∣∣ =∣∣∣∣∫ ε

0
tβ−1R(t)e−λt

α
dt+

∫ a

ε
tβ−1f(t)e−λt

α
dt− f(0)

∫ +∞

ε
tβ−1e−λt

α
dt

∣∣∣∣ .
We also have ∫ a

ε
tβ−1 |f(t)| e−λtαdt ≤ e−λεα

∫ a

0
tβ−1 |f(t)| dt =: e−λε

α
A1

and, given λ0 > 0, for all λ ≥ λ0 > 0,∫ +∞

ε
tβ−1e−λt

α
dt =

∫ +∞

ε
tβ−1e−λ0t

α
e−(λ−λ0)t

α
dt ≤ e−(λ−λ0)εα

∫ +∞

ε
tβ−1e−λ0t

α
dt ≤

≤
[
eλ0ε

α

∫ +∞

0
tβ−1e−λ0t

α
dt

]
eλε

α
=

eλ0εα
αλ

β
α
0

Γ(
β

α
)

 e−λεα =: A2e
−λεα .

Using again (4.1) we have that∫ ε

0
tβ−1 |R(t)| e−λtαdt ≤ C 1

αλ
β+1
α

Γ(
β + 1

α
)

thus allowing us to conclude that for some fixed λ0 > 0, and for all λ > λ0 > 0∣∣∣∣∫ a

0
tβ−1f(t)e−λt

α
dt− f(0)

αλ
β
α

Γ(
β

α
)

∣∣∣∣ ≤ 1

λ
β+1
α

(
C

α
Γ(
β + 1

α
) + (A1 +A2) sup

λ>λ0

λ
β+1
α e−λε

α

)
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Now for future convenience we will define

A :=
C

α
Γ(
β + 1

α
) + (A1 +A2)

(
β + 1

αεα

)β+1
α

e−
β+1
α

We will now proceed as in the proof of proposition 1. Define Zn := Xn − Yn and
observe that, by the estimations above we have that, |Zn| ≤ A/(µnX)(β+1)/α. As a

consequence, we have that E[|Zn|] ≤ (A/µ
(β+1)/α
n )E[1/X(β+1)/α]. Now, as X ∈ G(p, δ, b)

and p > (β + 1)/α we have that E[1/X(β+1)/α] is a real constant B depending only on

α, β, p, δ, b and so E[|Zn|] ≤ (AB/µ
(β+1)/α
n ).

We now proceed as in the previous proposition. For simplicity, letM := Γ(β/α)f(0)/α.
The distribution function of the random variable Yn = M/(µnX)β/α is given by:

FYn(x) = 1− 1

δpΓ(p)

∫ 1
µn

(M
x
)
α
β

b
(t− b)p−1e−

t−b
δ dt .

This implies that the corresponding density is given by:

fYn(x) = F ′Yn(x) =
1

δpΓ(p)

(
M

α
β

µnx
α
β

− b

)p−1
e
− 1
δ

(
M
α
β

µnx
α
β
−b
)

M
α
β

µnx
α
β
+1

α

β
.

We have now to determine the stationary points of this density. Considering u(x) :=
Mα/β/(µnx

α/β) − b we have with g(u) = up−1(u + b)1+β/αe−
u
δ and also with M ′ :=

α/(δpΓ(p)Mβ) that fYn(x) = M ′µ
β/α
n g(u(x)) and so f ′Yn(x) = M ′µ

β/α
n g′(u(x))u′(x). As

we have always u′(x) = −(α/β)(Mα/β/µn)(1/x1+(α/β)) 6= 0 we have that the stationary
points of fYn are those of g(u), that is, those points satisfying u2− (δ(p+ (β/α)− b)u−
(p− 1)b = 0, that is the points

u± = u±u(p, δ, b, α, β) =
δ(p+ (β/α))− b±

√
(δ(p+ (β/α))− b)2 + 4(p− 1)b

2
.

Now, considering the regularity of fYn = M ′µ
β/α
n g(u) it is clear that

sup
x∈[0,+∞[

fYn(x) = M ′µβ/αn max(g(u+), g(u−)) = µβ/αn D(p, δ, b, α, β) ,

with D = D(p, δ, b, α, β) a constant depending only on p, δ, b, α and β,and so we may
conclude as stated with the constant c = ABD.

Remark 3. The examples presented above as well as other instances of application of the
method here developed seems to point to the following heuristic principle: a classical
asymptotic formula may be randomized provided that the source of randomization has
a density admitting a sufficiently sharp maximum. This heuristic principle was further
illustrated in [Esquivel et al. 09] with a simulation study.
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5 Conclusion and final remarks

In this work we have shown that under mild technical hypothesis it is possible to estab-
lish the rate of convergence of asymptotic approximations, in the Kolmogorov’s distance
sense, to distributions of random variables tied by some non trivial almost sure asymp-
totic relation. Other simulation results, not presented in this work, make believe that
the validity of these asymptotic approximations is much more comprehensive, thus indi-
cating the need of further studies.

Appendix

In this section we gather the proofs of theorem 2.1 and of corollary 3, for the reader’s
commodity.

Proof of theorem 2.1. Consider the set

An(ε) :=

+∞⋂
m=n

{∣∣∣∣Xm

Ym
− 1

∣∣∣∣ < ε

}
pn(ε) := P[An(ε)] which converges to 1 on account of the hypothesis and δn(ε) := 1 −
pn(ε). Then we have that for x > 0 and over An(ε)

1− ε < Xn

Yn
< 1 + ε

which implies

Yn <
x

1 + ε
⇒ Xn < x⇒ Xn <

x

1− ε
that is

An(ε) ∩
{
Yn <

x

1 + ε

}
⊆ An(ε) ∩ {Xn < x} ⊆ An(ε) ∩

{
Yn <

x

1− ε

}
.

This in turn implies:

pn(ε) + FYn(
x

1 + ε
)− 1 ≤ P

[
An(ε) ∩

{
Yn <

x

1 + ε

}]
≤ min

(
pn(ε), FYn(

x

1 + ε
)

)
pn(ε) + FXn(x)− 1 ≤ P [An(ε) ∩ {Xn < x}] ≤ min (pn(ε), FXn(x))

pn(ε) + FYn(
x

1− ε
)− 1 ≤ P

[
An(ε) ∩

{
Yn <

x

1− ε

}]
≤ min

(
pn(ε), FYn(

x

1− ε
)

)
.

Finally we get:

FYn(
x

1 + ε
) + pn(ε)− 1 ≤ FXn(x) and FXn(x) + pn(ε)− 1 ≤ FYn(

x

1− ε
)

which is exactly the desired result.
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Proof of corollary 3. The proof rests on theorem 3.2 with g(x1, . . . , xr) = xα1
1 . . . xαrr .

We then have:

∂g

∂xi
(x1, . . . , xr) = αix

αi−1
i

r∏
p=1
p 6=i

x
αp
p , ∀i = 1, . . . , r

∂2g

∂xi∂xj
(x1, . . . , xr) =



αiαjx
αi−1
i x

αj−1
j

r∏
p=1
p 6=i,j

x
αp
p if i 6= j

αi(αi − 1)xαi−2i

r∏
p=1
p 6=i

x
αp
p if i = j

∀i, j = 1, . . . , r

and

‖Dg(x1, . . . , xr)‖2 = α2
1x

2α1−2
1

r∏
p=1
p 6=1

x
2αp
p + . . .+ α2

rx
2αr−2
r

r∏
p=1
p 6=r

x
2αp
p .

Hence, if i 6= j then

(
∂2g

∂xi∂xj
(x1, . . . , xr)

)2
‖Dg(x1, . . . , xr)‖2

≤

α2
iα

2
jx

2αi−2
i x

2αj−2
j

r∏
p=1
p 6=i,j

x
2αp
p

α2
jx

2αj−2
j

r∏
p=1
p 6=j

x
2αp
p

=

α2
i

r∏
p=1
p6=j

x
2αp
p

x2i

r∏
p=1
p6=j

x
2αp
p

=
α2
i

x2i

which implies, ∣∣∣ ∂2g
∂xi∂xj

(µn)
∣∣∣

‖Dg(µn)‖
≤ |αi|
|µn,i|

−→ 0, n→ +∞, ∀i, j = 1, . . . r

Analogously,

(
∂2g
∂x2i

(x1, . . . , xr)
)2

‖Dg(x1, . . . , xr)‖2
≤

α2
i (αi − 1)2x2αi−4i

r∏
p=1
p 6=i

x
2αp
p

α2
i x

2αi−2
i

r∏
p=1
p 6=i

x
2αp
p

=
(αi − 1)2

x2i

and thus, ∣∣∣∂2g∂x2i
(µn)

∣∣∣
‖Dg(µn)‖

≤ |αi − 1|
|µn,i|

−→ 0, n→ +∞, ∀i = 1, . . . r
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finally showing that:

∣∣∣∣∣∣D2g(µn)
∣∣∣∣∣∣

‖Dg(µn)‖
=

1

‖Dg(µn)‖

 r∑
i,j=1
i 6=j

∣∣∣∣ ∂2g

∂xi∂xj
(µn)

∣∣∣∣2 +
r∑
i=1

∣∣∣∣∂2g∂x2i
(µn)

∣∣∣∣2


1
2

≤

≤

((
max
1≤i≤r

αi

)
(2r − 1)

r∑
i=1

1

µ2n,i

) 1
2
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