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Abstract

We begin with some simple questions. What is the distribution of the product of
given powers of independent continuous uniform random variables? Is this distribu-
tion useful? Are there some test statistics with this distribution? Is this distribution
somehow related to the distribution of the product of other random variables? Is this
distribution already known in some context? This short paper will give the answers
to the above questions. It will be seen that the answer to the last four questions
above is: yes! We will show how this distribution may help us to shed some new light
on other well known distributions and also how it may help us in approaching in a
much simpler way some distributions usually considered to be rather complicated.

Key words: product of independent Beta random variables, Wilks Lambda
statistic, Generalized Integer Gamma distribution.

1 Introduction

This paper will provide a different view of some rather well known distributions
and some relations among them. Such new insights, besides shedding some
new light on these distributions may also help us understand the problems
we face when trying to handle closely related distributions which are far less
manageable than the ones studied in this paper and the reasons why that
happens.



The distributions we are interested in studying are the distributions of r.v.’s
(random variables) of the form

V =
p∏

j=1

rj∏

i=1

U
1

δij

ij , for δij > 0 , (1)

where the Uij’s are i.i.d. Unif(0, 1) r.v.’s, for j = 1, . . . , p; i = 1, . . . , rj.

In terms of notation, we will use IN to denote the set of positive integers, IR to
denote the set of reals, IR+ to denote the set of positive reals and /C to denote
the set of complex numbers. We will also use “∼” to denote “is distributed

as” and “
st∼ ” to denote “has the same distribution as” or “is stochastically

equivalent to”.

2 Several distributions which may be represented as the distribu-
tion of the product of powers of independent Uniform r.v.’s

In this section we will show how particular choices of δij will lead to V in (1)
having interesting and useful distributions, whose p.d.f.’s (probability density
functions) and c.d.f.’s (cumulative distribution functions) have concise and
manageable representations.

2.1 The general case – the product of powers of Uniforms as an exponentiated
generalized integer gamma (EGIG) distribution and as the distribution
of the product of Pareto r.v.’s

If all the δij’s are distinct, V in (1) has an exponentiated generalized inte-
ger gamma (EGIG) distribution of depth

∑p
j=1 rj (see Appendix B) with all

shape parameters equal to 1 and rate parameters δij, with p.d.f. and c.d.f.
respectively given by

fV (v) =




p∏

j=1

rj∏

i=1

δij




p∑

j=1

rj∑

i=1

cijv
δij−1

and

FV (v) =




p∏

j=1

rj∏

i=1

δij




p∑

j=1

rj∑

i=1

cij
vδij

δij
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with

cij =
p∏

h=1

rh∏

`=1
(h6=j∨` 6=i)

1

δ`h − δij

.

For δij = δj for all i = 1, . . . , rj, the distribution of V is an EGIG distribution
of depth p with shape parameters rj and rate parameters δj, assuming that
all the δj’s are different for j ∈ {1, . . . , p}. In case there are some equalities
among the δj’s, we only have to group the corresponding Uij’s in (1) or (2)
under the same product in i, this way adding the corresponding rj’s and thus
reducing the depth of the distribution, which will be equal to the number of
different δj’s.

The distribution of

Vj =
rj∏

i=1

U
1
δj

ij (2)

where the Uij’s are i.i.d. Unif(0, 1) r.v.’s, is a simple one, since, using the
relation in section A.1 in Appendix A, we know that

− log U
1
δj

ij ∼ Exp(δj) ,

so that

− log Vj =
rj∑

i=1

− log U
1
δj

ij ∼ Γ(rj, δj) ,

that is, − log Vj is an r.v. with p.d.f.

f− log Vj
(w) =

δ
rj

j

(rj − 1)!
e−δjw wrj−1 , (w > 0)

so that Vj has p.d.f.

fVj
(v) =

δ
rj

j

(rj − 1)!
vδj−1 (− log v)rj−1 , 0 < v < 1 .

Of course, if δj = 1, this reduces to the distribution of the product of rj i.i.d.
Unif(0, 1) r.v.’s, with p.d.f.

fVj
(v) =

1

(rj − 1)!
(− log v)rj−1 , 0 < v < 1 .
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The c.d.f. of Vj is then easy to obtain.

If in (1) we take rj = 1 and δij = δj < 0 (j = 1, . . . , p), the r.v.’s θj U
1
δj

1j will
have Pareto(θj, δj) distributions (see Appendix A). Thus, in this case

V =
p∏

j=1

θj U
1
δj

1j

will have the distribution of the product of p independent r.v.’s with Pareto(θj, δj)
distributions.

But then, the r.v.

V ∗ =




p∏

j=1

θj


 V −1 =

p∏

j=1

U
− 1

δj

1j

will have an EGIG distribution of depth p (if all δj’s are different), with all
shape parameters equal to 1 and rate parameters (−δj), so that V will have
p.d.f. and c.d.f. respectively given by (see Appendix B),

fV (v) = fEGIG







p∏

j=1

θj


 v−1; 1,−δj; p


 1

v2

p∏

j=1

θj

= fGIG


log v −

p∑

j=1

log θj; 1,−δj; p


 1

v3

p∏

j=1

θj , (1 < v < ∞)

and

FV (v) = FEGIG







p∏

j=1

θj


 v−1; 1,−δj; p




= 1− FGIG


log v −

p∑

j=1

log θj; 1,−δj; p


 , (1 < v < ∞) .

We may note that in this case we have

E
(
V h

)
=

p∏

j=1

θh
j

−δj

−δj − h

(
h<− max

1≤j≤p
δj

)
.

If some of the δj’s are equal, we only have to group the corresponding Uij’s
under the same product in i, this way reducing the depth of the EGIG or
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GIG distribution, which will then be equal to the number of different δj’s. At
the same time we will have to increase the corresponding shape parameters
so that they reflect for each δj the number of times it appears repeated. More
precisely, in this case V ∗ would be written as

V ∗ =
p∗∏

j=1

rj∏

i=1

U
− 1

δj

ij

where p∗ ≤ p is the number of different δj’s and as such is the depth of the
EGIG distribution, and rj is the number of times that δj appears repeated.
Then, in this case the rj’s will be the shape parameters in the EGIG distri-
bution of V , which will have p.d.f. and c.d.f. respectively given by

fV (v) = fEGIG







p∏

j=1

θj


 v−1; rj,−δj; p

∗

 1

v2

p∏

j=1

θj

= fGIG


log v −

p∑

j=1

log θj; rj,−δj; p
∗

 1

v3

p∏

j=1

θj , (1 < v < ∞)

and

FV (v) = FEGIG







p∏

j=1

θj


 v−1; rj,−δj; p

∗



= 1− FGIG


log v −

p∑

j=1

log θj; rj,−δj; p
∗

 , (1 < v < ∞) .

Note that these results agree with those given in Arnold (1983) for the cases
in which the δj’s are either all equal or all different.

2.2 When the product of powers of Uniforms is a Beta or a product of Betas

By looking at the results in section A.2 in Appendix A, we may easily see that
if in (2) we take δij = aj + i− 1 (aj > 0), then,

Vj =
rj∏

i=1

U
1

aj+i−1

ij ∼ Beta(aj, rj)
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and as such, in this case,

V =
p∏

j=1

rj∏

i=1

U
1

aj+i−1

ij
st∼

p∏

j=1

Yj , where Yj ∼ Beta(aj, rj)

are p independent r.v.’s (rj ∈ IN)

(3)

Further, from section A.3 in Appendix A, if in (1) we take δij = aj + i/k−1/k,
we will have

V =
p∏

j=1

rj∏

i=1

U
1

aj+i/k−1/k

ij
st∼

p∏

j=1

k∏

i=1

Yji , where Yji ∼ Beta
(
aj + i−1

k
, rj

k

)

are all independent r.v.’s.

(4)

If all the aj + i − 1 in (3) and all the aj + i/2 − 1/2 in (4) are different for
j = 1, . . . , p, i = 1, . . . , rj, the distribution of V in both cases will be an EGIG
distribution of depth

∑p
j=1 rj, with shape parameters all equal to 1 and rate

parameters aj + i− 1 in the first case and aj + i/2− 1/2 in the second case,
with p.d.f. and c.d.f. given respectively by (B.3) and (B.4) in Appendix B. In
case some of the aj + i−1 in (3) or some of the aj + i/2−1/2 in (4) are equal,
then the depth of the EGIG distribution has to be reduced accordingly and
the corresponding shape parameters increased accordingly.

As a particular case of the distribution in (4), we have, the distribution, for
even p, of

p∏

j=1

Yj , where Yj ∼ Beta
(
a + j

2
, b

2

)
, (a > 0, b ∈ IN) ,

are p independent r.v.’s

(5)

which is then the distribution of

V =
p/2∏

j=1

b∏

i=1

U

1

a+
2j−1

2 + i
2−

1
2

ij (6)

where a+ 2j−1
2

+ i
2
− 1

2
varies between a+ 1

2
and a+ p+b

2
−1, with a+ j

2
occurring

rj times (j = 1, . . . , p + b− 2), with

rj =





hj, j = 1, 2

hj + rj−2, j = 3, . . . , p + b− 2 ,
(7)
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where

hj =





1, j = 1, . . . , min(p, b)

0, j = 1 + min(p, b), . . . , max(p, b)

−1, j = 1 + max(p, b), . . . , p + b− 2 ,

(8)

so that we may write

V =
p+b−2∏

j=1

rj∏

i=1

U

1

a+
j
2

ij , (9)

which shows that the exact distribution of V is in this case an EGIG distri-
bution of depth p + b− 2 with shape parameters rj and rate parameters a + j

2

(j = 1, . . . , p + b− 2).

It is interesting to note that the representation for V in (9) clearly indicates the
role of the parameters a+ j

2
as the powers of the Unif(0, 1) r.v.’s, corresponding

to the p + b − 2 first parameters of the Beta r.v.’s appearing in the product-
of-betas representation of V.

We may also note that just by writing the first parameters of the Beta r.v.’s
in (5) in reverse order, we may see that we have for V in (9),

V
st∼

p∏

j=1

Yj , where Yj ∼ Beta
(
a + p+1

2
− j

2
, b

2

)

are independent r.v.’s ,

so that, given the symmetry of the rj’s in (7), with rj = rp+b−1−j, we have for
V in (9),

V =
p+b−2∏

j=1

rj∏

i=1

U

1

a+
j
2

ij =
p+b−2∏

j=1

rj∏

i=1

U

1

a+
p+b−1

2 − j
2

ij .

For ease of notation for the rj’s and the δj’s, in the next section we will actually
prefer the second of these representations..

2.3 The exact distribution of the Wilks Λ statistic

If we assume

X = [X ′
1, X

′
2, . . . , X

′
m]
′ ∼ Np(µ, Σ)
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where

µ =
[
µ′

1
, µ′

2
, . . . , µ′

m

]′
and Σ =




Σ11 Σ12 . . . Σ1m

Σ21 Σ22 . . . Σ2m
...

...
. . .

...

Σm1 Σm2 . . . Σmm




with

µ
k

= E(Xk) and Σkk = V ar(Xk) , Σkk′ = Cov(Xk, Xk′) , k, k′ ∈ {1, . . . , m} ,

and we wish to test the null hypothesis

H0 : Σkk′ = 0 for all k 6= k′ ∈ {1, . . . ,m} , (10)

that is the null hypothesis of independence of the m sets of variables Xk

(k = 1, . . . , m), the l.r.t. (likelihood ratio test) statistic is

Λ =
|S|∏m

k=1 |Skk|

where S is the MLE of Σ and Skk the MLE of Σkk (k = 1, . . . , m).

Let us suppose that we have a sample of size n + 1 from the distribution of
X and suppose that each Xk has pk variables and let us suppose that at most
one of these pk’s is odd. Without any loss of generality, let it be pm.

For m = 2 we know that, taking p = p1 + p2,

Λ
st∼

p1∏

j=1

Yj , with Yj ∼ Beta
(

n−p+j
2

, p2

2

)

or Yj ∼ Beta
(

n−1−j
2

, p2

2

)
, all independent

so that we may write, from (5) and (9), for rj defined as in (7) and (8), with
p and b replaced respectively by p1 and p2,

Λ =
p1+p2−2∏

j=1

rj∏

i=1

U
1

(n−p+j)/2

ij =
p1+p2−2∏

j=1

rj∏

i=1

U
1

(n−1−j)/2

ij ,

which shows that the exact distribution of Λ is, in this case, an EGIG distri-
bution of depth p1 + p2 − 2, with shape parameters rj, given by (7) and (8),

8



and rate parameters n−1−j
2

(j = 1, . . . , p1 + p2− 2), with p.d.f. and c.d.f. given
by (B.3) and (B.4) in Appendix B.

For m > 2, it may be shown (Anderson, 2003), that

Λ =
m−1∏

k=1

Λk,(k+1,...,m) , (11)

where Λk,(k+1,...,m) (k = 1, . . . , m− 1) is the l.r.t. statistic to test

H0k : Σk` = 0, ` = k + 1, . . . , m (k = 1, . . . , m− 1).

The Λk,(k+1,...,m)’s are independent under H0 in (10), and they may be repre-
sented in the form

Λk,(k+1,...,m)
st∼

pk∏

j=1

Yj , with Yj ∼ Beta
(

n+1−qk−j
2

, qk

2

)

or Yj ∼ Beta
(

n−qk−1+j
2

, qk

2

)
, all independent

(12)

where qk = pk+1 + . . . + pm, so that, from (5) and (6) and then (9),

Λ =
m−1∏

k=1

pk∏

j=1

Yj =
m−1∏

k=1

pk/2∏

j=1

qk∏

i=1

U

1
n−qk−1+2j−1

2 + i
2−

1
2

ij

=
m−1∏

k=1

pk+qk−2∏

j=1

rkj∏

i=1

U
1

(n−qk−1+j)/2

ij ,

(13)

where the rkj, for k = 1, . . . , m − 1, are defined in the same manner as the
rj’s in (7) and (8) with p and b replaced respectively by pk and qk. But it
is evident that in (13) there are several repetitions of each δkj = n−qk−1+j

2
,

which indeed, for p = p1 + . . . + pm, range from a minimum value of
n−p+1

2
through a maximum of n−2

2
with δj = n−1−j

2
(j =1, . . . , p− 2) occurring

rj times, where

rj =
m−1∑

k=1

rkj (14)

in which, for k = 1, . . . , m− 1,

rkj =





hkj j = 1, 2

hkj + rk,j−2 j = 3, . . . , pk + qk − 2

0 j = pk + qk − 1, . . . , p− 2

(15)
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with hkj (k = 1, . . . , m − 1; j = 1, . . . , pk + qk − 2) given by (8) with p and b
replaced respectively by pk and qk. Consequently we may write

Λ =
p−2∏

j=1

rj∏

i=1

U
1

(n−1−j)/2

ij (16)

which shows that the exact distribution of Λ is in this case an EGIG distribu-
tion of depth p− 2 with shape parameters rj and rate parameters δj = n−1−j

2

(j = 1, . . . , p− 2), with p.d.f. and c.d.f. given by (B.3) and (B.4) in Appendix
B.

Note that this distribution, under H0 in (10) is still valid if we assume for X
an underlying elliptically contoured or left orthogonal-invariant distributions
(Anderson et al., 1986; Anderson and Fang, 1990; Jensen and Good, 1981;
Kariya, 1981).

For the general case, m ≥ 2, from (11) and (12) and the expression for the
h-th moment of a Beta r.v., we have the usual expression for the h-th moment
of Wilks Λ statistic given by

E
(
Λh

)
=

m−1∏

k=1

pk∏

j=1

Γ
(

n+1−j
2

)
Γ

(
n+1−qk−j

2
+ h

)

Γ
(

n+1−qk−j
2

)
Γ

(
n+1−j

2
+ h

) , (h>−n+1−p
2 ),

while from (16) and the results in Appendix A, we have for the case in which
at most one of the m sets of variables has an odd number of variables, the
h-th moment of Λ can be expressed explicitly as (see also Appendix B for the
moments of the EGIG distribution)

E
(
Λh

)
=

p−2∏

j=1

rj∏

`=1

1
2

n−1−j
h + 1

=
p−2∏

j=1

(
n− 1− j

n− 1− j + 2h

)rj

, (h>−n−p+1
2 )

for rj given by (14) and (15).

3 Conclusions

Interestingly, the distribution of V in (1) yields, for different values of the
δij’s, several other distributions, including the exact distribution of Wilks Λ
statistic, used to test the independence of several sets of variables. The dif-
ficulty encountered in writing down a concise and manageable expression for
the exact distribution of this statistic when more than one set of variables has
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an odd number of variables is related with the fact that in this case we will
be left with at least one Beta r.v. with a non-integer second parameter, and
as such it cannot be represented as a product of powers of Unif(0, 1) r.v.’s.

The distribution of the product of powers of independent Unif(0, 1) r.v.’s
is a useful tool to approach in an unified way the distributions of several
random variables, which would be more challenging to deal with if they were
not recognized as being amenable to such a representation. The distribution
of the product of powers of Unif(0, 1) r.v.’s appears as the common link and
common elementary structure among these distributions.
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Appendices

A Some simple relations among distributions

Many of the relations presented in this Appendix are suitable to be used
as simple problems in an undergraduate course in Statistics or Distribution
Theory. We list them to systematize and establish some of the notation used
in this paper.

A.1 The relation between Uniform, Beta and Exponential variables

It is very easy to establish, by simple transformation, that if

X ∼ Unif(0, 1) ,

then

Y = X1/a ∼ Beta(a, 1) (a > 0) ,

11



and

W = − log Y = −1

a
log X ∼ Exp(a) ,

and vice-versa, that is, if

W ∼ Exp(a) ,

then

Y = e−W ∼ Beta(a, 1)

and

X = Y a = e−aW ∼ Unif(0, 1) .

Also, if we take θ > 0,

Z = θY −1 = θX−1/a ∼ Pareto(θ, a) ,

that is, Z will have p.d.f.

fZ(z) = a
θa

za+1
(z > θ) .

Concerning the moments of these r.v.’s, we may easily see that

E(Xh) =
1

h + 1
, (h > −1)

=⇒ E(Y h) = E
(
Xh/a

)
= E

(
e−hW

)
=

a

a + h
, (h > −a)

=⇒ E(Zh) = θh E(Y −h) = θh E(X−h/a) = θh a

a− h
, (h < a)

and

E(W h) =
1

ah
E

[
(− log X)h

]

︸ ︷︷ ︸
Γ(h+1)

=
Γ(h + 1)

ah
, (h > −1) ,

which for h ∈ IN is also

E(W h) =
dh

dth
E(Y −t)

∣∣∣∣∣
t=0

=
dh

dth
a

a− t

∣∣∣∣∣
t=0

=
h!

ah
.
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A.2 Some Beta r.v.’s as finite products of independent Beta r.v.’s

The following well known result is easy to establish using the representation
of beta random variables in terms of independent gamma variables.

If

Y ∼ Beta(a, b) , a ∈ IR+, b ∈ IN ,

then

Y
st∼

b∏

j=1

Yj ,

where Yj ∼ Beta(a + j − 1, 1) are b independent r.v.’s.

Alternatively the result can be obtained by using the mgf’s or cf ’s of the
logarithms of the random variables in question, by observing that

E(Y h) =
Γ(a + b)

Γ(a)

Γ(a + h)

Γ(a + b + h)
, h > −a ,

so that the c.f. of the r.v. W = − log Y is given by

ΦW (t) =
Γ(a + b)

Γ(a)

Γ(a− it)

Γ(a + b− it)
, t ∈ IR .

Thus, using the relation

Γ(a + n)

Γ(a)
=

n−1∏

i=0

(a + i) , a ∈ /C, ∈ IN,

we may write

ΦW (t) =
b∏

j=1

(a + j − 1)(a + j − i− it)−1 ,

which shows that

W
st∼

b∑

j=1

Wj , where Wj ∼ Exp(a + j − 1)

are b independent r.v.’s.
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But then, using the relation in the previous section of this Appendix,

Y = e−W st∼
b∏

j=1

Yj

where

Yj = e−Wj ∼ Beta(a + j − 1, 1)

are b independent r.v.’s.

Further, if

Yj ∼ Beta

(
a +

j − 1

k
,
b

k

)
, (j = 1, . . . , k)

are k independent r.v.’s and if we define

Y =
k∏

j=1

Yj

we will have

Y 1/k ∼ Beta(ka, b) .

To verify this we may use the Gamma function multiplication formula,

Γ(kz) = (2π)
1
2
(1−k)kkz− 1

2

k−1∏

j=0

Γ
(
z +

j

k

)
,

to write the c.f. of − log Y as

Φ− log Y (t) =
k∏

j=1

Φ− log Yj
(t)

=
k∏

j=1

Γ
(
a + j−1

k
+ b

k

)
Γ

(
a + j−1

k
− it

)

Γ
(
a + j−1

k

)
Γ

(
a + j−1

k
+ b

k
− it

)

=
Γ(ka + b) Γ(ka− kit)

Γ(ka) Γ(ka + b− kit)
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so that Y has the same distribution as the k-th power of a Beta r.v. with
parameters ka and b. Consequently we may write, for b ∈ IN ,

Y 1/k st∼
b∏

j=1

U
1

ka+j−1

j

where Uj are i.i.d. Unif(0, 1) r.v.’s, or

Y
st∼

b∏

j=1

U

1

a+
j−1
2

j .

B The GIG and EGIG distributions

We will say that the r.v. W has a GIG (Generalized Integer Gamma) dis-
tribution of depth p, with shape parameters rj ∈ IN and rate parameters δj

(j = 1, . . . , p), if

W =
p∑

j=1

Wj

where

Wj ∼ Γ(rj, δj) , rj ∈ IN, δj > 0, j = 1, . . . , p

are p independent r.v.’s, and δj 6= δj′ for all j, j ′ ∈ {1, . . . , p}.

The exact p.d.f. and c.d.f. of W are given by (Coelho, 1998),

fGIG(w; rj, δj; p) = K
p∑

j=1

Pj(w) e−δj w , (w > 0) (B.1)

and

FGIG(w; rj, δj; p) = 1−K
p∑

j=1

P ∗
j (w) e−δj w , (w > 0) (B.2)

where K =
∏p

j=1 δ
rj

j ,

Pj(w) =
rj∑

k=1

cj,k wk−1 and P ∗
j (w) =

rj∑

k=1

cj,k (k − 1)!
k−1∑

i=0

wi

i! δk−i
j

15



with

cj,rj
=

1

(rj − 1)!

p∏

i=1
i 6=j

(δi − δj)
−ri , j = 1, . . . , p ,

and, for k = 1, . . . , rj − 1; j = 1, . . . , p,

cj,rj−k =
1

k

k∑

i=1

(rj − k + i− 1)!

(rj − k − 1)!
R(i, j, p) cj,rj−(k−i) ,

where

R(i, j, p) =
p∑

k=1
k 6=j

rk (δj − δk)
−i (i = 1, . . . , rj − 1) .

We will then say that the r.v. V = e−W has an EGIG (Exponentiated Gener-
alized Integer Gamma) distribution of depth p, with shape parameters rj and
rate parameters δj, with p.d.f. and c.d.f. respectively given by

fEGIG(v; rj, δj; p) = fGIG(− log v; rj, δj; p)
1

v
(0 < v < 1) (B.3)

and

FEGIG(v; rj, δj; p) = 1− FGIG(− log v; rj, δj; p) (0 < v < 1) . (B.4)

Note that the h-th moment of V is, for h > − min
1≤j≤p

δj, given by

E(V h) = E
(
e−hW

)
=

p∏

j=1

E
(
e−hWj

)
=

p∏

j=1

δ
rj

j (δj + h)−rj ,

while the h-th moment of W , for h ∈ IN , is given by

E(W h) = E







p∑

j=1

Wj




h

 = (−1)h dh

dth
E(V t)

∣∣∣∣∣
t=0

=
N∑

j=1

h!∏p
`=1 dj`!

p∏

`=1

Γ(r` + dj`)

Γ(r`)
δ
−dj`

` ,
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with

N =
p∑

j=1

(
h− 1

j − 1

) (
p

j

)
=

(
h + p− 1

p− 1

)
,

and where dj` is a non-negative integer which represents the `-th element in
the j-th partition of h into p integers ranging from zero to h, so that

Γ(r` + dj`)

Γ(r`)
=

dj`−1∏

i=0

(r` + i) ,

with any empty product evaluated as 1.
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