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Abstract

The paper deals with a Dirichlet spectral problem for an elliptic operator with "-periodic coe�cients in a

3D bounded domain of small thickness �. We study the asymptotic behavior of the spectrum as " and �

tend to zero. This asymptotic behaviour depends crucially on whether " and � are of the same order, or "

is much greater than �, or " is much less than �. We consider all three cases.
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1. Introduction and main results

When considering a stationary Schrödinger’s equation with zero potential in a bounded domain,
the wave function turns out to be solution of an eigenvalue problem for Laplace’s operator, whose
eigenvalues are associated with di↵erent energy levels. Supposing that the domain has a very small
thickness � and that the material presents "-periodic heterogeneities (see Fig.1), those energy levels
depend strongly on both small parameters � and " and on their ratio.

We take, then, an elliptic operator with "-periodic coe�cients and consider the corresponding
Dirichlet spectral problem in a 3D bounded domain of small thickness �. We study the asymptotic
behavior of spectrum of this problem as both positive parameters " and � tend to zero. In the
cases " ⇡ � and "⌧ � the corresponding results have been announced in [6]. In the present paper
we provide detailed proofs of the statements formulated in [6], and also study the case "� �.
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More precisely, let ! be a bounded domain in R2 and let � be a positive parameter. Consider
the thin domain ! ⇥ �I, where I := (�1/2, 1/2). In what follows the Greek characters ↵ and �
take their values in the set {1, 2} and we will often write x̄ instead of (x1, x2). Given a function
f : Rd ! R, d 2 {1, 2}, r̄f stands for the vector (@f/@x1, @f/@x2), while r3f and �3f stand
for @f/@x3 and @2f/@x2

3, respectively. If Q = ⇧d
i=1(0, li) is an interval in Rd, we say that f is

Q-periodic if for all  2 Z and for a.e. x 2 Rd one has f(x+liei) = f(x), where {ei}i=1,···,d is the
canonical basis of Rd. A matrix is said to be Q-periodic if each of its components is a Q-periodic
function.

Let Y := (0, 1)2 and let A = (aij)16i,j63 2 [L1(R2)]3⇥3 be a real, symmetric and Y -periodic
matrix, for which there exist ⇣, ⌘ 2 R+ such that for all ⇠ 2 R3 and for a.e. ȳ 2 Y ,

⇣k⇠k2 6 (A(ȳ)⇠|⇠) 6 ⌘k⇠k2. (1.1)

In order to simplify the notations, we will often write A⇠⇠ in place of (A⇠|⇠). For each " > 0 define
a"

ij(x̄) := aij

�
x̄
"

�
and A" := (a"

ij)16i,j63. We notice that A" is also a real, symmetric and "Y -
periodic matrix, satisfying (1.1). Our goal is to characterize the asymptotic behavior, as " ! 0+

and � ! 0+, of the eigenvalues ��
" associated with the spectral problem

⇢
�div(A"rṽ�

") = ��
" ṽ�

" , a.e. in ⌦�,
ṽ�

" 2 H1
0 (⌦�).

(1.2)

Fig.1. Thin and periodically oscillating media

⌦�

For the sake of simplicity we will assume that a↵3 = 0 a.e. in R2, and we denote by Ā and Ā" the
2⇥ 2 matrices Ā := (a↵�) and Ā" := (a"

↵�), respectively.

Since ⌦� is bounded, the spectrum ��
" of problem (1.2) is discrete and can be written as

��
" := {��

",i 2 R+ : i 2 N}, where 0 < ��
",1 6 ��

",2 6 · · · 6 ��
",i 6 . . . �!

i!1
+1. As the thickness of

the domain goes to zero (� ! 0+), all the eigenvalues go to infinity. A detailed characterization of
the asymptotic behavior of ��

" is given in Theorem 1.1 for the case " ⇡ �, in Theorem 1.2 for the
case "⌧ �, and in Theorems 1.4 and 1.8 for the case "� �. We use �-convergence and asymptotic
expansion techniques as main tools. Concerning �-convergence, we refer to [5] for its definition
and properties, for the method of asymptotic expansions we refer to [3], [2].

Consider the quadratic energy eE�
" : L2(!⇥ �I)! [0,+1] associated with the self-adjoint operator

�div(A"r·) from L2(! ⇥ �I) into itself,

eE�
"(ṽ) :=

8<
:
Z

!⇥�I
A"(x̄�)rṽ(x�)rṽ(x�) dx�, if ṽ 2 H1

0 (! ⇥ �I),

+1, otherwise.
(1.3)

As it is usual in the dimension reduction framework, the first step is to perform a rescaling
and a change of variables in order to transform problem (1.2) into an equivalent one defined
in the fixed domain ! ⇥ I. To each point x� = (x̄�, x�

3) 2 ! ⇥ �I we associate the point
x = (x̄, x3) = (x̄�, ��1x�

3) 2 ! ⇥ I, and we define v 2 H1
0 (! ⇥ I) by v(x) := ṽ(x�) whenever

ṽ 2 H1
0 (! ⇥ �I). Accordingly, we rescale the energy in (1.3) by dividing it by � so that the new
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energy becomes E�
" : L2(! ⇥ I)! [0,+1],

E�
"(v) :=

8<
:
Z

!⇥I
Ā"(x̄)r̄v(x)r̄v(x) +

a"
33(x̄)
�2

|r3v(x)|2 dx, if v 2 H1
0 (! ⇥ I),

+1, otherwise.
(1.4)

The rescaled spectral problem reads

(
�divx̄(Ā"r̄v�

")�
a"
33

�2
�3v

�
" = ��

" v�
" , a.e. in ! ⇥ I,

v�
" 2 H1

0 (! ⇥ I).
(1.5)

We stress that problems (1.2) and (1.5) are equivalent.

Before stating our main results, we will introduce some notation. Since we are interested in the
cases " ⇡ �, " ⌧ � and " � �, we consider � = "⌧ for each ⌧ 2 (0,+1), and we introduce the
normalized first eigenpair (µ⌧

",0,�
⌧
",0) for the bidimensional periodic spectral problem

⇢
�"2(⌧�1) div(Ār̄�⌧

" ) + a33⇡2�⌧
" = µ⌧

"�
⌧
" , a.e. in Y ,

�⌧
" 2 H1

#(Y ). (1.6)

We recall that C1# (Y ) (resp. C#(Y )) represents the subspace of C1(R2) (resp. C(R2)) of Y -
periodic functions and H1

#(Y ) the closure of C1# (Y ) with respect to the H1(Y )-norm. Furthermore,
the eigenvalue µ⌧

",0 is real, positive and simple, and the associated normalized eigenfunction �⌧
",0

belongs to H1
#(Y ) \ C0,s

# (Y ), for some 0 < s < 1, and may be chosen to be a strictly positive
function (see [7]).

We will distinguish three cases: ⌧ = 1, ⌧ < 1 and ⌧ > 1. Notice that if ⌧ = 1 then problem (1.6)
does not depend on ", and for that reason we simply write (µ0,�0) to denote its normalized first
eigenpair.

Let us also introduce the following unidimensional spectral problem on the interval I:
⇢
�✓00 = &✓, a.e. in I,
✓ 2 H1

0 (I), (1.7)

whose nth normalized eigenpair is
�
&n, ✓n) := ((2n � 1)2⇡2,

p
2 cos((2n � 1)⇡x3)

�
, n 2 N, x3 2 I.

The following statement characterizes the behavior of ��
" in the case � ⇡ ".

Theorem 1.1. (" ⇡ �) Under the above hypotheses, let
�
�",k, v",k

�
be a kth eigenpair associated

with problem (1.5) for � = ", and let (⌫k,'k) be a kth eigenpair associated with the bidimensional
homogenized spectral problem on the cross section !

⇢
�div(B̄hr̄') = ⌫', a.e. in !,
' 2 H1

0 (!),

where the 2⇥ 2 constant matrix B̄h is the homogenized limit of the family of "Y -periodic matrices
{B̄"}">0, B̄" := (b"

↵�) with

b"
↵�(x̄) :=

h
�0

⇣ x̄

"

⌘i2
a↵�

⇣ x̄

"

⌘
.
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Then, there exists a self-adjoint operator A" : H" ! H", where H" coincides algebraically with
L2(! ⇥ I) endowed with the scalar product ( · | · )" defined by

(u|v)" :=
Z

!⇥I

h
�0

⇣ x̄

"

⌘i2
u(x)v(x) dx, u, v 2 L2(! ⇥ I),

such that D(A") = H1
0 (! ⇥ I) and

�",k =
µ0

"2
+ ⌫",k, v",k(x̄, x3) = �0

⇣ x̄

"

⌘
u",k(x̄, x3), a.e. (x̄, x3) 2 ! ⇥ I, (1.8)

where (⌫",k, u",k) is a kth eigenpair of A", that is,

u",k 2 H1
0 (! ⇥ I), A"u",k = ⌫",ku",k, ⌫",1 6 ⌫",2 6 · · · 6 ⌫",k 6 · · · , (u",k|u",l)" = �kl.

Furthermore, ⌫",k ! ⌫k as " ! 0+ and, up to a subsequence that we do not relabel, u",k * uk

weakly in H1
0 (! ⇥ I) as " ! 0+, where uk is the product of an eigenfunction associated with ⌫k

and ✓1. Conversely, any eigenfunction uk = 'k✓1 is the weak limit of a particular sequence of
eigenfunctions associated with ⌫",k.

We next provide the characterization of ��
" when � ⌧ ". For j 2 N0 := N [ {0}, define

%j := ⇡2

Z
Y

a33(ȳ) j(ȳ) dȳ, (1.9)

where  0 ⌘ 1 in Y and, for j > 1,  j are the solutions of the recurrence problems in H1
#(Y )

�div(Ā(ȳ)r̄ j) = �a33(ȳ)⇡2 j�1 +
j�1X
`=0

%` j�1�`,

Z
Y
 j(ȳ) dȳ = 0. (1.10)

Theorem 1.2. ("⌧ �) Suppose that the above hypotheses are fulfilled and that in addition a↵�

are uniformly Lipschitz continuous in Y . Let
�
�",k, v",k

�
be a kth eigenpair associated to problem

(1.5) for � = "⌧ with some ⌧ 2 (0, 1), and let (µ⌧
",0,�

⌧
",0) be the normalized first eigenpair of (1.6).

Let i 2 N be such that i�1
i < ⌧ 6 i

i+1 , and let (⌫k,'k) be a kth eigenpair associated with the
bidimensional homogenized spectral problem on the cross section !

⇢
�div(Āhr̄') = ⌫', a.e. in !,
' 2 H1

0 (!),
(1.11)

where the 2 ⇥ 2 constant matrix Āh is the homogenized limit of the sequence {Ā"}">0. Then,
µ⌧

",0 ! ⇡2
R

Y a33(ȳ) dȳ = %0 as " ! 0+, �⌧
",0(x̄/") ! 1 =  0 uniformly in ! as " ! 0+, and

there exists a self-adjoint operator A" : H" ! H", where H" coincides algebraically with L2(!⇥ I)
endowed with the scalar product ( · | · )" defined by

(u|v)" :=
Z

!⇥I

h
�⌧

",0

⇣ x̄

"

⌘i2
u(x)v(x) dx, u, v 2 L2(! ⇥ I),

such that D(A") = H1
0 (! ⇥ I) and

�",k =
iX

j=0

%j

"⌧(2j+2)�2j
+⇢⌧

" +⌫",k, v",k(x̄, x3) = �⌧
",0

⇣ x̄

"

⌘
u",k(x̄, x3), a.e. (x̄, x3) 2 !⇥I, (1.12)
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where (⌫",k, u",k) is a kth eigenpair of A", that is,

u",k 2 H1
0 (! ⇥ I), A"u",k = ⌫",ku",k, ⌫",1 6 ⌫",2 6 · · · 6 ⌫",k 6 · · · , (u",k|u",l)" = �kl.

Furthermore, ⇢⌧
" ! 0 as " ! 0+, ⌫",k ! ⌫k as " ! 0+, and, up to a subsequence that we will

not relabel, u",k * uk weakly in H1
0 (! ⇥ I) as " ! 0+, where uk is the product between an

eigenfunction associated with ⌫k and ✓1. Conversely, any eigenfunction uk = 'k✓1 is the weak
limit of a particular sequence of eigenfunctions associated with ⌫",k.

Remark 1.3. If the series
P

j > 0 k jkL2(Y ) converges, the same happens with
P

j > 0 |%j | and we
obtain

P
j > 0 %j = µ0,

P
j > 0  j =  , where  = �0/

R
Y �0 dȳ and (µ0,�0) is the normalized first

eigenpair of (1.6) for ⌧ = 1. Moreover, since i�1
i < ⌧ 6 i

i+1 , it can be checked that the convergence
of
P

j > 0 |%j | implies that, for fixed " > 0 and as ⌧ ! 1�,
iX

j=0

%j

"⌧(2j+2)�2j
! µ0

"2
·

The case " � �, say � = "⌧ with ⌧ 2 (1,+1), seems a lot more di�cult to handle due to the
degeneracy of the corresponding problem (1.6). Indeed, in the case ⌧ > 1 the asymptotic behavior
of µ⌧

",0 depends strongly on the behavior of the potential a33 (see, for instance, [9], [10]). An
interesting case in applications is when the potential a33 oscillates between two di↵erent values.
In that direction we introduce new hypotheses on a33. In Theorem 1.4 we identify the asymptotic
expansion of the first eigenvalue. In Theorem 1.8 we provide a characterization of the limit spectrum
in the sense of Kuratowsky.

Theorem 1.4. ("� �) Under the general hypotheses stated above, assume in addition that a↵�

are smooth functions and that there exists an open and smooth subdomain Q of Y , Q ⇢⇢ Y , such
that a33 coincides with its minimum, amin, on Q and is a smooth function strictly greater than
amin on Y \Q. Let (⌫0, q0) be the normalized first eigenpair for the bidimensional spectral problem
on Q ⇢

�div(Ār̄q) = ⌫q, a.e. in Q,
q 2 H1

0 (Q). (1.13)

Let �" := {�",i 2 R+ : i 2 N} be the spectrum of problem (1.5) for � = "⌧ for some ⌧ 2 (1,+1).
Let k 2 N be such that k > 2

⌧�1 , and let (µ⌧
",0,�

⌧
",0) be the normalized first eigenpair of (1.6). Then

µ⌧
",0 ! amin⇡2, �⌧

",0 * q0 weakly in H1
#(Y ) as "! 0+, where we identify q0 with its extension by

zero to the whole Y , and

�",1 =
amin⇡2

"2⌧
+
⌫0
"2

+ "⌧�3µ1 + · · · + "k(⌧�1)�2µk + ⇢⌧
" + ⌫⌧

",1,

where µi, i 2 {1, · · · , k}, are well determined constants, |⇢⌧
" | 6 C"(k+ 1

2 )⌧�(k+ 5
2 ) ! 0 as "! 0+, for

some constant C independent of ", and

⌫⌧
",1 := inf

 2H1
0(!)

k�⌧",0( ·
" ) kL2(!)

=1

⇢Z
!

����⌧
",0

⇣ x̄

"

⌘���2Ā"r̄ r̄ dx̄

�

vanishes as "! 0+.
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Remark 1.5. Theorem 1.4 is valid under weaker regularity hypotheses on the coe�cients. In
fact, as it will become clear within the proof, instead of smoothness it su�ces to assume that a↵�

are Ck+2 functions and that on Y \Q a33 is also a Ck+2 function, where k is the smallest natural
number satisfying k > 2

⌧�1 . In particular, the smaller ⌧ � 1 > 0 is, the more regularity of the
coe�cients is required.

Remark 1.6. Hypotheses of Theorem 1.4 cover the important case where a33 oscillates between
two di↵erent values, but rule out the case where a33 is constant. Nevertheless, it is easy to see that
under the general hypotheses stated at the beginning of Section 1, if a33 is constant, then for any
⌧ 2 (0,+1), µ⌧

",0 ⌘ a33⇡2 and �⌧
",0 ⌘ 1. Moreover, as it will become clear from our arguments, if�

�",k, v",k

�
is a kth eigenpair associated with problem (1.5) for � = "⌧ , then

�",k =
a33⇡2

"2⌧
+ ⌫",k,

where ⌫",k ! ⌫k and, up to a subsequence that we do not relabel, v",k * vk = 'k✓1 weakly in
H1

0 (! ⇥ I) as "! 0+, being (⌫k,'k) a kth eigenpair associated with (1.11).

Remark 1.7. It is important to mention that the cases where a33 is constant in Q, continuous
in Y (no jump on @Q) and has linear or quadratic growth in the vicinity of @Q are very similar
to the case presented here: constant in Q with positive jump on @Q and continuous on Y \Q (see
Remark 5.3). However, the case of an isolated minimum of a33 is rather di↵erent and more serious
modifications are required.

Finally, under quite more general hypotheses than those of Theorem 1.4, the next theorem
characterizes the limit spectrum in the sense of Kuratowsky.

Theorem 1.8. ("� �) Assume the general hypotheses stated at the beginning of Section 1 and,
in addition, assume that a33 attains a minimum value, amin, at some ȳ0 2 R2 such that a↵� and
a33 are continuous on some neighborhood of ȳ0. Then,

lim
"!0+

�
"2⌧�"

�
=
⇥
amin⇡

2,+1
⇤
, (1.14)

where the limit in (1.14) is to be understood in the sense of Kuratowsky, that is,
⇥
amin⇡2,+1

⇤
is

the set of all cluster points of sequences {�"}">0, �" 2 "2⌧�".

The paper is organized as follows. In Section 2 we prove some auxiliary results. Section 3 is devoted
to the proof of Theorem 1.1, while Section 4 to the proof of Theorem 1.2. Finally, in Section 5 we
prove Theorems 1.4 and 1.8.

2. Preliminary results

In this section we present preliminary results that play an important role on the subsequent sections.
The first result concerns the convergence of eigenpairs associated with a sequence of densely defined
self-adjoint operators, whose proof can be found in [4, Thm. 3.1].

Proposition 2.1. Let A" : H" ! H" be a sequence of densely defined self-adjoint operators, where
H" coincides algebraically with a fixed Hilbert space H endowed with a scalar product ( · | · )" such

6
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that

c1kuk2 6 (u|u)" 6 c2kuk2, for suitable positive constants c1, c2, (2.1)
lim

"!0+
(u"|v")" = (u|v) whenever u" ! u and v" ! v in H as "! 0+, (2.2)

where ( · | · ) stands for the scalar product in H and k · k the correspondent norm. Let G" : H !
(�1,+1] be defined by G"(u) := (A"u|u)", if u 2 D(A"), and G"(u) := +1, otherwise. Assume
further that the three following conditions hold:

(i) G"(u) > � c0kuk2, for a suitable constant c0 > 0 independent of ";

(ii) If sup
">0

G"(u") < +1 and sup
">0

ku"k < +1, then the sequence {u"}">0 is strongly relatively

compact in H;

(iii) {G"}">0 �-converges to a certain functional G.

Then, the limit functional G determines a unique closed linear operator A0 : H ! H with compact
resolvent such that G(u) = (A0u|u), for all u 2 D(A0). Furthermore, the spectral problems
associated with A" converge in the following sense: let {(⌫",k, u",k)}k2N and {(⌫k, uk)}k2N be such
that

u",k 2 D(A"), A"u",k = ⌫",ku",k, ⌫",1 6 ⌫",2 6 · · · 6 ⌫",k 6 · · · , (u",k|u",l)" = �kl,
uk 2 D(A0), A0uk = ⌫kuk, ⌫1 6 ⌫2 6 · · · 6 ⌫k 6 · · · , (uk|ul) = �kl,

where �kl denotes the Kronecker symbol. Then ⌫",k ! ⌫k as "! 0+. Moreover, up to a subsequence
that we will not relabel, {u",k}">0 converges as " ! 0+ to an eigenfunction associated to ⌫k.
Conversely, any eigenfunction uk is the strong limit of a particular sequence of eigenfunctions of
A" associated with ⌫",k.

Remark 2.2. We recall that condition (iii) in Proposition 2.1 is equivalent to saying that the
following two conditions are satisfied:

a) If u", u 2 H are such that u" ! u in H as "! 0+, then G(u) 6 lim inf
"!0+

G"(u");

b) Given u 2 H, there exists {u"}">0 ⇢ H such that u" ! u in H as " ! 0+, and
G(u) = lim

"!0+
G"(u").

The next proposition regards a classical change of unknowns (c.f. [13]; see also [1]). In the
cases " ⇡ � and " ⌧ � it will allow us to transform the energies (1.4) into functionals for which
Proposition 2.1 applies.

Proposition 2.3. For fixed ⌧, " > 0, consider the functions u and v related by

v(x) = �⌧
",0

⇣ x̄

"

⌘
u(x), for a.e. x = (x̄, x3) 2 ! ⇥ I. (2.3)

Then v 2 H1
0 (! ⇥ I) if and only if u 2 H1

0 (! ⇥ I). Moreover, if v 2 H1
0 (! ⇥ I), then

Z
!⇥I

Ā"(x̄)r̄v(x)r̄v(x) +
a"
33(x̄)
"2⌧

⇡2|v(x)|2 �
µ⌧

",0

"2⌧
|v(x)|2 dx

=
Z

!⇥I

h
�⌧

",0

⇣ x̄

"

⌘i2
Ā"(x̄)r̄u(x)r̄u(x) dx.

(2.4)

7
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Proof. We proceed in two steps.

Step 1. We begin by proving that equality (2.4) holds for every u 2 H1
0 (! ⇥ I) \ L1(! ⇥ I).

Since �⌧
",0 2 H1

#(Y ) \ C0,s
# (Y ), for some 0 < s < 1, then for any u 2 H1

0 (! ⇥ I) \ L1(! ⇥ I) the
function v defined by (2.3) also belongs to H1

0 (! ⇥ I) \ L1(! ⇥ I). For u 2 C10 (! ⇥ I) we have

Z
!⇥I

Ā"(x̄)r̄v(x)r̄v(x) +
a"
33(x̄)
"2⌧

⇡2|v(x)|2 �
µ⌧

",0

"2⌧
|v(x)|2 dx

=
Z

!⇥I
��⌧

",0

⇣ x̄

"

⌘
u(x)divx̄

n
Ā"(x̄)r̄

h
�⌧

",0

⇣ x̄

"

⌘
u(x)

io
+
����⌧

",0

⇣ x̄

"

⌘���2|u(x)|2
a"
33(x̄)⇡2�µ⌧

",0

"2⌧
dx,

(2.5)
where divx̄ stands for the divergence in the variables x1, x2. Considering the definition of �⌧

",0

� ·
"

�
,

it can be checked (see also [8]) that

� �⌧
",0

⇣ x̄

"

⌘
divx̄

n
Ā"(x̄)r̄

h
�⌧

",0

⇣ x̄

"

⌘
u(x)

io
+
����⌧

",0

⇣ x̄

"

⌘���2 a"
33(x̄)⇡2 � µ⌧

",0

"2⌧
u(x)

=� divx̄

n����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)r̄u(x)
o
.

Combining this relation with (2.5) and integrating by parts in ! yields (2.4) for all u 2 C10 (!⇥ I).
In order to show that (2.4) also holds true for all u 2 H1

0 (! ⇥ I) \ L1(! ⇥ I), it su�ces to
approximate such a function u by a sequence of C10 (! ⇥ I) functions and to pass to the limit in
(2.4).

Step 2. In this step we prove that if v 2 H1
0 (! ⇥ I), then the function u given by (2.3) belongs to

H1
0 (! ⇥ I) and

Z
!⇥I

Ā"(x̄)r̄v(x)r̄v(x) +
a"
33(x̄)
"2⌧

⇡2|v(x)|2 �
µ⌧

",0

"2⌧
|v(x)|2 dx

>
Z

!⇥I

����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)r̄u(x)r̄u(x) dx.

(2.6)

Let v 2 H1
0 (!⇥ I) be an arbitrary function. Since �⌧

",0 2 H1
#(Y )\C0,s

# (Y ) is strictly positive, the
function

u(x) :=
v(x)

�⌧
",0

�
x̄
"

� , a.e. x = (x̄, x3) 2 ! ⇥ I,

is well defined and belongs to L2(! ⇥ I). Moreover, r3u 2 L2(! ⇥ I).

Let {vn}n2N be a sequence in C10 (! ⇥ I) such that vn ! v in H1
0 (! ⇥ I) as n ! 1. Setting

un := vn/�⌧
",0, we have un ! u and r3un ! r3u in L2(! ⇥ I) as n ! 1. Furthermore, for all

n 2 N, un 2 H1
0 (! ⇥ I) \ L1(! ⇥ I), and so, by Step 1,

Z
!⇥I

Ā"(x̄)r̄vn(x)r̄vn(x) +
a"
33(x̄)
"2⌧

⇡2|vn(x)|2 �
µ⌧

",0

"2⌧
|vn(x)|2 dx

=
Z

!⇥I

����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)r̄un(x)r̄un(x) dx.

(2.7)

8
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The convergence vn �!
n!1

v in H1
0 (! ⇥ I) yields

lim
n!1

Z
!⇥I

Ā"(x̄)r̄vn(x)r̄vn(x) +
a"
33(x̄)
"2⌧

⇡2|vn(x)|2 �
µ⌧

",0

"2⌧
|vn(x)|2 dx

=
Z

!⇥I
Ā"(x̄)r̄v(x)r̄v(x) +

a"
33(x̄)
"2⌧

⇡2|v(x)|2 �
µ⌧

",0

"2⌧
|v(x)|2 dx,

(2.8)

which, together with (2.7), implies that

sup
n2N

⇢Z
!⇥I

����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)r̄un(x)r̄un(x) dx

�
< +1.

Consequently, since there is a constant c" > 0 such that �⌧
",0(·/") > c", from (1.1) we get

supn kr̄unkL2(!⇥I;R2) < +1. Therefore, u 2 H1
0 (! ⇥ I) and un * u weakly in H1

0 (! ⇥ I) as
n!1.

Using the sequential lower semicontinuity with respect to the weak topology of L2(! ⇥ I; R2) of
the convex functional F : L2(! ⇥ I; R2)! R defined by

F (w) :=
Z

!⇥I

����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)w(x)w(x) dx, w 2 L2(! ⇥ I; R2),

we conclude that

lim inf
n!1

Z
!⇥I

����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)r̄un(x)r̄un(x) dx >
Z

!⇥I

����⌧
",0

⇣ x̄

"

⌘���2Ā"(x̄)r̄u(x)r̄u(x) dx. (2.9)

From (2.7)–(2.9) we deduce (2.6).

Changing the roles of u and v we conclude that if u 2 H1
0 (!⇥ I) then v also belongs to H1

0 (!⇥ I),
and the converse of (2.6) holds true.

We now recall a classic result of homogenization (see [5, Thm 13.12]), which will be particularly
useful in the cases " ⇡ � and " ⌧ �; namely, to prove that a convenient sequence of functionals
satisfies condition (iii) of Proposition 2.1.

Proposition 2.4. Let B 2 [L1(R2)]2⇥2 be a 2⇥2 real, symmetric and Y -periodic matrix satisfying
bounds (1.1) with 0 < ⇣ < ⌘. For each " > 0, define B"(·) := B

� ·
"

�
. Then, there exists a 2 ⇥ 2

constant matrix Bh such that the sequence of functionals {J"}">0, where J" : H1
0 (!)! R is given

by

J"(') :=
Z

!
B"(x̄)r̄'(x̄)r̄'(x̄) dx̄,

�-converges as "! 0+, with respect to the weak topology of H1
0 (!), to the functional J : H1

0 (!)!
R defined by

J(') :=
Z

!
Bhr̄'(x̄)r̄'(x̄) dx̄.

The matrix Bh is called the homogenized limit of the sequence {B"}">0.

Unfortunately, the lack of a positive uniform lower bound for {�⌧
",0}">0 when ⌧ > 1 will prevent

us from using Proposition 2.4, and consequently Proposition 2.1, in the case "� �. To treat this

9
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last case we will make use of an alternative result that shows that the spectrum ��
" associated

with the tridimensional problem (1.5) equals a countable union of spectra associated with certain
bidimensional problems.

Proposition 2.5. Let B 2 [L1(R2)]2⇥2 be a 2⇥2 real, symmetric and Y -periodic matrix satisfying
bounds (1.1) with 0 < ⇣ < ⌘. Let b 2 L1(R2) be a Y -periodic function such that ⇣ 6 b(ȳ) 6 ⌘ for

a.e. ȳ 2 Y . Given n 2 N, let �(n)
k be the kth eigenvalue for the bidimensional spectral problem⇢

�div(B(x̄)r̄'n) + b(x̄)&n'n = �n'n, a.e. x̄ 2 !,
'n 2 H1

0 (!), (2.10)

where, we recall, (&n, ✓n) =
�
(2n � 1)2⇡2,

p
2 cos((2n � 1)⇡x3)

�
, x3 2 I, is the nth eigenpair for

problem (1.7). Then
�
�(n)

k

 
k,n2N can be written as a nondecreasing sequence {�̃m}m2N, where

eigenvalues are repeated according to their multiplicity, which coincides with the spectral sequence
of the tridimensional spectral problem⇢

�div(B(x̄)r̄v)� b(x̄)�3v = �v, a.e. (x̄, x3) 2 ! ⇥ I,
v 2 H1

0 (! ⇥ I). (2.11)

In particular, �1 = �̃1 = �(1)
1 .

Proof. Denote by (�(n)
k ,'(n)

k ) a normalized kth eigenpair for problem (2.10). Then, it can be
checked that

1) The family of functions {v(n)
k = '(n)

k (x̄)✓n(x3), n = 1, 2, . . . , k = 1, 2, . . .} is an orthonormal
basis in L2(! ⇥ I);

2) (�(n)
k , v(n)

k ), k, n 2 N, are eigenpairs of (2.11).

Since the operator (�div(B(x̄)r̄)�b(x̄)�3), whose domain is a linear subset of H1
0 (!⇥I) dense in

L2(!⇥I), is a coercive self-adjoint operator in L2(!⇥I) with a compact resolvent, in view of 1) and
2) and using the Fredholm Theorem, we conclude that all its eigenvalues belong to

�
�(n)

k

 
k,n2N.

This completes the proof.

3. Proof of Theorem 1.1 (" ⇡ �)

In this section we prove Theorem 1.1. Let us recall that (µ0,�0) is the first normalized eigenpair
for problem (1.6) with ⌧ = 1, while (&1, ✓1) = (⇡2,

p
2 cos(⇡x3)) is the first normalized eigenpair for

problem (1.7). Since we are expecting the asymptotic behavior mentioned in (1.8) for the shifted
spectrum �" � µ0

"2 , instead of the energy defined in (1.4) for � = ", we consider the functional
I" : L2(! ⇥ I)! [0,+1], defined by

I"(v) :=

8<
:
Z

!⇥I
Ā"(x̄)r̄v(x)r̄v(x) +

a"
33(x̄)
"2

|r3v(x)|2 � µ0

"2
|v(x)|2 dx, if v 2 H1

0 (! ⇥ I),

+1, otherwise.
(3.1)

Using Proposition 2.3 with ⌧ = 1, we conclude that I"(v) = G"(u), where G" : L2(!⇥I)! [0,+1]
is the functional given by

G"(u) :=

8<
:
Z

!⇥I
B̄"(x̄)r̄u(x)r̄u(x) +

b"
33(x̄)
"2

⇣
|r3u(x)|2 � ⇡2|u(x)|2

⌘
dx, if u 2 H1

0 (! ⇥ I),

+1, otherwise,
(3.2)

10



Jul 27, 2010

where, a.e. x̄ 2 !,

B̄"(x̄) :=
�
b"
↵�(x̄)

�
2M2⇥2, b"

↵�(x̄) :=
h
�0

⇣ x̄

"

⌘i2
a↵�

⇣ x̄

"

⌘
, b"

33(x̄) :=
h
�0

⇣ x̄

"

⌘i2
a33

⇣ x̄

"

⌘
.

Remark 3.1. Notice that since �0 2 H1
#(Y ) \ C0,s

# (Y ), for some 0 < s < 1, is strictly positive,
we have that B" := (�0( ·

" ))2A" is a 3 ⇥ 3 real, symmetric and "Y -periodic matrix, satisfying a
condition of the type (1.1).

In order to prove Theorem 1.1, we must check that the sequence {G"}">0 satisfies the hypotheses
of Proposition 2.1.

Proposition 3.2. Let G" be the functional in (3.2). Then the sequence {G"}">0 �-converges,
with respect to the strong topology of L2(!⇥I), to the functional G : L2(!⇥I)! [0,+1] defined
by

G(u) :=

(Z
!

B̄hr̄'(x̄)r̄'(x̄) dx̄, if u(x̄, x3) = '(x̄) ✓1(x3), ' 2 H1
0 (!),

+1, otherwise,

where the constant matrix B̄h is the homogenized limit of the sequence {B̄"}">0. Moreover, G"

also satisfies conditions (i) and (ii) in Proposition 2.1.

Proof. We will proceed in two steps.

Step 1. We prove that if u", u 2 L2(! ⇥ I) are such that u" ! u in L2(! ⇥ I) as " ! 0+, then
G(u) 6 lim inf

"!0+
G"(u"). Furthermore, conditions (i) and (ii) in Proposition 2.1 are satisfied.

We start by observing that if w 2 H1
0 (! ⇥ I), then for a.e. x̄ 2 !, w(x̄, · ) 2 H1

0 (I). Thus, since
&1 = ⇡2 is the first eigenvalue associated with problem (1.7), we have, a.e. x̄ 2 !,

Z
I

�
|r3w|2 � ⇡2|w|2

�
dx3 > 0. (3.3)

The uniform ellipticity of B" (see Remark 3.1) and (3.3) ensure that G" > 0 in L2(! ⇥ I). Hence,
condition (i) in Proposition 2.1 is satisfied.

Let u", u 2 L2(! ⇥ I) be as in the statement of Step 1. Up to a subsequence (which we will not
relabel), we may assume without loss of generality that

lim inf
"!0+

G"(u") = lim
"!0+

G"(u") < +1.

Then {u"}">0 ⇢ H1
0 (! ⇥ I) and sup" G"(u") < +1. Using (3.3), the uniform ellipticity of B" and

the uniform bound of {u"}">0 in L2(! ⇥ I), we get
Z

!⇥I
|r̄u"|2 dx 6 C,

Z
!⇥I

|r3u"|2 dx 6 C "2 + ⇡2

Z
!⇥I

|u"|2 dx 6 C, (3.4)

where C and C are constants independent of ". Consequently, sup" ku"kH1
0 (!⇥I) < +1 and u" * u

weakly in H1
0 (!⇥I). The sequential lower semicontinuity of the L2-norm with respect to the weak

topology and (3.4) yield Z
!⇥I

�
|r3u|2 � ⇡2|u|2

�
dx 6 0.

11
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Hence, taking into account (3.3),
R

I(|r3u|2 � ⇡2|u|2) dx3 = 0, a.e. x̄ 2 !, from which we deduce
that there is a function ' 2 H1

0 (!) such that u(x̄, x3) = '(x̄) ✓1(x3), a.e. (x̄, x3) 2 ! ⇥ I.

Using Fubini’s Theorem, Fatou’s Lemma, Proposition 2.4 (see also Remark 3.1) and the condition
k✓1kL2(I) = 1, we obtain

lim inf
"!0+

G"(u") > lim inf
"!0+

Z
!⇥I

B̄"(x̄)r̄u"(x)r̄u"(x) dx >
Z

I

 Z
!

B̄hr̄u(x)r̄u(x) dx̄

�
dx3 = G(u).

Finally, to conclude Step 1, we observe that if sup" G"(u") < +1 and sup" ku"kL2(!⇥I) < +1,
then (3.4) holds. Consequently, condition (ii) in Proposition 2.1 is also satisfied.

Step 2. We prove that for any u 2 L2(!⇥I), there exists a sequence {u"}">0 ⇢ L2(!⇥I) satisfying
u" ! u in L2(! ⇥ I) as "! 0+, and G(u) = lim

"!0+
G"(u").

Given u 2 L2(! ⇥ I), the only nontrivial case is when u(x̄, x3) = '(x̄) ✓1(x3), with ' 2 H1
0 (!),

otherwise, considering Step 1, it’s enough to take u" ⌘ u.

By Proposition 2.4, there exists a sequence {'"}">0 ⇢ H1
0 (!) converging in L2(!) to ' and such

that
lim

"!0+

Z
!

B̄"(x̄)r̄'"(x̄)r̄'"(x̄) dx̄ =
Z

!
B̄hr̄'(x̄)r̄'(x̄) dx̄.

Recalling that
R

I

�
|✓01|2 � ⇡2|✓1|2) dx3 = 0, in order to obtain the intended equality it su�ces to

define u"(x̄, x3) := '"(x̄) ✓1(x3). This concludes Step 2 as well as the proof of Proposition 3.2.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let H" be the Hilbert space H := L2(! ⇥ I) endowed with the scalar
product ( · | · )", where

(u|v)" :=
Z

!⇥I

h
�0

⇣ x̄

"

⌘i2
u(x)v(x) dx, u, v 2 L2(! ⇥ I).

Since �0 2 H1
#(Y ) \ C0,s

# (Y ) is a strictly positive function, there exist 0 < c1 < c2 such that for
all ȳ 2 Y , c1 < �0(ȳ) < c2. Moreover, by Riemann-Lebesgue’s Lemma,

h
�0

⇣ ·
"

⌘i2 ?
*

Z
Y

���0(ȳ)
��2 dȳ = 1 as "! 0+, weakly-? in L1(R2).

Hence conditions (2.1) and (2.2) hold. On the other hand, for each " > 0, G" defined in (3.2) is
a nonnegative lower semicontinuous quadratic form in L2(! ⇥ I). Consequently, the associated
operator, A", is a self-adjoint operator in H" (see [5, Thm 12.13]). Let {(⌫",k, u",k)}k2N and
{(⌫k,'k)}k2N be such that

u",k 2 H1
0 (! ⇥ I), A"u",k = ⌫",ku",k, ⌫",1 6 ⌫",2 6 · · · 6 ⌫",k 6 · · · , (u",k|u",l)" = �kl,

'k 2 H1
0 (!), �divx̄(B̄hr̄'k) = ⌫k'k, ⌫1 6 ⌫2 6 · · · 6 ⌫k 6 · · · , ('k|'l) = �kl,

where (·|·) represents the standard scalar product in L2(!).

By Propositions 2.1 and 3.2, ⌫",k ! ⌫k as " ! 0+. Moreover, up to a subsequence that we do
not relabel, u",k * uk weakly in H1

0 (! ⇥ I) as " ! 0+, where uk is the product between an

12
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eigenfunction associated with ⌫k and ✓1. Conversely, any eigenfunction uk = 'k✓1 is the weak
limit of a particular sequence of eigenfunctions associated with ⌫",k.

To finish the proof of Theorem 1.1 we are left to show that (1.8) holds. Considering for each k 2 N,
µk 2 R and functions wk and w̃k such that

wk(x) = �0

⇣ x̄

"

⌘
w̃k(x), a.e. x = (x̄, x3) 2 ! ⇥ I,

Proposition 2.3 implies that wk belongs to H1
0 (!⇥ I) if, and only if, w̃k belongs to H1

0 (!⇥ I), and
also that the equalities

G"(w̃k) = (A"w̃k|w̃k)" = µk(w̃k|w̃k)", (w̃k|w̃l)" = �kl

hold true if, and only if, the equalities

I"(wk) =
⇣
� divx̄(Ā"r̄wk)� a"

33

"2
�3wk �

µ0

"2
wk

���wk

⌘
= µk(wk|wk), (wk|wl)" = �kl

are satisfied, where (·|·) represents the standard scalar product in L2(!⇥I) and I" is the functional
in (3.1). Replacing µk by ⌫",k, wk by v",k and w̃k by u",k, we conclude the proof of (1.8).

4. Proof of Theorem 1.2 ("⌧ �)

This section is devoted to the proof of Theorem 1.2. The arguments are similar to those of
Theorem 1.1, however, in this case problem (1.6) does depend on ", this compels us to study
the asymptotic behavior of its first normalized eigenpair (µ⌧

",0,�
⌧
",0) as " ! 0+. Throughout this

section we assume that ⌧ 2 (0, 1) is fixed, and that � = "⌧ .

Proposition 4.1. Assume that, in addition to the hypotheses made in the beginning of Section 1,
a↵� are uniformly Lipschitz continuous in Y . Let {(%j , j)}j2N0 be given by (1.9)� (1.10), and let
i 2 N be such that i�1

i < ⌧ 6 i
i+1 . Then �⌧

",0(·/") ! 1 ⌘  0 uniformly in !, and µ⌧
",0 behaves as

follows:
µ⌧

",0 = %0 + "2(1�⌧)%1 + · · · + "2i(1�⌧)%i + o
�
"2i(1�⌧)

�
. (4.1)

Proof. Let us start by proving that µ⌧
",0 ! %0 = ⇡2

R
Y a33(ȳ) dȳ > 0, and that all the others

eigenvalues of problem (1.6) tend to +1 as "! 0+. By Rayleigh’s formula for µ⌧
",0,

µ⌧
",0 = min

�2H1
#

(Y )

k�k
L2(Y )=1

⇢Z
Y

1
"2(1�⌧)

Ā(ȳ)r̄�(ȳ)r̄�(ȳ) + a33(ȳ)⇡2|�(ȳ)|2 dȳ

�
. (4.2)

Using (1.1) and � ⌘ 1 as a test function in (4.2), we conclude that ⇣⇡2 6 µ⌧
",0 6 %0. In

particular, lim sup"!0+ µ⌧
",0 6 %0. Since �⌧

",0 is a minimizer for µ⌧
",0, using again (1.1) we

deduce that kr̄�⌧
",0kL2(Y ) ! 0. Consequently, �⌧

",0 ! 1 in H1
#(Y ). In turn, this implies

lim inf"!0+ µ⌧
",0 > lim inf"!0+

R
Y a33(ȳ)⇡2|�⌧

",0(ȳ)|2 dȳ = %0. Therefore, µ⌧
",0 ! %0 as "! 0+.

Similarly, using Rayleigh’s formula for µ",1 and admitting that the latter is bounded, we are led
to a contradiction, since we would conclude that any minimizing sequence of eigenfunctions must
convergence on the one hand to the constant function  0 ⌘ 1 and on the other hand to a function

13
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having zero mean (by the orthogonality condition). So, except the first, all the eigenvalues of
problem (1.6) tend to +1 as "! 0+.

We now prove the statement on the asymptotic behavior of �⌧
",0. If, in addition, we suppose

that a↵� are uniformly Lipschitz continuous in Y , then (see, [7, Thm. 8.8]) {�⌧
",0}">0 is uniformly

bounded in H2(Y ). Due to the compact injection of H2(Y ) in C0(Y ), we conclude that �⌧
",0(ȳ)! 1

uniformly in Y as "! 0+. Finally, the Y -periodicity of �⌧
",0 ensures that �⌧

",0(·/") ! 1 uniformly
in ! as "! 0+.

We are left to establish (4.1). It is based on the Vishik-Lusternik Lemma (see [12, Lemma III.1.1]):
Let L : H ! H be a linear compact self-adjoint operator in a Hilbert space H, and suppose that
� > 0 and f 2 H are such that kLf � �fkH 6 �, for some constant � 2 R+. Then there exists an
eigenvalue �̄ of L such that |�̄� �| 6 �kfk�1

H .

For the sake of simplicity we will present the proof only for i = 1, the argument being
easily generalized for i > 1. Considering H = L2

#(Y ), and setting ✏ := "2(1�⌧), µ✏ := µ⌧
",0

b(ȳ) := ⇡2a33(ȳ) and A✏' := �1
✏ div(Ā(ȳ)r̄') + b(ȳ)', ' 2 H1

#(Y ), we apply the above result to
L✏ : L2

#(Y )! L2
#(Y ) such that L✏g = ', solution of A✏' = g, to f✏ := A✏ ✏,  ✏ :=  0+✏ 1+✏2 2,

and to �✏ = (%0 + ✏%1)�1.

Since L✏f✏ � �✏f✏ =  ✏ � �✏A✏ ✏ =: w✏, using (1.9)–(1.10) we conclude that

w✏ =
⇣
✏2
�
(b� %0) 2 � %1 1

�
� ✏3%1 2

⌘
(%0 + ✏%1)�1.

In view of the condition %0 > 0, we deduce that for all ✏ > 0 small enough and for a
constant c independent of ✏, kw✏kH 6 ✏2c. Consequently, there exists an eigenvalue �̄✏ satisfying
|�̄✏ � (%0 + ✏%1)�1| 6 ✏2c, for some other constant c independent of ✏, where we used the fact that
kA✏ ✏kH ! %0 > 0. Since all the eigenvalues of L✏ tend to zero, except the first, which converges
to %�1

0 > 0, we conclude that for all ✏ small enough, �̄✏ = µ�1
✏ . Hence, |µ✏ � (%0 + ✏%1)| 6 ✏2c, for

some other constant c independent of ✏. This concludes the proof for i = 1.

As it was already mentioned, the main ideas of the proof of Theorem 1.2 are those of Theorem 1.1.
We are expecting the asymptotic behavior referred in (1.12) for the shifted spectrum �"�

µ⌧",0
"2⌧ (see

also (4.1)), and so instead of the energy defined in (1.4) for � = "⌧ , we consider the functional
I⌧
" : L2(! ⇥ I)! [0,+1], defined by

I⌧
" (v) :=

8<
:
Z

!⇥I
Ā"(x̄)r̄v(x)r̄v(x) +

a"
33(x̄)
"2⌧

|r3v(x)|2 �
µ⌧

",0

"2⌧
|v(x)|2 dx, if v 2 H1

0 (! ⇥ I),

+1, otherwise.

By Proposition 2.3, we have that I⌧
" (v) = G⌧

" (u), where G⌧
" : L2(!⇥ I)! [0,+1] is the functional

given by

G⌧
" (u) :=

8<
:
Z

!⇥I
B̄⌧

" (x̄)r̄u(x)r̄u(x) +
b⌧,"
33 (x̄)
"2

⇣
|r3u(x)|2 � ⇡2|u(x)|2

⌘
dx, if u 2 H1

0 (! ⇥ I),

+1, otherwise,
(4.3)

and, a.e. x̄ 2 !,

B̄⌧
" (x̄) :=

�
b⌧,"
↵�(x̄)

�
2M2⇥2, b⌧,"

↵�(x̄) :=
h
�⌧

",0

⇣ x̄

"

⌘i2
a↵�

⇣ x̄

"

⌘
, b⌧,"

33 (x̄) :=
h
�⌧

",0

⇣ x̄

"

⌘i2
a33

⇣ x̄

"

⌘
.
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The analogue to Proposition 3.2 reads as follows.

Proposition 4.2. Let G⌧
" be the functional in (4.3). Then the sequence {G⌧

"}">0 �-converges,
with respect to the strong topology of L2(! ⇥ I), to the functional G⌧ : L2(! ⇥ I) ! [0,+1]
defined by

G⌧ (u) :=

(Z
!

Āhr̄'(x̄)r̄'(x̄) dx̄, if u(x̄, x3) = '(x̄) ✓1(x3), ' 2 H1
0 (!),

+1, otherwise,

where Āh is the homogenized limit of the sequence {Ā"}">0. Moreover, G⌧
" also satisfies conditions

(i) and (ii) in Proposition 2.1.

Proof. The proof is very similar to that of Proposition 3.2, however we outline the main
di↵erences.

Step 1. We prove that if u", u 2 L2(! ⇥ I) are such that u" ! u in L2(! ⇥ I) as " ! 0+, then
G⌧ (u) 6 lim inf

"!0+
G⌧

" (u"). Furthermore, conditions (i) and (ii) in Proposition 2.1 are satisfied.

Without loss of generality we may assume that lim inf"!0+ G⌧
" (u") = lim"!0+ G⌧

" (u") < +1.
Then, using (1.1) and the uniform convergence �⌧

",0(·/")! 1 in ! (see Proposition 4.1), we conclude
that (3.4) holds. Consequently, u" * u weakly in H1

0 (!⇥I) as "! 0+, where u(x̄, x3) = '(x̄)✓1(x3)
for some ' 2 H1

0 (!), a.e. (x̄, x3) 2 ! ⇥ I.

Fix 0 < � < 1. Then for all " su�ciently small,
⇥
�⌧

",0(·/")
⇤2

> 1� �. Therefore, Fubini’s Theorem,
(1.1), Fatou’s Lemma, Proposition 2.4 and the condition k✓1kL2(I) = 1 ensure that

lim inf
"!0+

G⌧
" (u") > lim inf

"!0+

Z
!⇥I

B̄⌧
" (x̄)r̄u"(x)r̄u"(x) dx

> (1� �)
Z

I


lim inf
"!0+

Z
!

Ā"(x̄)r̄u"(x)r̄u"(x) dx̄

�
dx3 > (1� �)G⌧ (u),

from which we conclude that G⌧ (u) 6 lim inf
"!0+

G⌧
" (u") by letting � ! 0+.

To prove that G⌧
" satisfies conditions (i) and (ii) in Proposition 2.1 it su�ces to repeat the

correspondent arguments in Step 1 of Proposition 3.2. This concludes Step 1.

Step 2. We prove that for any u 2 L2(!⇥I), there exists a sequence {u"}">0 ⇢ L2(!⇥I) satisfying
u" ! u in L2(! ⇥ I) as "! 0+, and G⌧ (u) = lim

"!0+
G⌧

" (u").

Given u 2 L2(! ⇥ I), the only nontrivial case is when u(x̄, x3) = '(x̄) ✓1(x3), with ' 2 H1
0 (!),

otherwise, considering Step 1, it’s enough to take u" ⌘ u.

By Proposition 2.4, there exists a sequence {'"}">0 ⇢ H1
0 (!) converging in L2(!) to ' and such

that
lim

"!0+

Z
!

Ā"(x̄)r̄'"(x̄)r̄'"(x̄) dx̄ =
Z

!
Āhr̄'(x̄)r̄'(x̄) dx̄. (4.4)

Fix � > 0. Let "0 > 0 be such that for all 0 < " 6 "0,
⇥
�⌧

",0(·/")
⇤2

6 1 + �. Define
u"(x̄, x3) := '"(x̄) ✓1(x3). Recalling that

R
I

�
|✓01|2 � ⇡2|✓1|2) dx3 = 0, from (4.4) and (1.1) we

conclude that
lim sup
"!0+

G⌧
" (u") = lim sup

"!0+

Z
!

B̄⌧
" (x̄)r̄'"(x)r̄'"(x) dx

6 (1 + �)
Z

!
Āhr̄'(x̄)r̄'(x̄) dx̄ = (1 + �)G⌧ (u).
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Letting � ! 0+ and using Step 1, we conclude Step 2 as well as the proof of Proposition 4.2.

Proof of Theorem 1.2. Replacing G" by G⌧
" , (µ0,�0) by (µ⌧

",0, 
⌧
",0), and recalling

Propositions 4.1 and 4.2, the proof of Theorem 1.2 is analogous to that of Theorem 1.1.

5. Proof of Theorems 1.4 and 1.8 ("� �)

Throughout this section we assume that ⌧ 2 (1,+1) is fixed, and that � = "⌧ . As we mentioned
before, the lack of a positive uniform lower bound for {�⌧

",0}">0 will prevent us from using
Proposition 2.1. So, in order to prove Theorems 1.4 and 1.8, we will take advantage essentially of
Propositions 2.3 and 2.5, and of the asymptotic behavior of the eigenpair (µ⌧

",0,�
⌧
",0) introduced in

(1.6), which is the aim of the following lemmas.

To simplify the statements and the proof of the lemmas, we introduce some notations: b :=
(a33 � amin)⇡2, ✏ := "⌧�1, µ✏ := µ⌧",0�amin⇡2

"2(⌧�1) , �✏ := �⌧
",0. Problem (1.6) then reads

�div(Ār̄�✏) +
b

✏2
�✏ = µ✏�✏, �✏ 2 H1

#(Y ), k�✏kL2(Y ) = 1. (5.1)

The asymptotic behavior of (µ✏,�✏) depends strongly on the behavior of the potential b. As we
referred in the Introduction, an interesting case is when b oscillates between two di↵erent values
and this justifies the present hypotheses on the coe�cients.

Lemma 5.1. Under the hypotheses of Theorem 1.4 and using the above notations, let (⌫0, q0)
represent the normalized first eigenpair for problem (1.13), and consider q0 extended by zero to
the whole Y . Let also µ✏,1 represent the second eigenvalue for problem (5.1) and ⌫1 the second
eigenvalue for problem (1.13). Then {�✏}✏>0 converges in norm to q0 in L2(Y ) and weakly in
H1(Y ). Moreover,

µ✏ ! ⌫0, µ✏,1 ! ⌫1 as ✏! 0+. (5.2)

Proof. We will only prove the first convergence in (5.2), since the second one is analogous having
in mind that the orthogonality condition

R
Y �q0dȳ = 0 reads

R
Q �q0dȳ = 0.

Step 1: We prove that µ✏ 6 ⌫0.

Noticing that b vanishes in Q, the eigenvalue µ✏ is given by the Rayleigh’s formula

µ✏ = inf
�2H1

#
(Y )

k�k
L2(Y )=1

⇢Z
Y

Ār̄�r̄�dȳ +
1
✏2

Z
Y \Q

b|�|2 dȳ

�
. (5.3)

Using in (5.3) test functions q 2 H1
0 (Q), with kqkL2(Q) = 1, extended by zero to the whole Y , we

obtain
µ✏ 6 inf

q2H1
0(Q)

kqk
L2(Q)=1

⇢Z
Q

Ār̄qr̄q dȳ

�
= ⌫0, (5.4)

which conclude Step 1.

Step 2. We establish the convergence of {�✏}✏>0.

In the previous step we proved that

µ✏ =
Z

Y
Ār̄�✏r̄�✏ dȳ +

1
✏2

Z
Y \Q

b|�✏|2 dȳ 6 ⌫0 =
Z

Q
Ār̄q0r̄q0 dȳ. (5.5)
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Consequently,
Z

Y
Ār̄�✏r̄�✏ dȳ 6

Z
Q

Ār̄q0r̄q0 dȳ,

Z
Y \Q

b|�✏|2 dȳ 6 ✏2⌫0. (5.6)

Using (1.1), from the first estimate in (5.6) we conclude that kr�✏kL2(Y ) is bounded independently
of ✏. Hence, up to a subsequence, {�✏}✏>0 converges to some �0 2 H1

#(Y ) weakly in H1(Y ) and
strongly in L2(Y ). A lower semicontinuity argument then yields

Z
Q

Ār̄�0r̄�0 dȳ 6
Z

Y
Ār̄�0r̄�0 dȳ 6 lim inf

✏!0+

Z
Y

Ār̄�✏r̄�✏ dȳ 6
Z

Q
Ār̄q0r̄q0 dȳ. (5.7)

Fix c > 0 such that b(·) > c on Y \Q. Then, in view of the second estimate in (5.6),

k�✏k2L2(Y \Q)
=
Z

Y \Q
|�✏|2 dȳ 6

✏2

c
⌫0 �!

✏!0+
0.

Thus �0 = 0 a.e. in Y \Q. Consequently, �0 2 H1
0 (Q) and k�0kL2(Q) = 1. Finally, from (5.7)

and since �0 is admissible in the variational definition of ⌫0, we obtain �0 ⌘ q0, as well as the
convergence of the whole sequence {�✏}✏>0.

Step 3. We prove that µ✏ ! ⌫0 as ✏! 0+.

By (5.5), we have

µ✏ =
Z

Y
Ār̄�✏r̄�✏ dȳ +

1
✏2

Z
Y \Q

b|�✏|2 dȳ >
Z

Y
Ār̄�✏r̄�✏ dȳ,

and so, in view of (5.7) and since �0 ⌘ q0,

lim inf
✏!0+

µ✏ >
Z

Q
Ār̄q0r̄q0 dȳ = ⌫0,

which, together with (5.4), concludes Step 3.

Lemma 5.2. Under the hypotheses of Theorem 1.4 and using the previous notations, the
normalized first eigenpair (µ✏,�✏) for problem (5.1) has the following asymptotic behavior for
any integer n 2 N:

µ✏ = ⌫0 + ✏µ1 + ✏2µ2 + · · · + ✏nµn + ⇢n,✏,

where µi, i 2 {1, · · · , n}, are well determined constants and |⇢n,✏| 6 cn✏n+ 1
2 , for some positive

constants cn independent of ✏, and

�✏ = q0 + ✏�1,✏ + ✏2�2,✏ + · · · + ✏n�n,✏ + rn,✏,

where �i,✏, i 2 {1, · · · , n}, are well-defined functions in L2(Y ) and krn,✏kL2(Y ) 6 c̄n✏n+ 1
2 for certain

positive constants c̄n independent of ✏.

Proof. The proof is based on the asymptotic expansion technique. We will detail the proof for
n = 1, being clear how to extend it for the higher orders.
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For � > 0 we define Q� := {ȳ 2 Y : dist(ȳ, Q) < �}. Let �0 > 0 be such that the outward normals
to @Q of length 2�0 do not intersect. Consider a system of local coordinates (s, ✓) on Q2�0\Q,
where ✓ represents the local coordinate on @Q and s 2 [0, 2�0) stands for the distance to @Q in the
outward normal direction. In this local coordinates, equation (5.1) in Q2�0\Q reads

�div(Ā?r̄'✏) + b? · r̄'✏ +
b

✏2
'✏ = µ✏'✏, (5.8)

for a certain uniformly elliptic matrix Ā? = (a?
↵�) with smooth coe�cients as functions of s and ✓,

and for a certain vector b? = (b?
1, b

?
2), where b?

1, b
?
2 are also smooth functions of s and ✓.

In the sequel we will deal with di↵erent coordinates on di↵erent sides of @Q. For the sake of
simplicity we will abusively identify f(ȳ) with f(ȳ(s, ✓)) or, conversely, g(s, ✓) with g(s(ȳ), ✓(ȳ)).

For small ✏ > 0 we search for �✏ and µ✏ with the following development

µ✏ = ⌫0 + ✏µ1 + ✏2µ2 + · · · , (5.9)
�✏ = q0 + ✏�1,✏ + ✏2�2,✏ + · · · , (5.10)

where, we recall, (⌫0, q0) is the normalized first eigenpair for problem (1.13), and �i,✏, i > 1, have
the form

�i,✏(ȳ) :=

8><
>:
��i (ȳ), in Q,
�+

i

⇣s

✏
, ✓
⌘
, in Q2�0\Q,

0, in Y \Q2�0 .
(5.11)

In view of the regularity assumptions on the coe�cients a↵� and b and on the domain Q, the
following Taylor expansions for ✓ fixed hold true

a?
↵�(s, ✓) = a?

↵�(0, ✓) +
@a?

↵�

@s
(0, ✓)s +

@2a?
↵�

@s2
(0, ✓)

s2

2
+
@3a?

↵�

@s3
(⇠(s), ✓)

s3

3!
, (5.12)

b(s, ✓) = b(0, ✓) +
@b

@s
(0, ✓)s +

@2b

@s2
(0, ✓)

s2

2
+
@3b

@s3
(⌘(s), ✓)

s3

3!
. (5.13)

Setting ⌧ = s/✏, ⌧ 2 [0, 2�0/✏), substituting (5.9) and (5.10)–(5.11) in (5.8), using expressions
(5.12)–(5.13) and collecting like powers of ✏, we obtain in Q2�0\Q, for the power ✏�1, that �+

1 must
satisfy

�a?
11(0, ✓)

@2�+
1

@⌧2
+ b(0, ✓)�+

1 = 0,

where ✓ is a parameter.

Denote by  +
1 the solution, for fixed ✓, of

8>><
>>:
�a?

11(0, ✓)
@2 +

1

@⌧2
+ b(0, ✓) +

1 = 0,

lim
⌧!1

 +
1 (⌧, ✓) = 0,

@ +
1

@⌧
(0, ✓) = � 1

a?
11(0, ✓)

.

Then

 +
1 (⌧, ✓) =

1p
a?
11(0, ✓)b(0, ✓)

e
�
q

b(0,✓)
a?11(0,✓) ⌧

,
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and we define
�+

1 (⌧, ✓) := �
⇥
(Ār̄q0nQ)(ȳ(0, ✓))

⇤
 +

1 (⌧, ✓),

where nQ represents the outward normal to @Q at ȳ(0, ✓), so that we may have

⇣
a?
11
@�+

1

@⌧

⌘
(0, ✓) =

�
Ār̄q0nQ

�
(ȳ(0, ✓)).

Also, ��1 must satisfy ⇢
�div(Ār̄��1 ) = ⌫0�

�
1 + µ1q0, a.e. in Q,

��1 |@Q(ȳ(0, ✓)) = �+
1 (0, ✓), (5.14)

and, from the compatibility condition
Z

@Q
(Ār̄q0nQ

�
�+

1 d� = µ1

Z
Q
|q0|2 dȳ,

we obtain
µ1 =

Z
@Q

(Ār̄q0nQ

�
�+

1 d� = �
Z

@Q
|Ār̄q0nQ

��2 +
1 d� < 0. (5.15)

So, ��1 is uniquely defined as the solution of (5.14) with µ1 given by (5.15), and satisfying
Z

Q
q0�

�
1 dȳ = 0. (5.16)

Collecting the terms of order ✏0 we obtain in Q2�0\Q that �+
2 must satisfy

�a?
11(0, ✓)

@2�+
2

@⌧2
+ b(0, ✓)�+

2 = R(⌧, ✓)

where R(⌧, ✓) is a finite sum of functions of the type f(✓)⌧e�c(✓)⌧ with f and c > 0 being bounded
functions of ✓. Therefore, problem

8><
>:
�a?

11(0, ✓)
@2�+

2

@⌧2
+ b(0, ✓)' = R(⌧, ✓),

lim
⌧!1

�+
2 (⌧, ✓) = 0, a?

11(0, ✓)
@�+

2

@⌧
(0, ✓) = (Ār̄��1 nQ)(ȳ(0, ✓)),

has a unique solution �+
2 , which is smooth in (⌧, ✓) and decays exponentially as ⌧ !1.

We now define ��2 in Q as the solution in Q of

⇢
�div(Ār̄��2 ) = ⌫0�

�
2 + µ1�

�
1 + µ2q0, a.e. in Q,

��2 |@Q(ȳ(0, ✓)) = �+
2 (0, ✓),

with
µ2 :=

Z
@Q

(Ār̄q0nQ

�
�+

2 d�

so that the compatibility condition is satisfied.
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Now, in order to make the function �✏ and its derivatives continuous at @Q, we introduce a smooth
function  �2 , defined on Q, such that  �2 |@Q = 0, Ār̄ �2 nQ = �Ār̄��2 nQ. Consider also a cut-o↵
function ��0 2 C1(R; [0, 1]) such that ��0(s) = 1, if s 6 �0, and ��0(s) = 0, if s > 2�0.

Finally, we set

w✏(ȳ) :=

8><
>:

q0(ȳ) + ✏��1 (ȳ) + ✏2��2 (ȳ) + ✏2  �2 (ȳ), if ȳ 2 Q,⇣
✏�+

1

⇣s(ȳ)
✏

, ✓(ȳ)
⌘

+ ✏2�+
2

⇣s(ȳ)
✏

, ✓(ȳ)
⌘⌘
�2�0(s(ȳ)), if ȳ 2 Q2�0\Q,

0, if ȳ 2 Y \Q2�0 ,

(5.17)

and
⇤✏ := ⌫0 + ✏µ1 + ✏2µ2. (5.18)

Then, it can be checked that for suitable constants c0 and c1 independent of ✏, the following
estimates hold true

kw✏kL2(Y ) 6 1 + c0✏
2, (5.19)���� div(Ār̄w✏) +

1
✏2

bw✏ � ⇤✏w✏

���
L2(Y )

6 c1✏
3/2. (5.20)

Indeed, from (5.16) and the fact that q0 vanishes outside Q it follows that �1,✏ is orthogonal to q0.
Thus, considering the normalization kq0kL2(Y ) = 1, we obtain

kq0 + ✏�1,✏k2L2(Y ) = 1 + ✏2k�1,✏k2L2(Y ). (5.21)

This implies in particular that kq0 + ✏�1,✏kL2(Y ) > 1 and kq0 + ✏�1,✏kL2(Y ) 6 kq0 + ✏�1,✏k2L2(Y ).
Therefore, (5.19) is a consequence of (5.21).

To justify (5.20), we use (5.17) and (5.18) and the definitions of all functions q0, �±1 , �±2 ,  �2 and
��0 . After straightforward rearrangements we obtain

�div(Ār̄w✏) +
1
✏2

bw✏ � ⇤✏w✏ =

8><
>:
✏2r�✏ (ȳ), ȳ 2 Q,

✏r+
✏

⇣
s(ȳ), ✓(ȳ),

s(ȳ)
✏

⌘
, if ȳ 2 Q2�0\Q,

0, if ȳ 2 Y \Q2�0 ,

(5.22)

where
kr�✏ kL2(Q) 6 c2 and |r+

✏ (s, ✓, ⌧)| 6 c3⌧
je�c4⌧ (5.23)

with positive independent of ✏ constants c2, c3 and c5, and for some j 2 N. It follows from the
second upper bound in (5.23) that for some positive constant c5,

kr+
✏ k2L2(Y \Q) 6 c5✏. (5.24)

Then, in view of the first upper bound in (5.23) and thanks to (5.24) and (5.22), we obtain estimate
(5.20).

In order to obtain the announced estimates we notice that, by Lemma 5.1, we can find ✏0 > 0 such
that for all ✏ < ✏0 the ground state µ✏ and the second eigenvalue µ✏,1 of problem (5.1) satisfy the
inequality µ✏ � µ✏,1 > c̄ > 0. So, using Vishik-Lusternik Lemma (see [12, Lemma III.1.1]), from
(5.19) and (5.20) we get

|⇤✏ � µ✏| 6 c6✏
3/2, kw✏ � �✏kL2(Y ) 6 c7✏

3/2, (5.25)
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for some positive constants c6, c7 independent of ✏. Considering the definitions of w✏ and ⇤✏ we
conclude, from (5.25), that

|µ✏ � (⌫0 + ✏µ1)| 6 c8✏
3/2, k�✏ � (q0 + ✏�1,✏)kL2(Y ) 6 c9✏

3/2,

for some constants c8 > 0 and c9 > 0. This completes the proof for n = 1.

Remark 5.3. If the potential b is constant in Q, continuous in Y and has linear or quadratic
growth in the vicinity of @Q, i.e., b(ȳ) = ↵(ȳ)d(ȳ) or b(ȳ) = ↵(ȳ)d2(ȳ), for ȳ 2 Q�0\Q, where
↵(·) > 0 and d(·) = dist(·, @Q), the techniques are similar to the case treated in Lemma 5.2. In
the linear growth case we obtain, for n = 1, µ✏ = ⌫0 + ✏2/3µ1, and in the case of quadratic growth,
also for n = 1, µ✏ = ⌫0 + ✏1/2µ1.

We now prove Theorems 1.4 and 1.8.

Proof of Theorem 1.4. By Proposition 2.5, the first eigenvalue �",1 of the tridimensional
problem (1.5) coincides with the first eigenvalue, �(1)

",1, of the bidimensional problem in H1
0 (!),

�div
�
Ā"(x̄)r̄'(1)

"

�
+

a"
33(x̄)
"2⌧

⇡2'(1)
" = �(1)

" '(1)
" , a.e. x̄ 2 !.

Also, the correspondent normalized eigenfunctions v",1 and '(1)
",1 satisfy the following relation

v",1(x) = '(1)
",1(x̄)✓1(x3), a.e. x = (x̄, x3) 2 ! ⇥ I,

where ✓1 is the first normalized eigenfunction of problem (1.7).

On the other hand, recalling the proof of Proposition 2.3, relation (2.4) holds true if we restrict
(2.3) to v and u only depending on x̄. Using (2.4), for ', 2 H1

0 (!) satisfying

'(x̄) = �⌧
",0

⇣ x̄

"

⌘
 (x̄), a.e. x̄ 2 !,

we obtain

�",1 = �(1)
",1 = inf

'2H1
0(!)

'6⌘0

Z
!

Ā"(x̄)r̄'(x̄)r̄'(x̄) +
a"
33(x̄)
"2⌧

⇡2|'(x̄)|2 dx̄Z
!
|'(x̄)|2 dx̄

, (5.26)

=
µ⌧

",0

"2⌧
+ inf

 2H1
0(!)

 6⌘0

Z
!

h
�⌧

",0

⇣ x̄

"

⌘i2
Ā"(x̄)r̄ (x̄)r̄ (x̄) dx̄Z

!

h
�⌧

",0

⇣ x̄

"

⌘i2
| (x̄)|2 dx̄

=
µ⌧

",0

"2⌧
+ ⌫⌧

",1.

Using Lemma 5.1 and recalling the notations introduced at the beginning of this section, we get
µ⌧

",0 ! ⌫0 and �⌧
",0 * q0 weakly in H1

#(Y ) as "! 0+, and

�",1 =
amin⇡2

"2⌧
+
⌫0
"2

+ "⌧�3µ1 + · · · + "k(⌧�1)�2µk + ⇢⌧
" + ⌫⌧

",1,
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where |⇢⌧
" | 6 C"(k+ 1

2 )⌧�(k+ 5
2 ) ! 0 as "! 0+.

To conclude the proof of Theorem 1.4 we are left to prove that ⌫⌧
",1 ! 0 as " ! 0+. Construct

a sequence { "}">0 in H1
0 (!) as follows: for each " > 0 let K" := { 2 Z2 : "( + Y ) ⇢ !}, and

define
T" := int

✓ [
2K"

"(i + Y )
◆

.

Consider the cut-o↵ function ��0 introduced in Lemma 5.2 in the definition of w✏ (see (5.17)).
Extend ��0 to the whole R2 by Y -periodicity, and define  " by  "(x̄) := ��0

�
x̄
"

�
, if x̄ 2 T", and

 "(x̄) := 0, if x̄ 2 !\T".

Using the definition of ⌫⌧
",1, taking  " as test function, using the uniform bounds in (1.1), the usual

change of scales ȳ = "�1x̄, together with the Y -periodicity of ��0 and �⌧
",0, and since we have

kr̄��0kL1(Y ) 6 c/�0, we obtain

0 6 ⌫⌧
",1 6

⌘

"2

Z
T"

h
�⌧

",0

⇣ x̄

"

⌘i2���(r̄��0)
⇣ x̄

"

⌘���2 dx̄
Z

T"

h
�⌧

",0

⇣ x̄

"

⌘i2�����0

⇣ x̄

"

⌘���2 dx̄
6

⌘c2

"2�2
0

Z
Q2�0\Q�0

���⌧
",0(ȳ)

��2 dȳ

Z
Q

���⌧
",0(ȳ)

��2 dȳ
. (5.27)

Using Lemma 5.2 with k = n and recalling the definitions and the estimates therein, we obtain,
for ȳ = ȳ(s, ✓) 2 Q2�0\Q,

�⌧
✏,0(ȳ(s, ✓)) = "⌧�1P (s, ✓) + rk," (5.28)

where, since ⌧ > (k + 2)/k,

krk,"kL2(Y \Q) 6 c̄k"
(⌧�1)(k+ 1

2 ) 6 c̄k"
2+ 1

k , (5.29)

and P satisfies the following pointwise estimate

|P (s, ✓)|2 6
kX

m=1

am

⇣s

"

⌘jm

e�bm
s
" (5.30)

for some positive constants am, bm independent of " and for some jm 2 N.

Consequently, putting together (5.28), (5.29) and (5.30), and in view of (5.27), we conclude that

0 6 ⌫⌧
",1 6

c̄

"2

✓Z
Q

���⌧
",0(ȳ)

��2 dȳ

◆�1 kX
m=1

am"
⌧�1�jme�bm

�0
"

Z
Q2�0\Q�0

sjm ds +

+
c̄

"2

✓Z
Q

���⌧
",0(ȳ)

��2 dȳ

◆�1

"2(2+
1
k ),

(5.31)

for some constant c̄ independent of ". Having in mind that, from Lemma 5.1,
R

Q

���⌧
",0(ȳ)

��2 dȳ ! 1
as "! 0+, we may pass in (5.31) to the limit as "! 0+ to conclude the proof of Theorem 1.4.

Proof of Theorem 1.8. We start by observing that we may assume without loss of generality
that 0 2 !.
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In view of the definition of �",1 (see (5.26)), we deduce that

�",1 >
amin

"2⌧
⇡2,

and so
lim

"!0+

�
"2⌧�"

�
⇢ [amin⇡

2,+1]. (5.32)

To prove the opposite inclusion we fix " > 0 and recall the notations of Proposition 2.5 with B, b

and �(n)
k replaced by Ā",

a"33
"2⌧ and �(n)

",k , respectively. Let also �(n)
" :=

�
�(n)

",k : n 2 N
 
.

For fixed " > 0 we have that "2⌧�(1)
",k ! +1 as k !1. Using a diagonal argument we can find a

sequence {�"}">0 ⇢ �" such that �" ! +1 as "! 0+. Thus,

+1 2 lim
"!0+

�
"2⌧�"

�
. (5.33)

Moreover, by Proposition 2.5 one has

�" =
[
n2N

�(n)
" .

We claim that
lim

"!0+

�
"2⌧�(1)

"

�
� [amin⇡

2,+1). (5.34)

Assume that (5.34) holds. Then the inclusion �" � �(1)
" yields

lim
"!0+

�
"2⌧�"

�
� lim

"!0+

�
"2⌧�(1)

"

�
� [amin⇡

2,+1),

which, together with (5.32) and (5.33), establishes (1.14).

In order to show (5.34) we first perform a change of variables that will transform problem
⇢
�div

�
Ā"(x̄)r̄'(1)

"
�

+ a"33(x̄)
"2⌧ ⇡2'(1)

" = �(1)
" '(1)

" , a.e. x̄ 2 !,
'" 2 H1

0 (!),
(5.35)

into an equivalent one allowing us to pass to the limit as " ! 0+. Recall that problem (5.35)
corresponds to (2.10) for n=1, with B replaced by Ā" and b replaced by a"33

"2⌧ .

Let !" := !
"⌧ �

ȳ0
"⌧�1 , where ȳ0 is a point of minimum of a33. Notice that if B ⇢ R2 is a bounded

set, then for all " > 0 small enough, B ⇢ !", since 0 2 ! and ⌧ > 1. Associating to each function
' 2 H1

0 (!) the function  2 H1
0 (!") defined by  (z̄) := '("⌧ z̄ + "ȳ0) and using the change of

variables z̄ := "�⌧ x̄� "1�⌧ ȳ0, (5.35) becomes
(
�div(D̄"(z̄)r̄ (1)

" ) + d"(z̄) (1)
" = ⇢(1)

"  (1)
" , a.e. z̄ 2 !",

 (1)
" 2 H1

0 (!"),
(5.36)

where ⇢(1)
" := "2⌧�(1)

" , while D̄" and d" are defined by

D̄"(z̄) := Ā("⌧�1z̄ + ȳ0), d"(z̄) := a33("⌧�1z̄ + ȳ0)⇡2, z̄ 2 R2, (5.37)
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respectively. In view of (1.1), for all ⇠ 2 R2 and for a.e. z̄ 2 R2 one has

⇣k⇠k2 6 (D̄"(z̄)⇠|⇠) 6 ⌘k⇠k2, ⇣ 6 d"(z̄) 6 ⌘. (5.38)

Hence, up to a subsequence that we do not relabel, the sequence {D̄"}">0 G-converges to some
matrix D̄0 (see [5], [11]) and the sequence {d"}">0 weakly-? converges in L1(R2) to some
d0 2 L1(R2). On the other hand, since a↵� and a33 are continuous in a neighborhood of ȳ0,
D̄" ! Ā(ȳ0) and d" ! a33(ȳ0)⇡2 uniformly on each compact subset of R2 as " ! 0+. Thus, by
definition of H-limit, we conclude that D̄0 ⌘ Ā(ȳ0) and d0 ⌘ a33(ȳ0)⇡2 = amin⇡2. In particular,
the whole sequences {D̄"}">0 and {d"}">0 converge.

Let S" represent the self-adjoint operator �div(D̄"r̄·) + d"· from L2(!") into itself. Then its
spectrum is �(S") = "2⌧�(1)

" . Therefore, proving (5.34) is equivalent to proving

lim
"!0+

�(S") � [d0,+1). (5.39)

Consider now the inverse operator, S�1
" , of S", i.e., the compact self-adjoint operator from L2(!")

into itself that associates to each f" 2 L2(!"), S�1
" f" :=  ", where  " 2 H1

0 (!") is the solution of
⇢
�div(D̄"r̄ ") + d" " = f", a.e. in !",
 " 2 H1

0 (!").
(5.40)

For the sake of simplicity we will not distinguish a function in H1
0 (!") from its zero extension to

the whole R2.

Let us also introduce the self-adjoint operators from L2(R2) into itself, S := �div(D̄0r̄·) + d0·
and its inverse operator S�1, that associates to each f 2 L2(R2), S�1f :=  , where  2 H1(R2)
is the solution of ⇢

�div(D̄0r̄ ) + d0 = f, a.e. in R2,
 2 H1(R2). (5.41)

Since D̄0 is a positive definite constant matrix and d0 > 0, �(S) = [d0,+1). Hence, if we prove
that

lim
"!0+

�
�
S�1

"

�
� �

�
S�1

�
, (5.42)

it follows that lim"!0+ �(S"

�
� �(S) = [d0,+1), which is precisely (5.39). In order to show (5.42),

we start by proving that S�1
" converges strongly to S�1 as "! 0+; more precisely, if f 2 L2(R2),

then S�1
" f�!" ! S�1f in L2(R2) as "! 0+.

Let f 2 L2(R2), and define f" := f�!" 2 L2(!"). Let  " := S�1
" f" (extended by zero outside !")

and  := S�1f . Thanks to (5.38), we have, up to a subsequence that we do not relabel,  " * '
weakly in H1(R2) as " ! 0+, for some ' 2 H1(R2). Moreover, since  " is the solution of (5.40),
if # 2 C1c (R2) then we have, for all " > 0 small enough, supp# ⇢ !" and

Z
R2

D̄"r̄ "r̄#dz̄ +
Z

R2
d" "#dz̄ =

Z
R2

f#dz̄. (5.43)

Letting "! 0+ we obtain
Z

R2
D̄0r̄'r̄#dz̄ +

Z
R2

d0'#dz̄ =
Z

R2
f#dz̄. (5.44)
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Since # 2 C1c (R2) was arbitrary, we deduce that ' =  a.e. in R2. Thus,  " *  weakly in
H1(R2) as "! 0+ and so, to establish the strong convergence in L2(R2) it su�ces to prove that

lim
"!0+

Z
R2

| "|2 dz̄ =
Z

R2
| |2 dz̄.

Let L := lim inf"!0+
R

R2 | "|2 dz̄. Without loss of generality we may assume that the inferior limit
defining L is actually a limit, otherwise we would extract a subsequence. By the sequential lower
semicontinuity of the norm with respect to the weak topology of L2(R2), L >

R
R2 | |2 dz̄.

To prove the converse inequality, we start by observing that in view of [5, Thm 13.12], if c 2 R is
such that inf" d" > c > 0, then the sequence of functionals {F"}">0, where F" : H1(R2)! [0,+1]
is defined by

F"(�) :=

8<
:
Z

!"

D̄"(z̄)r̄�(z̄)r̄�(z̄) + (d"(z̄)� c)|�(z̄)|2dz̄, if � 2 H1
0 (!"),

+1, otherwise,

�-converges as " ! 0+, with respect to the weak topology of H1(R2), to the functional
F0 : H1(R2)! [0,+1] given by

F0(�) :=
Z

R2
D̄0r̄�(z̄)r̄�(z̄) + (d0 � c)|�(z̄)|2dz̄.

Thus, since  " *  in H1(R2) as "! 0+,

lim inf
"!0+

Z
!"

D̄"r̄ "r̄ " + (d" � ⇣̄)| "|2 dz̄ >
Z

R2
D̄0r̄ r̄ + (d0 � ⇣̄)| |2 dz̄, (5.45)

for any 0 < ⇣̄ < ⇣. Furthermore, using, in addition, the strong convergence f" ! f in L2(R2) as
"! 0+, and the fact that (5.43) holds for all # 2 H1

0 (!") and (5.44) holds for all # 2 H1(R2), we
deduce that Z

!"

D̄"r̄ "r̄ " + d"| "|2 dz̄ =
Z

!"

f  " dz̄ �!
"!0+

�!
"!0+

Z
R2

f  dz̄ =
Z

R2
D̄0r̄ r̄ + d0| |2 dz̄.

Consequently,

lim inf
"!0+

Z
!"

D̄"r̄ "r̄ " + (d" � ⇣̄)| "|2 dz̄ = lim
"!0+

✓Z
!"

D̄"r̄ "r̄ " + d"| "|2 dz̄

◆
� ⇣̄L

=
Z

R2
D̄0r̄ r̄ + d0| |2 dz̄ � ⇣̄L,

(5.46)

where we also used the definition of L. From (5.45) and (5.46) we deduce that L 6
R

R2 | |2 dz̄.
Hence, L =

R
R2 | |2 dz̄ and S�1

" f" =  " !  = S�1f in L2(R2) as "! 0+.

Finally, we prove (5.42). Assume by contradiction that there is � 2 �(S�1) which is not a cluster
point of �(S�1

" ). Then there exist c > 0 and "0 > 0 such that for all �" 2 �(S�1
" ) with 0 < " < "0

one has
|�" � �| > c.
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Let f 2 L2(R2), and set f" := f�!" 2 L2(!"). If �" 2 �(S�1
" ) with 0 < " < "0, then

kS�1
" f" � �f"kL2(R2) = kS�1

" f" � �f"kL2(!") > |�" � �|kf"kL2(!") > ckf"kL2(R2). (5.47)

Using the strong convergence of S�1
" established above together with the strong convergence f" ! f

in L2(R2) as "! 0+, and letting "! 0+ in (5.47), we get

kS�1f � �fkL2(R2) > ckfkL2(R2),

which contradicts the fact that � 2 �(S�1) since f 2 L2(R2) was taken arbitrarily. Thus (5.42)
holds, and this finishes the proof of Theorem 1.8.
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[8] V. Jikov, S. Kozlov, O. Olĕınik, Homogenization of di↵erential operators and integral
functionals, Springer-Verlag, Berlin, 1994

[9] S. Kozlov, A. Piatnitski, E↵ective di↵usion for a parabolic operator with periodic potential,
SIAM J. Appl. Math. 53 (1993), 401–418

26



Jul 27, 2010

[10] S. Kozlov, A. Piatnitski, Degeneration of e↵ective di↵usion in the presence of periodic potential,
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