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Faculdade de Ciências e Tecnologia Faculdade de Ciências

Universidade Nova de Lisboa Universidade de Lisboa
2829−516 Caparica, Portugal 1749−016 Lisboa, Portugal

email: fac@fct.unl.pt email: ivette.gomes@fc.ul.pt

Abstract

In this paper we consider a new class of consistent semi-parametric es-
timators of a negative extreme value index, based on the set of the k
largest observations. This class of estimators depends on a control or
tuning parameter, which enables us to have access to an estimator with a
null second-order component of asymptotic bias, and with a rather inter-
esting mean squared error, as a function of k. We study the consistency
and asymptotic normality of the proposed estimators. Their finite sample
behaviour is obtained through Monte Carlo simulation.
Keywords: Extreme value index, Semi-parametric estimation; Moment
Estimator.
Mathematics Subject Classification (2010): Primary 62G32,
62E20; Secondary 65C05

1 Introduction and Outline

Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the order statistics associated with
the sequence Xi, i = 1, . . . , n, of independent random variables with
common distribution function (d.f.) F . Suppose that F belongs to the
max-domain of attraction of a non-degenerate d.f. G and use the notation
F ∈ DM(G). Then G is the Extreme Value distribution (Gnedenko, [5]):

Gγ(x) ≡ exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ R. (1)

The generalized shape parameter γ, also know as the extreme value index
(EVI), is the parameter we want to estimate. A necessary and sufficient
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condition for F ∈ DM(G) is (de Haan, [10]):

lim
t→∞

U(tx)− U(t)
a(t)

= Dγ(x) :=
{

xγ−1
γ , γ 6= 0

lnx, γ = 0
, ∀ x > 0, (2)

for some measurable positive function a(t) and with U(t) standing for
the reciprocal quantile function defined by U(t) := F←(1 − 1/t), t ≥ 1
with F←(x) := inf{y : F (y) ≥ x}, the generalized inverse function of F .

Among the most popular EVI estimators, based on a set of positive
upper order statistics, we refer the Hill estimator [12], defined by

γ̂Hn (k) ≡M (1)
n (k) :=

1
k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) , (3)

valid for γ > 0 only. For a general γ ∈ R, Dekkers et al. [2] proposed the
Moment estimator, with the functional expression

γ̂MOM
n (k) = γ̂Hn (k) + γ̂NMn (k), (4)

where

γ̂NMn (k) := 1− 1
2

(
1−

(
M

(1)
n (k)

)2
M

(2)
n (k)

)−1

, (5)

and

M (α)
n (k) :=

1
k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n)α , α > 0. (6)

The Moment estimator, in (4), combines two estimators: the Hill estima-
tor, in (3), and the estimator in (5) which will be called, in this paper,
the “negative Moment” estimator. For intermediate k, i.e., a sequence of
integers k = kn, 1 ≤ k < n, such that

k = kn →∞ and k/n→ 0, as n→∞, (7)

it is well known that γ̂Hn (k), γ̂MOM
n (k) and γ̂NMn (k) in (3), (4) and (5),

are consistent for γ+ := max(0, γ), γ and γ− := min(0, γ), respectively.

Most of the classical EVI estimators have usually a high variance for
small values of k and a high bias when k is large. This problem affects
both the Hill and the Moment estimator and leads to a difficult choice
of the “optimal” k, i.e., the value k that minimizes the asymptotic mean
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squared error. For heavy tails (γ > 0), the adequate accommodation
of the bias of Hill’s estimator has been extensively addressed by several
authors. Recently, Caeiro et al. [1], Gomes et al. [7] and [6] introduced, in
different ways, second-order minimum-variance reduced-bias estimators
that reduce the bias of Hill’s estimator without increasing the asymptotic
variance, which is kept equal to γ2.

As already noticed in Fraga Alves [4], when γ > 0, γ̂Hn (k) has smaller
asymptotic variance than γ̂MOM

n (k), and when γ < 0, γ̂NMn (k) and
γ̂MOM
n (k) have the same asymptotic variance. This remark led us to

study a semi-parametric class of consistent estimators for γ < 0, which
generalizes the negative Moment estimator in (5). Such a class, given by

γ̂NM(θ)
n (k) := γ̂NMn (k) + θM (1)

n (k), θ ∈ R. (8)

depends on a tuning parameter θ ∈ R, and we get the estimator in (5) for
θ = 0. With the appropriate choice of θ, γ̂NM(θ)

n (k) enables us to have
access to an estimator of a negative EVI with a smaller asymptotic bias
and the same asymptotic variance as the Moment estimator.
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Figure 1: Sample paths of γ̂NM(θ)
n (k) in (8) against k, for one sample of

size n = 10000 from the G−0.5 (left) and Arcsin (right) models.

Figure 1 illustrates, for several values of θ, the behaviour of γ̂NM(θ)
n (k)

versus k for a sample of size n = 10000 from the Extreme Value dis-
tribution in (1) with γ = −0.5 and the ArcSin distribution with d.f.
F (x) = (2/π) arcsin(

√
x), 0 < x < 1, (γ = −2).

In Section 2 of this paper, we state a few results already proved in the
literature and derive the asymptotic properties of the new class of EVI
estimators, in (8). Finally, in Section 3, we perform a small-scale Monte-
Carlo simulation, in order to compare the behaviour of the estimators
under study for finite samples.
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2 Main results

2.1 Second order regular variation conditions

In order to derive the asymptotic behaviour of several semi-parametric
EVI estimators, we need the following second order condition:

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x) :=

1
ρ

(
xγ+ρ − 1
γ + ρ

− xγ − 1
γ

)
, (9)

for all x > 0, where ρ ≤ 0 is a second order parameter controlling the
speed of convergence in (2) and |A(t)| ∈ RVρ, with RVa standing for the
class of regularly varying functions with an index of regular variation a,
i.e. positive measurable functions g such that limt→∞ g(tx)/g(t) = xa, for
all x > 0. Since we need a second order condition for lnU(t), we state
the following theorem:

Theorem 2.1 (Draisma et al., [3], de Haan and Ferreira [11], Appendix.
B3). Assume U(∞) > 0 and (9) holds with ρ ≤ 0 and γ 6= ρ. Then,

A(t) :=
(
a(t)
U(t)

− γ+

)
−→
t→∞

0, (10)

and with

l := lim
t→∞

(
U(t)− a(t)

γ

)
for γ + ρ < 0,

A(t)
A(t)

−→
t→∞

c =


0, γ < ρ ≤ 0;
γ
γ+ρ , 0 ≤ −ρ < γ ∨ (0 < γ < −ρ, l = 0);
±∞, γ = −ρ ∨ (0 < γ < −ρ, l 6= 0) ∨ ρ < γ ≤ 0.

Furthermore, we have

lim
t→∞

lnU(tx)−lnU(t)
ã(t) − xγ−−1

γ−

Ã(t)
= Hγ−,ρ̃(x), (11)

for all x > 0, with ã(t) := a(t)/U(t), H defined in (9),

ρ̃ :=

 γ, ρ < γ ≤ 0
−γ, 0 < γ < −ρ, l 6= 0
ρ, (0 < γ < −ρ ∧ l = 0) ∨ γ < ρ ≤ 0 ∨ γ ≥ −ρ > 0
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and

Ã(t) :=


A(t), c = 0

γ+ −
a(t)
U(t) , c = ±∞

ρ
γ+ρA(t), c = γ

γ+ρ

, (12)

with |Ã(t)| ∈ RVρ̃.

Remark 2.1 (de Haan and Ferreira [11], Remark B.3.18). It follows that

qγ,ρ := lim
t→∞

A(t)

Ã(t)
=


0 γ < ρ ≤ 0;
γ
ρ (0 < γ < −ρ ∧ l = 0) ∨ γ ≥ −ρ > 0;
−1 (0 < γ < −ρ, l 6= 0) ∨ ρ < γ ≤ 0.

(13)

Since ρ < 0 for a variety of models we add the following proposition with
a similar proof to Proposition 1 from [8]:

Proposition 2.1. Let us assume that (9) holds with ρ < 0. Then, there
exists ã0(·) and Ã0(·) such that

lim
t→∞

lnU(tx)−lnU(t)
ã0(t) − xγ−−1

γ−

Ã0(t)
=
xγ−+ρ̃ − 1
γ− + ρ̃

, ∀x > 0, (14)

with Ã0(t) = Ã(t)
ρ̃ and ã0(t) = ã(t)(1− Ã0(t)).

2.2 Auxiliary results

More generally than Lemma 3.5.5 in de Haan and Ferreira [11], but with
a similar proof, we now state the following:

Lemma 2.1. Under the second order framework in (11) and for inter-
mediate k, i.e. whenever (7) holds we have for any α > 0, and M

(α)
n (k)

defined in (6),

M
(α)
n (k)

(ã(t))α
d= µα,γ +

σα,γ√
k
Z

(α)
k + bα,γ,ρ̃ Ã(n/k) (1 + op(1)) ,

where with Yi, 1 ≤ i ≤ n a sequence of independent, identically dis-
tributed Pareto random variables with d.f. FY (x) = 1− 1/x, x ≥ 1,

Z
(α)
k :=

√
k

σα,γ
× 1
k

k∑
i=1

((
Y
γ−
i − 1
γ−

)α
− µα,γ

)
, (15)
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is a sequence of asymptotically standard normal random variable. More-
over,

µα,γ := E

((
Y γ− − 1
γ−

)α)
=

{
Γ(α+1)Γ(−1/γ)

(−γ)α+1Γ(α+1−1/γ)
, γ < 0;

Γ(α+ 1), γ ≥ 0,
(16)

σ2
α,γ := V

((
Y γ− − 1
γ−

)α)
= µ2α,γ − µ2

α,γ , (17)

and

bα,γ,ρ̃ :=E

(
α

(
Y γ− − 1
γ−

)α−1

Hγ−,ρ̃(Y )

)
.

Remark 2.2. If ρ̃ < 0 one can easily get an explicit expression for bα,γ,ρ̃,
which holds for any α > 0 and γ ∈ R. It is given by

bα,γ,ρ̃ =


α
ρ̃

(
µα−1,γ/(1−(γ+ρ̃))

(1−(γ+ρ̃))α(γ+ρ̃) −
µα−1,γ

γ+ρ̃ − µα,γ
)
, γ < 0, ρ̃ < 0

Γ(α+1)
ρ̃

(
1−(1−ρ̃)α

ρ̃(1−ρ̃)α − α
)
, γ ≥ 0, ρ̃ < 0

,

with µα,γ given in (16).

The next lemma follows closely Corollary 3.5.6 from [11].

Lemma 2.2. Under the conditions of Lemma 2.1,

γ̂NMn (k) d= γ− +
σNM√
k
ZNMk + bNM Ã(n/k) (1 + op(1)) ,

with

bNM :=
(1− γ−)(1− 2γ−)

(1− γ− − ρ̃)(1− 2γ− − ρ̃)
,

σ2
NM

:=
(1− γ−)2(1− 2γ−)(1− γ− + 6γ2

−)
(1− 3γ−)(1− 4γ−)

and with σα,γ := σα,γ/µα,γ, µα,γ and σα,γ given in (16) and (17), respec-
tively, and Z(α)

k defined in (15),

ZNMk := (1− γ−)(1− 2γ−)
(
σ2,γZ

(2)
k − 2σ1,γZ

(1)
k

)
is an asymptotically standard normal random variable.
Consequently, if

√
kÃ(n/k) →

n→∞
λ finite, possibly non null,

√
k(γ̂NMn (k)− γ−) d−→

n→∞
N
(
λ bNM , σ

2
NM

)
.
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2.3 Asymptotic behaviour of the new class of estimators

Theorem 2.2. Under the conditions of Lemma 2.1:

γ̂NM(θ)
n (k) d=(γ− + θγ+) +

1√
k

(
σNMZ

NM
k + γ+σ1,γZ

(1)
k

)
+

+
(
bNM + θγ+b1,γ,ρ̃ +

θ qγ,ρ
1− γ−

)
Ã(n/k) (1 + op(1)) ,

(18)

with qγ,ρ defined in (13).

Proof. Using Lemma 2.1,

M (1)
n (k) d= ã(t)

(
1

1− γ−
+
σ1,γ√
k
Z

(1)
k + b1,γ,ρ̃ Ã(n/k) (1 + op(1))

)
,

Next, since ã(t) = γ+ + qγ,ρÃ(t) and γ+/(1− γ−) = γ+ ,

M (1)
n (k) d= γ+ +

γ+σ1,γ√
k

Z
(1)
k +

(
γ+b1,γ,ρ̃ +

qγ,ρ
1− γ−

)
Ã(n/k)(1 + op(1)),

Finally, using Lemma 2.2, (18) follows.

Remark 2.3. If γ < 0, and
√
kÃ(n/k) →

n→∞
λ, finite,

√
k(γ̂NM(θ)

n (k)− γ) d−→
n→∞

N

(
λ
(
bNM +

θ qγ,ρ
1− γ

)
, σ2

NM

)
.

Remark 2.4. With the adequate choice of θ0 = −(1 − γ)bNM/qγ,ρ, if
qγ,ρ 6= 0, we have access to an asymptotically unbiased second-order EVI
estimator. The adaptively choice of the “optimal” θ is outside the scope
of this work.

Remark 2.5. We advise not to choose blindly the value of θ in (8). At
this stage we think sensible to draw a few sample paths of γ̂NM(θ)

n (k),
for a few values of θ, and elect the value θ0 which provides higher sta-
bility in the region of k values, for which we get admissible estimates.
However, we hope to be able to adaptively choose θ on the basis of the
bootstrap methodology and the consideration of an auxiliary statistic like
γ̂
NM(θ)
n (k) − γ̂

NM(θ)
n

(
[k/2]

)
, of the type of the one used in Gomes and

Oliveira [9] for the adaptive choice of k through the Hill estimator in (3).
This is however outside the scope of this paper.
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3 Finite sample properties of the new class of
EVI-estimators

We now study the finite sample behaviour of the extreme value in-
dex estimator γ̂NM(θ)

n (k) and compare it with the classical Moment es-
timator. We have chosen two different values of θ: one of them is
θ = 0 and the other one was chosen by trial until we had a sta-
ble sample path of the estimates (for small up to moderate values of
k). We generated 5000 pseudorandom samples of size n, with n ∈
{50, 100, 200, 500, 1000, 2000, 5000, 10000}, from the following distribu-
tions:

• The EVγ distribution in (1), with γ = −0.5,−0.9 (ρ = −1, ρ̃ = γ);

• The Arcsin distribution with d.f. F (x) = (2/π) arcsin(
√
x), 0 <

x < 1, for which we have γ = ρ = ρ̃ = −2;

• The Half-normal distribution, i.e., the absolute value of a standard
normal distribution (γ = ρ = ρ̃ = 0).

Although the asymptotic results, from the previous section, exclude the
case γ = ρ, we have decided to include the Arcsin and Half-normal distri-
butions in the simulation study. To ilustraste the finite sample behaviour
of the EVI estimators for such models, we present, in Figure 3, the simu-
lated mean values (E) and root mean squared error (RMSE) patterns of
the above mentioned estimators, as functions of k, for a sample size n =
200, 1000 and 5000. Figures 3 and 4 have the same simulated quantities
for the EV−0.5 and Half-normal distribution with n = 1000.

In Tables 1 and 2 we present the simulated mean values and root
mean squared errors of the estimators under study, at their simulated
optimal levels.

Based on the simulated results here presented, we may draw the fol-
lowing conclusions:

1. With the proper choice of θ, the new class of estimators, γ̂NM(θ)
n (k),

appears to be asymptotically unbiased. The variance is kept un-
changed and is equal to the variance of the Moment estimator.

2. The new class of EVI estimators has, in general, reasonably stable
sample paths, which makes less troublesome the choice of the level
k.

3. Although outside of the theoretical framework, we get the same
properties for the Arcsin and Half-normal distribution.
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Table 1: Simulated Mean Values at Optimal Levels

E 50 100 200 500 1000 2000 5000 10000

Arcsin (γ = −2)

MOM −1.8764 −1.8268 −1.8438 −1.8787 −1.9037 −1.9228 −1.9637 −1.9603

NM(.45) −2.3850 −2.1796 −2.1276 −2.0524 −2.0330 −2.0314 −2.0099 −2.0094

NM(0) −2.7167 −2.3748 −2.2618 −2.1719 −2.1172 −2.0868 −2.0584 −2.0360

G−0.5

MOM −0.9217 −0.7243 −0.6508 −0.5892 −0.5647 −0.5451 −0.5343 −0.5251

NM(1.3) −0.7789 −0.6212 −0.5485 −0.5124 −0.4991 −0.4970 −0.4958 −0.4983

NM(0) −1.3135 −1.0231 −0.8571 −0.7297 −0.6665 −0.6264 −0.5968 −0.5789

G−0.9

MOM −1.5462 −1.2523 −1.1339 −1.0432 −1.0189 −0.9889 −0.9615 −0.9484

NM(1.75) −1.2870 −1.0660 −0.9699 −0.9233 −0.9103 −0.9032 −0.8996 −0.8979

NM(0) −1.8055 −1.4752 −1.2401 −1.1300 −1.0655 −1.0218 −0.9931 −0.9640

Half-Normal (γ = −0)

MOM −0.3424 −0.2511 −0.2068 −0.1683 −0.1399 −0.1233 −0.1073 −0.0979

NM(1.2) −0.2199 −0.1495 −0.1151 −0.0979 −0.0918 −0.0857 −0.0787 −0.0699

NM(0) −0.7854 −0.5834 −0.4669 −0.3652 −0.3104 −0.2737 −0.2392 −0.2138

Table 2: Simulated Root Mean Squared Errors at Optimal Levels
RMSE 50 100 200 500 1000 2000 5000 10000

Arcsin

MOM 1.2220 0.7607 0.5326 0.3524 0.2654 0.1987 0.1369 0.1022

NM(.45) 1.3029 0.7758 0.5067 0.3061 0.2129 0.1506 0.0962 0.0686

NM(0) 1.4865 0.8982 0.6014 0.3793 0.2763 0.2021 0.1372 0.1006

G−0.5

MOM 0.9114 0.5078 0.3273 0.2006 0.1427 0.1053 0.0709 0.0531

NM(1.3) 0.8392 0.4509 0.2819 0.1643 0.1132 0.0797 0.0503 0.0358

NM(0) 1.1952 0.7351 0.4992 0.3333 0.2513 0.1949 0.1434 0.1139

G−0.9

MOM 1.3489 0.7406 0.4815 0.2986 0.2164 0.1619 0.1120 0.0860

NM(1.75) 1.2155 0.6301 0.3895 0.2264 0.1570 0.1100 0.0690 0.0488

NM(0) 1.5544 0.8873 0.5889 0.3726 0.2782 0.2090 0.1477 0.1133

Half-Normal

MOM 0.5261 0.3589 0.2679 0.2033 0.1690 0.1457 0.1234 0.1104

NM(1.2) 0.4500 0.2859 0.1991 0.1400 0.1157 0.1004 0.0879 0.0796

NM(0) 0.9222 0.6773 0.5308 0.4104 0.3490 0.3019 0.2594 0.2310
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Figure 2: Simulated mean values (above) and root mean squared errors (below)
of MOM, NM(0) and NM(0.45) extreme value index estimators, for samples of
size n = 200 (left), 1000 (center) and 5000 (right) from the Arcsin distribution.
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Figure 3: Simulated mean values (left) and root mean squared errors (right)
of MOM, NM(0) and NM(0.45) extreme value index estimators, for samples of
size n = 1000 from the EV distribution with γ = −0.5.
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