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Abstract

In this work we consider three different classical risk models modified
by the introduction of a constant dividend barrier, that is, when the
surplus exceeds this threshold the insurer pays dividends to sharehold-
ers.

For our first model the dividend rate is equal to the premium in-
come, the so called dividend barrier strategy. We derive the finite time
version of recursions due to Dickson and Waters [Dickson, D. C. M.
and Waters, H. R. (2004). Some optimal dividends problems. Astin
Bulletin, 34(1):49–74] and we present a numerical procedure based on
the Markov chain approach (Cardoso and Eǵıdio dos Reis [Cardoso,
R. M. R. and Eǵıdio dos Reis, A. D. (2002). Recursive calculation of
time to ruin distributions. Insurance: Mathematics and Economics,
30(2):219–230] and Cardoso and Waters [Cardoso, R. M. R. and Wa-
ters, H. R. (2003). Recursive calculation of finite time ruin proba-
bilities under interest force. Insurance: Mathematics and Economics,
33(3):659–676; Cardoso, R. M. R. and Waters, H. R. (2005). Calcula-
tion of finite time ruin probabilities for some risk models. Insurance:
Mathematics and Economics, 37(2):197–215]) for the calculation of
the expected discounted value of dividend payouts, until ruin occurs
or up to time t, and its net value when shareholders provide the ini-
tial surplus and pay the deficit at ruin. Also, using the Markov chain
approach, we produce bounds for the former expected value.

We extend this risk model by allowing the process to continue after
ruin, the second risk model analysed in this paper and introduced by
Dickson and Waters [Dickson, D. C. M. and Waters, H. R. (2004).
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Some optimal dividends problems. Astin Bulletin, 34(1):49–74]. The
Markov chain approach is again used to obtain approximations to the
net expected present value of dividends paid.

A threshold dividend strategy is also covered under which the div-
idend rate is lower than the premium rate. For this risk model we
present bounds for the expected present value of dividend payments.

We also present numerical algorithms for the calculation of the
finite time ruin probability.

Keywords: Ruin probability, Numerical algorithms, Markov chains,
Dividend payments, Compound Poisson model, Finite time.

1 Introduction

In this work we consider the classical risk model modified by the introduction
of a constant dividend barrier. Let U(t) be the classical risk surplus at time
t(≥ 0), defined by

U(t) = u+ ct− S(t) (1)

where u is the initial surplus, c is the rate of premium income and S(t)
is the aggregate claims up to time t, which follows a compound Poisson
process with Poisson parameter λ. We denote by G the individual claim
distribution, assuming that all claims are positive with mean m1. Without
loss of generality we assume λ = m1 = 1 so that c = (1 + θ), where θ is
the premium loading factor. The surplus process (1) can be written as a
stochastic differential equation:

dU(t) = I(U(t))dt− dS(t) (2)

where, in this case, I(x) = c.
The finite time ruin probability is defined by:

ψ(u, t) = Pr[U(τ) < 0, for 0 ≤ τ ≤ t]

and the ultimate ruin probability is ψ(u) = limt→∞ ψ(u, t).
In our case we are interested in risk processes for which each time the

surplus exceeds a threshold, b, dividends are paid to the stockholders. Let
D denote the present value of the total dividend payments until ruin occurs,
at interest force δ, with V (u, b) = E[D].

Over the last decade there has been an increasing interest in dividend
strategies and several papers have been produced considering the compound
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Poisson model, some other specific risk models and even different types of
dividend strategies, see e.g. Dickson and Waters (2004), Gerber and Shiu
(2006) and the references therein. In some cases the aim is not only the
calculation of the expectation of the discounted dividends but also its maxi-
mization and consequently the determination of the optimal dividend barrier
b∗. For a general approach see Gerber et al. (2006a). Mainly the focus is
on infinite time and so it is the aim of this work to provide numerical meth-
ods concerning the discounted expectation of dividends paid during a finite
time interval. Therefore, let D(t) denote the present value of the total div-
idend payments up to time t or until ruin occurs, at interest force δ, with
V (u, b, t) = E[D(t)] so that V (u, b) = limt→∞ V (u, b, t).

In our case three different situations are analysed. For the first model
studied, we consider that when the surplus reaches b it remains there until
a claim occurs and the insurance company pays dividends at rate c. Hence
this process is defined by (2) together with

I(x) =

{

c if 0 ≤ x < b

0 if x ≥ b

Therefore ultimate ruin is certain. This dividend strategy is known as a
barrier strategy. If u > b then the shareholders immediately receive, at time
0, the difference u− b.

Apart from receiving the dividend income we may reasonably expect that
the shareholders pay for the deficit at ruin and also provide the initial surplus
u. Here we assume, as before, that there is no further business after the
time of ruin. In this situation the expected present value of (net) income to
shareholders up to time t is:

L(u, b, t) = V (u, b, t) − u− E[e−δ T Y I(T ≤ t)] (3)

where T is the time of ruin, Y is the deficit at ruin and I(A) is the indicator
function of an event A. Note that we are only interested in the behavior of the
surplus process until time t. We denote the last term in the expression above
by ϕ(u, b, t). This modification, for an infinite time horizon, was suggested
by Dickson and Waters (2004) where they also obtained the optimal value b0

that maximizes L(u, b) = limt→∞ L(u, b, t). This new mathematical problem
was studied by Gerber et al. (2006b) where they compare the optimal values
b∗ and b0. The determination of the optimal value b0 is also covered in Gerber
et al. (2006a).

We may also consider that each time ruin happens the shareholders im-
mediately pay the amount of the deficit at ruin and the surplus is restored
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to 0 allowing, then, the risk process to continue up to time t. Consequently
the surplus moves between 0 and b and it can remain at b for a period, but
immediately moves away from 0. This modified risk model is denoted in our
paper by model II and our aim for such a process is the calculation of the
expected present value of shareholders’ net income up to time t which, in
turn, we denote by M(u, b, t). This dividend scenario was also introduced
by Dickson and Waters (2004), although they considered, again, an infinite
horizon.

For the third risk model studied in this work the rate of dividend income
is ĉ < c, which contrasts with the previous modified risk models since now
the surplus can go above the level b. This means that the insurance company
still receive premiums at rate c but if the surplus is above b they only keep
for themselves the rate c − ĉ. As a consequence, the ultimate ruin proba-
bility is now not equal to one, if c − ĉ > λm1. Besides, it is not certain
that, after going above b, the surplus process would even fall below b. For
this so called threshold strategy, Dickson and Drekic (2006) obtained exact
expressions for the expected present value of the total dividend payments
until ruin occurs, when individual claim amounts are exponentially or mixed
exponentially distributed. This dividend strategy is also studied in Badescu
et al. (2007) exploiting the connection between a surplus process and an em-
bedded fluid queue process. This model is also under consideration in Lin
and Pavlova (2006) studying the Gerber-Shiu discounted penalty function,
deriving two integro-differential equations and solving them. Here we shall
discuss the calculation of such expectations although with a finite horizon.
In Leung et al. (2008) the focus is also on finite time, although modelling
the surplus process as a restricted geometric Brownian motion. They ob-
tained an analytical solution for the value function of the surplus process
and, as subproduct, explicit expressions for the survival probability and the
expected present value of dividends. Generalisations of the latter modified
risk model have been also considered: see e.g. Lin and Sendova (2007) and
Albrecher and Hartinger (2007) where both consider the Gerber-Shiu dis-
counted penalty function under a risk model with multiple barriers.

As far as the net surplus is concerned, below b the rate of premium income
is c and above that threshold the rate is c− ĉ. Thus this surplus process is
governed by (2) with

I(x) =

{

c if 0 ≤ x < b

c− ĉ if x ≥ b

This variable premium rate surplus process was studied in Cardoso and Wa-
ters (2005) (see their Section 4), where they derived numerical methods to
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obtain approximations to and bounds for ruin probabilities in finite time
using a Markov chain approach.

We note that the above risk models are time-homogeneous Markov pro-
cesses which is an essential feature for developing our numerical algorithms.
For the modified risk processes I and III we denote the probability of ruin
up to time t by ψ(u, b, t).

In the following section we present discrete (in time and amount) pro-
cesses that are related to the continuous risk processes described above.
These discrete models allow us to set up the numerical methods for the
calculation of the quantities of interest. Then, we establish the finite time
version of some recursions derived by Dickson and Waters (2004) to calcu-
late approximations to V (u, b, t) and L(u, b, t), concerning the first modified
model. In Section 4, we explain how the Markov chain approach can be
adapted to incorporate the features of the three modified risk models and
produce approximations to or bounds for the expected values defined in the
present section and for the ruin probability within finite time. Numerical
values are shown in the last section.

2 The discrete models

Let us consider again the surplus process defined by equation (1). The basic
idea to construct our numerical algorithms is to replace the surplus pro-
cess by a discrete process, which we denote Ud, starting from u, having
the same rate of premium income and taking values xj only at the time
points h, 2h, . . . , Kh, where h is a positive small number and K is such that
K = t/h. The values xj are defined in the following way: x0 = 0 and

xj = xj−1 +

∫ h

0

I(U(t) | U(0) = xj−1, S(h) = 0) dt

for j = 1, 2 . . .. This means that if the surplus process takes the value
xj−1, it would reach the value xj in a time interval of length h if there were
no claims during that time period, that is xj − xj−1 = ch, which is the
insurer’s income in that time interval. Therefore the positive quadrant of the
(time × monetary amount) plane is covered by a rectangular grid of points
{nh}∞n=0 × {xj}

∞
j=0. The process {Ud(nh); n = 0, 1, . . .} approximates the

continuous surplus process {U(t); t ≥ 0} and the smaller the value of h, the
better the approximation.

From the above this process may be defined as follows:

Ud(nh) = u+ cnh− Sd(nh), n ∈ N,
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where Sd(nh) is a compound Poisson process with Poisson parameter λ, tak-
ing, as a consequence of the definition of Ud, the values {xj}

∞
j=0. Intuitively

Sd represents the discrete version of S on the monetary amount axis. Hence,
Ud, verifies the following:

Ud(nh) = Ud((n− 1)h) + ch− [Sd(nh) − Sd((n− 1)h)] , n ∈ N,

and consequently, it is a Markov chain, since its value at any time nh de-
pends on the value at time (n− 1)h and on the cdf of Sd(nh)−Sd((n− 1)h),
that is on the cdf of Sd(h). This distribution function, which we denote Fd,
can be evaluated using the Panjer recursion formula and constructing an ap-
proximate discrete distribution function Gd of G, using the mean preserving
method of De Vylder and Goovaerts (1988), with masses only at the points
{xj}

∞
j=0. For simplicity we write fj = Fd(xj) − Fd(x

−
j ), for j = 0, 1, . . ..

Moreover, two bounding distributions can also be constructed by concen-
trating the mass of probability G(xj) − G(xj−1) at xj or xj−1. The smaller
the value of h, the closer the approximating and the bounding distributions
are likely to be to G. Applying, again, the Panjer recursion formula, we can
compute two discrete distribution functions, F d and F d, such that,

F d(x) ≤ Fd(x) ≤ F d(x), ∀x ∈ R
+
0

For this discrete risk process we define ruin as the event when the surplus
goes to zero (= x0) or below at some time n > 0, although we allow the
initial surplus to be zero at time zero.

From the bounding cdf’s F d(x) and F d(x) it is possible to construct two
Markov chains Ud and Ud which bound, above and below, respectively, the
continuous surplus process (1). These chains also behave as discrete surplus
processes and are defined similarly to {Ud(nh), n ∈ N0}, with the same
premium income and initial surplus.

The methodology described above goes back to Dickson and Waters (1991)
and has been used by many authors, see e.g. Cardoso and Waters (2003) and
Cardoso and Waters (2005), who constructed discrete bounding chains for
different types of surpluses. The adaptation of these methods to the modified
risk models is straightforward. For the first two modified risk models, the
surpluses are bounded by a horizontal line b. Hence, the set of values xj is
bounded by xB where B is such that b = Bch. Concerning the third modi-
fied model, there is no such bound but the points xj are not equally spaced:
below xB the difference xj − xj−1 is equal to ch and above the difference is
(c− ĉ)h.

We will firstly suppose, as in Dickson and Waters (2004), that a dividend
of value ch is payable at time nh if the surplus reached at time (n − 1)h
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the value xB and there were no claims during that period. We will also
present, later, another less conservative definition concerning the payment of
dividends

Throughout this paper, we will identify the quantities which approximate
or bound, as appropriate, ψ(u, b, t), V (u, b, t), L(u, b, t) and M(u, b, t), and
the chains related to the above discrete models by adding the subscript “d”.
In order to alleviate problems with notation, without ambiguity, we use the
same representation in each of the modified risk models. We also assume, for
convenience, that u = xω, for some ω ∈ {0, 1, . . .}.

For all the numerical examples in this paper, we consider h = 1
cβ

where β
is some large positive number. This means that, for instance concerning the
first modified model, that the corresponding chain Ud has a state space with
values xj equal to j

β
, with j = 0, 1, . . . , B.

3 Some recursions based on Dickson and Wa-

ters (2004)

We now present finite time versions of some recursions due to Dickson and
Waters (2004) (see their section 5). Here we only consider the first modified
discrete risk process. We begin by deriving a recursion for the calculation of
approximations to V (u, b, t). Conditioning on the aggregate claim amount in
the first period we get, for i = max(0, B − n+ 1), . . . , B − 1,

Vd(xi, b, nh) = e−δh

min(i−B+n−1,i)
∑

j=0

fj Vd(xi+1−j , b, (n− 1)h) (4)

This result follows by considering what happens in the first time period of
length h. Note that starting from xi, with i < B, the surplus takes the value
xi+1, if there were no claims during the first period, or it takes the value xi,
if the aggregate claim amount over the same period is equal to ch, and so on.
If ruin happens then no further dividends are paid. Otherwise the surplus, at
time h, is positive, leveled to xi+1−j , with j = 0, 1, . . . ,min(i−B + n− 1, i),
and then we should look for the dividend payouts in the next (n−1)h periods.

If the surplus starts from xB , the surplus could be, time h later, at xB

if either there were no claims, and thus dividends are paid, or the aggregate
claim amount is equal to ch. Therefore we have

Vd(xB, b, nh) = e−δh



f0 (ch+ Vd(xB , b, (n− 1)h)) +

min(B,n−1)
∑

j=1

fj Vd(xB+1−j
, b, (n− 1)h)





(5)
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In the above expressions we take into account that

Vd(xl, b,mh) = 0 for l = 0, . . . , B −m,

which is reflected in the values of i and in the upper limit of the summations.
These equations give us too the starting values for formulae (4) and (5).

Using the same arguments, we also obtain a recursion for the calculation
of approximations to ϕ(u, b, t). Hence, we have, for i = 0, 1, . . . , B − 1,

ϕd(xi, b, nh) = e−δh





i
∑

j=0

fjϕd(xi+1−j , b, (n− 1)h) +

∞
∑

j=i+1

fj (xj − xi+1)





= e−δh





i
∑

j=0

fjϕd(xi+1−j , b, (n− 1)h) + λh−

i
∑

j=0

xjfj − xi+1(1 − Fd(xi))





and

ϕd(xB , b, nh) = e−δh



f0ϕd(xB , b, (n− 1)h) +

B
∑

j=1

fjϕd(xB+1−j
, b, (n− 1)h)

+

∞
∑

j=B+1

fj (xj − (xB + ch))





= e−δh



f0ϕd(xB , b, (n− 1)h) +

B
∑

j=1

fjϕd(xB+1−j
, b, (n− 1)h) + λh

−
B

∑

j=0

xjfj − (xB + ch)(1 − Fd(xB))





Combining the above two recursions and considering formula (3) we then
obtain approximations to L(u, b, t).

4 Some recursions based on the Markov chain

approach

We present in this section some recursions to obtain approximate values
or bounds for the finite time ruin probability and the expected values de-
fined earlier in Section 1, V (u, b, t), L(u, b, t) and M(u, b, t), considering the
methodology described in Cardoso and Eǵıdio dos Reis (2002), Cardoso and
Waters (2003) and Cardoso and Waters (2005). This approach was used in
those papers to calculate approximations to or bounds for ψ(u, t) for the clas-
sical risk model, the compound risk model, the risk model with possibility of
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investment, the risk model with variable premium rate and the time varying
risk model.

We already concluded, in Section 2, that the discrete risk models, pre-
sented there, are Markov chains whose transition probabilities will now be
derived completing in this way their definitions. We will apply the Markov
chain approach to each of the modified risk models introduced in Section 1.

Throughout this section we use the following notation for the one step
transition probabilities,

pi,j = Pr[Ud(nh) = xj | Ud((n− 1)h) = xi], for n ∈ N

4.1 For the modified risk model I

In this case the one step transition probabilities pi,j for the chain Ud are
defined in the following way:

pi,j =







































0 for i > B or j > i+ 1

Fd((xi+1 − xj−1)
−) − Fd((xi+1 − xj)

−) for 1 ≤ i ≤ B − 1 and 1 ≤ j ≤ i+ 1

1 − Fd(x
−

i+1) for 1 ≤ i ≤ B − 1 and j = 0

Fd((xB + ch− xj−1)
−) − Fd((xB + ch− xj)

−) for i = B and 1 ≤ j ≤ i− 1

Fd((xB + ch− xB−1)
−) for i = B and j = B

1 − Fd((xB + ch)−) for i = B and j = 0

(6)

Since the chain Ud starts from u, we have Pr[Ud(0) = xω] = 1. The state x0

represents ruin and therefore it is an absorbing state. However the chain is
allowed to start from 0 and in such a case we have the following first step
transition probabilities

Pr[Ud(h) = x1 | Ud(0) = x0] =Fd(x
−
1 )

Pr[Ud(h) = x0 | Ud(0) = x0] =1 − Fd(x
−
1 )

The n-step transition probabilities, from state xω → xj , may be calculated
recursively using the formula

p
(n)
ω,j =

min(ω+n−1,B)
∑

i=j∗

p
(n−1)
ω,i pi,j (7)

which is derived from the Chapman-Kolmogorov equations, where j∗ =
max(min(j, 1), j − 1).

According to the assumption, set in Section 2, concerning the payment
of dividends (in discrete time), we have the following approximation to
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V (u, b, t),

Vd(u, b, t) =

K
∑

n=1

che−nhδp
(n−1)
ω,B f0 (8)

Intuitively, we sum up the expected present value of dividends for each period.
A dividend of value ch is paid in the n-th period with probability p

(n−1)
ω,B f0.

Formula (8) can be refined since, starting from xω, the surplus only attains
the dividend level at time nh such that ω + n = B if no claims occurred
before. Hence, the summation in (8) may start from n = B − ω + 1.

One advantage of this algorithm is that we can also obtain, simultane-
ously, approximate values for the ruin probability in finite time:

ψ(u, b, t) ≈ ψd(u, b, t) = p
(K)
ω,0

The assumption related to the payment of dividends is rather conservative
because the dividend of value ch is only distributed at time nh if the chain
takes the value xB at time (n − 1)h and there were no claims during the
time period [(n − 1)h, nh]. The surplus may, in fact, up cross b during this
time interval and hence dividends should be paid and these payments are not
considered in discrete time. A less restrictive assumption for the distribution
of dividends is the following: a dividend of value ch is payable when the
chain attains xB. Thus, an approximation to the expected present value of
the total of payments is now given by

V ∗
d (u, b, t) =

K−1
∑

n=0

che−nhδ p
(n)
ω,B

which may lead to an overestimation of the discounted expectation of divi-
dends payouts. A natural approximation to V (u, b, t) is therefore the average
of the two expressions above:

Ṽd(u, b, t) =
K

∑

n=1

che−nhδ

(

f0 + ehδ

2

)

p
(n−1)
ω,B

However, from our numerical examples, these two approximations seems to be
less accurate than the one given by formula (8). Therefore for the remainder
of this paper we only make use of the approximation Vd(u, b, t). Nevertheless,
these definitions concerning the payment of dividends can lead us to bounds
for V (u, b, t). To get these quantities we use the bounding chains Ud and Ud.
The whole methodology involved can be seen in Cardoso and Waters (2005).
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For the former chain its transition probabilities are obtained by replacing Fd

by F d in (6). In the case of Ud, we have

Pr[Ud(h) = x1 | Ud(0) = x0] =F d(x0)

Pr[Ud(h) = x0 | Ud(0) = x0] =1 − F d(x0)

and

p
i,j

=







































0 for i > B or j > i+ 1

F d(xi+1 − xj) − F d(xi+1 − xj+1) for 1 ≤ i ≤ B − 1 and 1 ≤ j ≤ i+ 1

1 − F d(xi+1 − x1) for 1 ≤ i ≤ B − 1 and j = 0

F d(xB + ch− xj) − F d(xB + ch− xj+1) for i = B and 1 ≤ j ≤ i− 1

F d(xB + ch− xB) for i = B and j = B

1 − F d(xB + ch− x1) for i = B and j = 0

Using similar recursions to (7) we are able to compute p
(n)
ω,j and p(n)

ω,j
.

Hence, bounds for V (u, b, t) are given by the following two expressions:

V d(u, b, t) =
K−1
∑

n=0

che−nhδp
(n)
ω,B

V d(u, b, t) =

K
∑

n=1

che−nhδp(n−1)

ω,B
f

0

so that V d(u, b, t) ≤ V (u, b, t) ≤ V d(u, b, t). Furthermore, we can determine
lower and upper bounds for the probability of ruin within finite time,

p
(K)
ω,0 ≤ ψ(u, b, t) ≤ p(K)

ω,0

We now turn to the calculation of approximations to

ϕ(u, b, t) = E[e−δ T Y I(T ≤ t)]

Conditioning on the time of ruin and on the value of the surplus time h
before the time of ruin, we get the approximation

ϕd(u, b, t) =
K

∑

n=1

e−nhδ

min{ω+n−1,B}
∑

i=1

Ei × p
(n−1)
ω,i × pi,0, for ω > 0

where

Ei = E[Sd(h) − xi+1 | Sd(h) > xi], for i < B
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and

EB = E[Sd(h) − (xB + ch) | Sd(h) > xB]

We note that ruin happens at time nh, given that at time (n − 1)h the
discrete surplus takes the value xi, if the aggregate claim amount, from (n−
1)h up to nh, is bigger than or equal to xi+1 = xi + ch and, consequently, the
deficit at ruin is the difference Sd(h) − xi+1. By the law of total probability,
we can evaluate Ei, since

E[Sd(h)] = E[Sd(h) | Sd(h) > xi](1 − Fd(xi)) + E[Sd(h) | Sd(h) ≤ xi]Fd(xi)

where

E[Sd(h) | Sd(h) ≤ xi] =

i
∑

j=0

xj

fj

Fd(xi)

The special case ω = 0 means that the initial surplus is zero. Then

ϕd(0, b, t) = e−hδ
E0 × (1 − Fd(x

−
1 )) +

K
∑

n=2

e−nhδ

min{n−1,B}
∑

i=1

Ei × p
(n−1)
0,i × pi,0

We can now write down the approximation Ld(u, b, t):

Ld(u, b, t) = Vd(u, b, t) − u− ϕd(u, b, t)

4.2 For the modified risk model II

In this model the shareholders, apart from providing the initial surplus, pay
the amount of the deficit at ruin each time ruin occurs, so that the surplus
level is restored to zero and this time point is a renewal point. As far as the
corresponding discrete model is concerned, the state x0 = 0 is no longer an
absorbing state and the transition probabilities with origin in x0 are, then,
the same as in the previous risk model when the process starts from 0, which
is not surprising since now when ruins happens a new process begins with
initial level 0. Thus, adding the following probabilities to those defined by
expressions (6)

p0,0 =1 − Fd(x
−
1 )

p0,1 =Fd(x
−
1 )

we complete the definition of the one step transition probabilities. Another
modification that comes along with this new risk process is the lower limit
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in the summation in recursion (7) which is now set to max(0, j − 1). Hence,
after calculating the nth transition probabilities, we get the following ap-
proximation to M(u, b, t):

Md(u, b, t) = Vd(u, b, t) − u− ϕd(u, b, t)

remarking that Vd(u, b, t) is calculated using formula (8), but applying the
transition probabilities concerned to this discrete modified risk model, and
that

ϕd(u, b, t) =

K
∑

n=1

e−nhδ

min{ω+n−1,B}
∑

i=0

Ei × p
(n−1)
ω,i × pi,0

since now the Markov chain can start from 0 at any time point nh.

4.3 For the modified risk model III

In what follows we consider the methodology built up by Cardoso and Wa-
ters (2005) for constructing two Markov chains, Ud and Ud, that bound the
time continuous modified surplus with variable premium rate. The transi-
tion probabilities corresponding to those chains can be found in that paper,
which were used for the computation of bounds for ψ(u, b, t). However, those

authors could not show that the resulting probabilities p
(K)
ω,0 and p(K)

ω,0
are in

fact bounds for ψ(u, b, t). The difficulty lies in the definition of the transition
probabilities because it is assumed that, over a time interval of length h, the
rate of premium income is constant, where for the continuous surplus it is
not if, during that time interval, the surplus crosses the level b. However, in
practice, p

(K)
ω,0 and p(K)

ω,0
are unlikely, respectively, to be greater and smaller

than the finite time ruin probability and therefore they can be regarded as
lower and upper bounds. However, for our case, since the net premium rate
above b is smaller than c, p(K)

ω,0
is definitely an upper bound for ψ(u, b, t).

Apart from producing bounds for the probability of ruin, we are, here, in-
terested in the computation of bounds for V (u, b, t) using the Markov chain
technique. The same argument still holds here and it does not allow us to
obtain a proper upper bound for that expected value. The average of these
bounds gives an approximation to the expected discounted value of dividends
paid up to time t or until ruin happens. These dividends are payable, at rate
ĉ, if the insurer’s surplus is not below b.

To obtain a lower bound for V (u, b, t), consider the discrete (in time and
in amount) risk process Ud for which a dividend, of amount ĉh, is payable at
nh if Ud((n − 1)h) ≥ xB and time h later the process Ud is still above xB.

13



The probability of such an event is given by

p
(n)

ω,Bր =
ω+n−1
∑

j=B

p(n−1)

ω,j
× F d(xj+1 − xB+1) (9)

Note that F d(xj+1 − xB+1) is the conditional probability of Ud being above
xB, at end of some time period of length h, given that, at the beginning of
the same period, Ud had value xj , with j ≥ B. Using (9) we then obtain a
lower bound for V (u, b, t):

V d(u, b, t) =

K
∑

n=1

ĉhe−nhδp
(n)

ω,Bր

As said before, the Markov chain approach does not produce an upper
bound for V (u, b, t). Nevertheless we can obtain an approximate value of that
bound. We first consider the event “the chain Ud is above or equal to xB at
time nh”, which has probability

p
(n)

ω,B+ =
ω+n
∑

j=B

p
(n)
ω,j

Hence, applying the second definition, presented in this paper, concerning
the payment of dividends (see Subsection 4.1), we get the following value

V d(u, b, t) =
K−1
∑

n=0

ĉhe−nhδp
(n)

ω,B+

We remark that we cannot prove that V d(u, b, t) ≥ V (u, b, t) because the
premium income over a time interval of length h, for the chain Ud, is not
always greater than the premium income received for U(t). If the surplus
process falls below b in the time interval [nh, nh + h], the total premium

income will be greater than (c − ĉ)h. A similar argument shows that p
(K)
ω,0

cannot be regarded as a lower bound for ψ(u, b, t).

5 Numerical results and some comments

For the numerical examples we present in this section we set the discretisa-
tion parameter β to 100, which we found adequate for the purpose and also
because some existing numerical values for Vd(u, b) were calculated using the

14



same parameter value. We use two contrasting distributions for the individ-
ual claim amounts in terms of the right tail: exponential(1) and Pareto(3,2)
whose means are equal to one. The Poisson parameter is also set to 1.

Although we have assumed, for convenience, that u = xω, for some ω ∈
{0, 1, . . .}, our numerical methods work when this condition is not verified.
In such a case we just need to (re)define the first step transition probabilities
from u to xi as in Cardoso and Waters (2005).

5.1 For the modified risk model I

In Tables 1 and 2 we present approximations to V (u, b, t), for several com-
binations of the initial surplus, the dividend barrier and time t. We set the
interest force per period to be 0.1% and 0.5%. In both tables the individual
claim amounts are exponentially distributed and the premium loading factor,
θ, is 0.1, so that c = 1.1. We can regard these governing parameters in a
different way: for t = 1000 we can think in a time horizon of ten years with
100 claims expected per annum and a force of interest of 10% (correspond-
ing to δ = 0.1%). The values Vd(u, b, t) were calculated using the recursion
given by (4) and (5) and formula (8) which produces the same numerical
values. We also show the exact values V (u, b) given by formula (2.7) in Dick-
son and Waters (2004) and their approximations, Vd(u, b), obtained using
the numerical algorithm given by their formulae (5.1) and (5.2). We observe
that the approximations Vd(u, b, t) tend to the approximate values Vd(u, b).
Moreover they are identical, up to four decimal places, for u = 0, 10, b = 10
and for some large values of t. For the other combinations, the approxima-
tions Vd(u, b, 1000) and Vd(u, b) are not so close because the finite time ruin
probabilities are not equal to one, meaning that the shareholders can still
receive dividends from the insurance company. We remark that the above
patterns are present for other numerical values we had calculated. Among
the numerical algorithms derived in Subsection 4.1, it seems that formula
(8) gives the closest values to V (u, b, t). The approximate values V ∗

d (u, b, t)
seem to be very much above the exact values and consequently they push up
the values Ṽd(u, b, t). Therefore, in the following examples we only show the
approximations Vd(u, b, t).

In terms of the finite time ruin probabilities Tables 1 and 2 do not show
many interesting values. In Table 3 we present the values of tq = max{t :
ψd(u, b, t) ≤ q}, for q = 0.05 and 0.1, and the corresponding approximations
Vd(u, b, tq). For the other combinations of u and b we do not show any values
since tq is almost zero. Intuitively, Vd(u, b, tq) gives an approximate value of
the expected discounted value of future dividends subject to a constraint on
the ruin probability. In general, the value tq is attained very early meaning
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Table 1: Approximations to V (u, b, t) and to ψ(u, b, t), for δ = 0.001, c = 1.1,
λ = 1 and exponential(1) claims.

t=50 t=100 t=200 t=500 t=700 t=1000 t=∞

V (0, 10) – – – – – – 2.5032
Vd(0, 10, t) 0.9778 1.7676 2.3327 2.5020 2.5040 2.5041 2.5041
V ∗

d (0, 10, t) 0.9866 1.7837 2.3539 2.5247 2.5268 2.5269 –

Ṽd(0, 10, t) 0.9822 1.7756 2.3432 2.5133 2.5154 2.5155 –
ψd(0, 10, t) 0.8911 0.9448 0.9858 0.9998 1.0000 1.0000 –

V (10, 10) – – – – – – 17.8354
Vd(10, 10, t) 10.0253 14.0703 16.9638 17.8309 17.8414 17.8420 17.8420
V ∗

d (10, 10, t) 10.1165 14.1983 17.1181 17.9931 18.0036 18.0042 –

Ṽd(10, 10, t) 10.0708 14.1342 17.0408 17.9118 17.9223 17.9229 –
ψd(10, 10, t) 0.4425 0.7172 0.9272 0.9988 0.9999 1.0000 –

V (0, 20) – – – – – – 4.6285
Vd(0, 20, t) 0.1373 0.7736 1.9146 3.6877 4.1645 4.4683 4.6296
V ∗

d (0, 20, t) 0.1385 0.7807 1.9320 3.7212 4.2024 4.5089 –

Ṽd(0, 20, t) 0.1379 0.7772 1.9233 3.7044 4.1834 4.4885 –
ψd(0, 20, t) 0.8717 0.8923 0.9167 0.9610 0.9765 0.9890 –

V (10, 20) – – – – – – 32.9782
Vd(10, 20, t) 2.7957 7.5239 15.0851 26.7753 29.9194 31.9220 32.9859
V ∗

d (10, 20, t) 2.8211 7.5923 15.2223 27.0188 30.1916 32.2123 –

Ṽd(10, 20, t) 2.8084 7.5580 15.1536 26.8968 30.0552 32.0669 –
ψd(10, 20, t) 0.1866 0.2922 0.4509 0.7429 0.8449 0.9274 –

V (20, 20) – – – – – – 46.4960
Vd(20, 20, t) 10.2960 16.2514 25.2531 39.1330 42.8660 45.2437 46.5068
V ∗

d (20, 20, t) 10.3896 16.3992 25.4828 39.4890 43.2559 45.6552 –

Ṽd(20, 20, t) 10.3427 16.3252 25.3678 39.3106 43.0606 45.4490 –
ψd(20, 20, t) 0.0545 0.1611 0.3481 0.6947 0.8159 0.9138 –
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Table 2: Approximations to V (u, b, t) and to ψ(u, b, t), for δ = 0.005, c = 1.1,
λ = 1 and exponential(1) claims.

t=50 t=100 t=200 t=500 t=700 t=1000 t=∞

V (0, 10) – – – – – – 1.8447
Vd(0, 10, t) 0.8643 1.4575 1.7844 1.8446 1.8449 1.8449 1.8449
V ∗

d (0, 10, t) 0.8722 1.4708 1.8007 1.8615 1.8617 1.8617 –

Ṽd(0, 10, t) 0.8682 1.4641 1.7925 1.8530 1.8532 1.8532 –

V (10, 10) – – – – – – 14.3277
Vd(10, 10, t) 9.3077 12.3454 14.0196 14.3280 14.3291 14.3291 14.3291
V ∗

d (10, 10, t) 9.3927 12.4582 14.1476 14.4588 14.4600 14.4600 –

Ṽd(10, 10, t) 9.3497 12.4012 14.0829 14.3927 14.3939 14.3939 –

V (0, 20) – – – – – – 1.7962
Vd(0, 20, t) 0.1165 0.5870 1.2242 1.7362 1.7827 1.7946 1.7960
V ∗

d (0, 20, t) 0.1175 0.5924 1.2354 1.7521 1.7990 1.8110 –

Ṽd(0, 20, t) 0.1170 0.5897 1.2298 1.7441 1.7908 1.8027 –

V (10, 20) – – – – – – 13.9509
Vd(10, 20, t) 2.4407 5.9542 10.1797 13.5556 13.8621 13.9404 13.9495
V ∗

d (10, 20, t) 2.4630 6.0086 10.2727 13.6794 13.9887 14.0677 –

Ṽd(10, 20, t) 2.4517 5.9811 10.2257 13.6168 13.9248 14.0034 –

V (20, 20) – – – – – – 23.4838
Vd(20, 20, t) 9.5378 13.9734 19.0054 23.0136 23.3776 23.4705 23.4814
V ∗

d (20, 20, t) 9.6249 14.1010 19.1790 23.2238 23.5911 23.6849 –

Ṽd(20, 20, t) 9.5810 14.0365 19.0913 23.1177 23.4833 23.5766 –
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Table 3: Values of tq, for q =0.05 and 0.1, and the corresponding approxi-
mations to V (u, b, tq), for c = 1.1, λ = 1 and exponential(1) claims.

u b t0.05
Vd(u, b, t0.05)

t0.1
Vd(u, b, t0.1)

δ = 0.001 δ = 0.005 δ = 0.001 δ = 0.005

10 10 9.3364 3.5310 3.4794 14.1273 4.5890 4.4891
10 20 13.5091 0.0376 0.0358 23.9636 0.5276 0.4889
20 20 47.7545 9.9923 9.2881 71.4545 13.0146 11.6725

that the ruin probability grows very quickly. For different forces of interest
the values of Vd(u, b, tq) do not differ much, for the same combination of u
and b, although for the values Vd(u, b, 1000) there is a much bigger difference.
This is due to the small values of tq.

Apart from the approximations to V (u, b, t) and ψ(u, b, t), numerical val-
ues resulting from applying the methods to obtain bounds to these quantities
are shown in Tables 4 and 5. Here ψd(u, b, t) and ψ

d
(u, b, t) represent, respec-

tively, the upper and lower bounds for ψ(u, b, t). From the tables we see that
V d(u, b, t) is closer to Vd(u, b, t) than V d(u, b, t) which is due to the corre-
sponding assumptions about the dividend payouts used in the construction
of these bounds. Note also that the expected discounted future dividends
are, in general, larger for the case of the Pareto claim distribution since for
this case the ruin probabilities are also bigger than in the case of exponen-
tial distributed claims although we observe some exceptions when b = 20,
u = 10, 20 and t = 500, 700, 1000. For the same level of the probability
of ruin, it seems, from our results, that for exponential claim amounts, the
approximate values of V (u, b, t) are larger than the corresponding values for
the Pareto claim amounts, as we can see from Table 6, where we compare
the two claim distributions in terms of the approximations Vd(u, b, t

#) with
t# = max{t : ψd(u, b, t

#) ≤ 0.05}.
Figure 1 illustrates graphically the approximations and bounds we obtain

for V (u, b, t) considering exponential claims, a dividend barrier equal to 50
and four different levels for the initial surplus, u = 10, 20, 40 and 50.

In Figure 2 we show the values Vd(u, b, t), V d(u, b, t) and V d(u, b, t) but
now considering Pareto distributed claims, a constant initial surplus 10 and
three different values for the dividend barrier. For b = 20 and 50, dividends
begin to be paid much later than for b = 10 because for those cases the
dividend barriers are reached later too since the surplus started from 10.
After some time the expected discounted dividend payments for b = 20 is
greater than for b = 10 and some time later these become smaller than
for b = 50. We also observe that after some time point the lines of the
approximations to and bounds for V (u, b, t) become flat and, as expected,
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Table 4: Approximations to and bounds for V (u, b, t) and ψ(u, b, t), for δ =
0.001, c = 1.1, λ = 1 and exponential(1) claims.

t=50 t=100 t=200 t=500 t=700 t=1000
Vd(10, 10, t) 10.0253 14.0703 16.9638 17.8309 17.8414 17.8420
V d(10, 10, t) 10.2578 14.4717 17.5464 18.5033 18.5159 18.5166
V d(10, 10, t) 9.8860 13.8023 16.5479 17.3396 17.3484 17.3488
ψd(10, 10, t) 0.4425 0.7172 0.9272 0.9988 0.9999 1.0000

ψd(10, 10, t) 0.4496 0.7251 0.9314 0.9990 1.0000 1.0000
ψ

d
(10, 10, t) 0.4353 0.7092 0.9229 0.9985 0.9998 0.9999

Vd(10, 20, t) 2.7957 7.5239 15.0851 26.7753 29.9194 31.9220
V d(10, 20, t) 2.9077 7.8431 15.7995 28.3562 31.8387 34.1185
V d(10, 20, t) 2.7114 7.2794 14.5235 25.4871 28.3430 30.1108
ψd(10, 20, t) 0.1866 0.2922 0.4509 0.7429 0.8449 0.9274

ψd(10, 20, t) 0.1923 0.3017 0.4649 0.7584 0.8578 0.9358
ψ

d
(10, 20, t) 0.1809 0.2828 0.4371 0.7270 0.8315 0.9183

Vd(20, 20, t) 10.2960 16.2514 25.2531 39.1330 42.8660 45.2437
V d(20, 20, t) 10.5344 16.7103 26.1313 40.9609 45.0737 47.7661
V d(20, 20, t) 10.1530 15.9453 24.6174 37.7058 41.1150 43.2255
ψd(20, 20, t) 0.0545 0.1611 0.3481 0.6947 0.8159 0.9138

ψd(20, 20, t) 0.0569 0.1679 0.3612 0.7115 0.8302 0.9233
ψ

d
(20, 20, t) 0.0522 0.1544 0.3353 0.6776 0.8010 0.9035

Vd(0, 50, t) 0.0000 0.0017 0.1772 1.8249 2.8508 4.0388
V d(0, 50, t) 0.0000 0.0020 0.1992 2.0249 3.1581 4.4731
V d(0, 50, t) 0.0000 0.0015 0.1589 1.6551 2.5891 3.6679
ψd(0, 50, t) 0.8716 0.8900 0.9010 0.9080 0.9099 0.9124

ψd(0, 50, t) 0.8747 0.8934 0.9048 0.9123 0.9144 0.9172
ψ

d
(0, 50, t) 0.8685 0.8865 0.8971 0.9036 0.9054 0.9077

Vd(30, 50, t) 0.2907 2.6258 9.7020 30.0511 40.6518 52.7986
V d(30, 50, t) 0.3093 2.7849 10.2791 31.8379 43.0936 56.0299
V d(30, 50, t) 0.2756 2.4962 9.2302 28.5753 38.6255 50.1016
ψd(30, 50, t) 0.0022 0.0110 0.0290 0.0620 0.0799 0.1056

ψd(30, 50, t) 0.0024 0.0120 0.0321 0.0697 0.0902 0.1195
ψ

d
(30, 50, t) 0.0020 0.0100 0.0262 0.0551 0.0706 0.0931

Vd(50, 50, t) 10.2962 16.2930 26.0917 48.1955 59.2102 71.7970
V d(50, 50, t) 10.5346 16.7527 26.9856 50.2485 61.8976 75.2535
V d(50, 50, t) 10.1532 15.9864 25.4470 46.6095 57.0975 69.0372
ψd(50, 50, t) 0.0000 0.0004 0.0044 0.0289 0.0469 0.0735

ψd(50, 50, t) 0.0001 0.0005 0.0050 0.0331 0.0538 0.0843
ψ

d
(50, 50, t) 0.0000 0.0003 0.0038 0.0251 0.0408 0.0639
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Table 5: Approximations to and bounds for V (u, b, t) and ψ(u, b, t), for δ =
0.001, c = 1.1, λ = 1 and Pareto(3,2) claims.

t=50 t=100 t=200 t=500 t=700 t=1000
Vd(10, 10, t) 11.6345 15.6770 17.9199 18.3382 18.3399 18.3399
V d(10, 10, t) 11.8801 16.0600 18.4101 18.8591 18.8610 18.8610
V d(10, 10, t) 11.4952 15.4387 17.5974 17.9902 17.9916 17.9917
ψd(10, 10, t) 0.5572 0.8151 0.9678 0.9998 1.0000 1.0000

ψd(10, 10, t) 0.5613 0.8188 0.9691 0.9999 1.0000 1.0000
ψ

d
(10, 10, t) 0.5531 0.8115 0.9664 0.9998 0.9999 0.9999

Vd(10, 20, t) 4.2016 9.9078 17.4346 25.2508 26.3738 26.7905
V d(10, 20, t) 4.3457 10.2559 18.1032 26.3827 27.6042 28.0678
V d(10, 20, t) 4.0973 9.6538 16.9332 24.3704 25.4101 25.7873
ψd(10, 20, t) 0.2822 0.4394 0.6553 0.9199 0.9697 0.9930

ψd(10, 20, t) 0.2864 0.4456 0.6626 0.9239 0.9718 0.9937
ψ

d
(10, 20, t) 0.2780 0.4333 0.6482 0.9157 0.9675 0.9922

Vd(20, 20, t) 12.1786 18.9909 27.8082 36.9614 38.2765 38.7645
V d(20, 20, t) 12.4393 19.4682 28.6317 38.2969 39.7228 40.2639
V d(20, 20, t) 12.0294 18.6887 27.2442 35.9819 37.2034 37.6465
ψd(20, 20, t) 0.1647 0.3437 0.5964 0.9062 0.9645 0.9918

ψd(20, 20, t) 0.1671 0.3488 0.6036 0.9106 0.9669 0.9926
ψ

d
(20, 20, t) 0.1622 0.3386 0.5893 0.9016 0.9620 0.9909

Vd(0, 50, t) 0.0000 0.0150 0.5484 3.0364 4.2272 5.4403
V d(0, 50, t) 0.0000 0.0169 0.5998 3.2939 4.5882 5.9150
V d(0, 50, t) 0.0000 0.0135 0.5052 2.8191 3.9219 5.0382
ψd(0, 50, t) 0.8468 0.8725 0.8900 0.9096 0.9194 0.9321

ψd(0, 50, t) 0.8499 0.8758 0.8935 0.9134 0.9232 0.9358
ψ

d
(0, 50, t) 0.8438 0.8692 0.8864 0.9058 0.9155 0.9283

Vd(30, 50, t) 0.7085 4.5235 13.5363 34.9588 44.6212 54.4573
V d(30, 50, t) 0.7474 4.7438 14.1764 36.6774 46.8902 57.3520
V d(30, 50, t) 0.6773 4.3494 13.0308 33.5847 42.7933 52.1054
ψd(30, 50, t) 0.0303 0.0676 0.1276 0.2671 0.3463 0.4493

ψd(30, 50, t) 0.0310 0.0697 0.1323 0.2772 0.3588 0.4642
ψ

d
(30, 50, t) 0.0296 0.0655 0.1231 0.2575 0.3343 0.4348

Vd(50, 50, t) 12.1835 19.2334 30.3453 53.6037 63.9546 74.4897
V d(50, 50, t) 12.4444 19.7200 31.2566 55.5903 66.4969 77.6675
V d(50, 50, t) 12.0341 18.9243 29.7169 52.1245 62.0217 72.0281
ψd(50, 50, t) 0.0076 0.0241 0.0705 0.2151 0.2998 0.4102

ψd(50, 50, t) 0.0078 0.0248 0.0729 0.2233 0.3110 0.4243
ψ

d
(50, 50, t) 0.0075 0.0235 0.0682 0.2072 0.2892 0.3965
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Table 6: Values of t# and the corresponding approximations to V (u, b, t#),
for c = 1.1 and λ = 1.

u b
exponential claims Pareto claims
t# Vd(u, b, t

#) t# Vd(u, b, t
#)

10 10 9.3364 3.5310 5.2182 2.7003
20 20 47.7545 9.9923 20.6545 6.8102
30 50 373.9454 22.1306 75.6455 2.4628
40 50 671.3545 48.1897 135.4909 14.4870
50 50 734.5727 60.8803 258.9365 35.8758
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Figure 1: Approximations to and bounds, for V (u, 50, t), exponential claims.
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Figure 2: Approximations to and bounds for V (10, b, t), Pareto claims.

this happens later as b increases.
Concerning the expected values L(u, b, t) and ϕ(u, b, t), their approxima-

tions are shown in Tables 7 and 8. These numerical values were obtained
using the Markov chain approach and recursions described in Section 3, giv-
ing the same numbers with at least four decimal places. It seems that the
values ϕ(u, b, t) are, in general, small and have a lower weight in the cal-
culation of L(u, b, t) than the (positive) initial surplus u. We note that in
our case the expected individual claim size is 1. Different parameters and
claim distributions could give a different result. Also, from the tables it
seems that ϕ(u, b, t) is much bigger for Pareto claims than for exponential
for the same values of (u, b, t). Another interesting feature that comes from
comparing these tables is that ϕ(u, b, t) decreases with u, for fixed b and for
all t ∈ (0, 1000] when claims are exponentially distributed, whereas in the
Pareto case ϕ(u, b, t) is not always monotone with respect to u, for all values
of t, as we show in Figure 3.

Figure 4 shows graphically approximations of L(10, b, t) for Pareto(3,2)
claim amounts and b =10, 20 and 50. There are similarities with the lines
described in Figure 2 although now the curves of L(10, b, t), for b > 10, are
decreasing during some time interval due to the lack of dividend payouts.
From this graph we can also deduce the time point at which the shareholders
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Table 7: Approximations to ϕ(u, b, t) and L(u, b, t), for δ = 0.001, c = 1.1,
λ = 1 and exponential(1) claims.

t=50 t=100 t=200 t=500 t=700 t=1000
ϕd(0, 10, t) 0.8869 0.9368 0.9725 0.9832 0.9833 0.9833
Ld(0, 10, t) 0.0909 0.8308 1.3602 1.5188 1.5207 1.5208
ϕd(10, 10, t) 0.4310 0.6865 0.8692 0.9240 0.9247 0.9247
Ld(10, 10, t) -0.4056 3.3839 6.0946 6.9069 6.9167 6.9172
ϕd(0, 20, t) 0.8682 0.8874 0.9084 0.9403 0.9489 0.9544
Ld(0, 20, t) -0.7309 -0.1137 1.0062 2.7473 3.2156 3.5139
ϕd(10, 20, t) 0.1821 0.2802 0.4171 0.6274 0.6840 0.7200
Ld(10, 20, t) -7.3864 -2.7563 4.6680 16.1479 19.2354 21.2020
ϕd(20, 20, t) 0.0527 0.1515 0.3128 0.5624 0.6296 0.6724
Ld(20, 20, t) -9.7567 -3.9001 4.9404 18.5706 22.2364 24.5713
ϕd(0, 50, t) 0.8681 0.8852 0.8948 0.9000 0.9010 0.9021
Ld(0, 50, t) -0.8681 -0.8835 -0.7176 0.9249 1.9498 3.1367
ϕd(10, 50, t) 0.1793 0.2509 0.3006 0.3317 0.3388 0.3464
Ld(10, 50, t) -10.1793 -10.1861 -8.4378 3.5363 10.6860 18.9453
ϕd(20, 50, t) 0.0238 0.0570 0.0925 0.1234 0.1326 0.1427
Ld(20, 50, t) -20.0179 -19.4965 -15.3438 1.9799 11.5993 22.6641
ϕd(30, 50, t) 0.0021 0.0102 0.0258 0.0495 0.0592 0.0703
Ld(30, 50, t) -29.7113 -27.3845 -20.3238 0.0016 10.5925 22.7283
ϕd(40, 50, t) 0.0001 0.0015 0.0071 0.0257 0.0356 0.0470
Ld(40, 50, t) -37.1993 -32.2619 -23.0926 -1.3545 9.5778 22.0775
ϕd(50, 50, t) 0.0000 0.0004 0.0037 0.0209 0.0308 0.0423
Ld(50, 50, t) -39.7038 -33.7074 -23.9120 -1.8255 9.1793 21.7547
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Table 8: Approximations to ϕ(u, b, t) and L(u, b, t), for δ = 0.001, c = 1.1,
λ = 1 and Pareto(3,2) claims.

t=50 t=100 t=200 t=500 t=700 t=1000
ϕd(0, 10, t) 1.5288 1.7346 1.8488 1.8700 1.8701 1.8701
Ld(0, 10, t) 0.1070 0.9819 1.4673 1.5579 1.5582 1.5582
ϕd(10, 10, t) 1.8057 2.5754 3.0025 3.0821 3.0824 3.0824
Ld(10, 10, t) -0.1712 3.1016 4.9174 5.2561 5.2574 5.2574
ϕd(0, 20, t) 1.4394 1.5762 1.7437 1.9174 1.9424 1.9517
Ld(0, 20, t) -1.0875 -0.0948 1.3083 2.7671 2.9767 3.0545
ϕd(10, 20, t) 1.0998 1.7228 2.5241 3.3558 3.4753 3.5197
Ld(10, 20, t) -6.8982 -1.8150 4.9105 11.8950 12.8985 13.2709
ϕd(20, 20, t) 0.7745 1.4903 2.4283 3.4023 3.5423 3.5942
Ld(20, 20, t) -8.5958 -2.4994 5.3798 13.5591 14.7342 15.1703
ϕd(0, 50, t) 1.4364 1.5383 1.6169 1.7103 1.7482 1.7868
Ld(0, 50, t) -1.4364 -1.5233 -1.0685 1.3261 2.4789 3.6535
ϕd(10, 50, t) 1.0368 1.4246 1.7762 2.2493 2.4462 2.6465
Ld(10, 50, t) -11.0368 -11.1472 -7.9979 4.6796 10.6690 16.7698
ϕd(20, 50, t) 0.4777 0.8036 1.1844 1.8108 2.0803 2.3544
Ld(20, 50, t) -20.4470 -19.3934 -13.3859 4.4251 12.6300 20.9849
ϕd(30, 50, t) 0.2331 0.4536 0.7974 1.4909 1.7980 2.1105
Ld(30, 50, t) -29.5246 -25.9300 -17.2611 3.4679 12.8232 22.3468
ϕd(40, 50, t) 0.1323 0.2884 0.5995 1.3199 1.6441 1.9742
Ld(40, 50, t) -35.9073 -29.8260 -19.4966 2.6505 12.5324 22.5905
ϕd(50, 50, t) 0.1031 0.2413 0.5424 1.2696 1.5984 1.9332
Ld(50, 50, t) -37.9196 -31.0079 -20.1971 2.3340 12.3561 22.5565
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Figure 3: Approximations to ϕ(u, 20, t), Pareto claims.
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Figure 4: Approximations to L(10, b, t), Pareto claims.

can expect a positive net income. This happens much later as b increases.
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5.2 For the modified risk model II

We now present numerical results that we obtained using the algorithm de-
scribed in Subsection 4.2. In Tables 9 and 10 we show the approximate values
Vd(u, b, t), ϕd(u, b, t) and Md(u, b, t) considering our modified risk model II.
The first two approximations are now much higher than the ones presented in
the last subsection considering the same governing parameters. Also it seems,
from our examples, for a fixed value of the initial surplus, that M(u, b, t) de-
creases as b increases and, for a fixed value of the dividend barrier, M(u, b, t)
increases as u increases. This conclusion agrees with the results shown in
Figure 4 of Dickson and Waters (2004). Concerning the transition proba-

bilities in n steps, p
(n)
ω,j , for the risk model I we have p

(n)
ω,0 = 1 after some

time point. This is no longer true for the present risk model. In fact the
probabilities p

(n)
ω,j will converge, each one, to some positive value. From our

experience p
(n)
ω,0 is, in general, very small.

In Figure 5 we compare the approximations Ld(10, b, t) and Md(10, b, t),
for b = 10, 20, 50 and Pareto(3,2) claim amounts in the range 0 < t ≤ 1000.
During some time the first expected value is above the second but some time
later, after becoming positive, these expected values switch positions since
the values Ld(u, b, t) seem to converge to some value. From our examples we
cannot make any conclusions about the convergence of the values Md(u, b, t).

5.3 For the modified risk model III

Numerical results concerning this risk model were calculated for different
governing parameters which are listed in Table 11 including the corresponding
tables. These results were calculated within a time range 0 < t ≤ 40.

From these numerical examples we make the following remarks:

1. ψ(u, b, t) and V (u, b, t) decrease as b increases.

2. We can see that ψ(u, b, t) is higher for the Pareto than for the expo-
nential claim amounts. However this is not always true for an initial
surplus of zero due to its unusual features. Also, these probabilities are
small, excepting the case u = 0.

3. Comparing the values in Tables 12 and 13 we note that the bounds for
V (u, 10, t), with u > 10, are not much different, which is probably due
to the small probabilities of ruin.

4. In general, for u > b, the bounds for V (u, b, t) obtained for Pareto claim
amounts are smaller than for exponential distributed claims.

26



Table 9: Approximations to V (u, b, t), ϕ(u, b, t) and M(u, b, t), for δ = 0.001,
c = 1.1, λ = 1 and exponential(1) claims.

t=50 t=100 t=200 t=500 t=700 t=1000
Vd(0, 10, t) 4.3187 11.5977 25.1774 58.6438 75.9835 96.2819
ϕd(0, 10, t) 5.6790 8.3710 13.3405 25.5870 31.9322 39.3600
Md(0, 10, t) -1.3604 3.2267 11.8369 33.0569 44.0513 56.9219
Vd(10, 10, t) 10.5561 17.8872 31.4673 64.9337 82.2734 102.5718
ϕd(10, 10, t) 2.0879 4.7596 9.7289 21.9754 28.3206 35.7485
Md(10, 10, t) -1.5318 3.1276 11.7384 32.9583 43.9528 56.8233
Vd(0, 20, t) 0.4504 3.9454 13.4801 38.3373 51.2330 66.3292
ϕd(0, 20, t) 5.4194 6.8128 8.4698 12.1488 14.0501 16.2758
Md(0, 20, t) -4.9690 -2.8674 5.0103 26.1884 37.1829 50.0535
Vd(10, 20, t) 2.8068 7.9099 17.9160 42.8001 55.6958 70.7920
ϕd(10, 20, t) 0.9044 1.8022 3.3190 6.9901 8.8914 11.1170
Md(10, 20, t) -8.0976 -3.8923 4.5969 25.8099 36.8044 49.6749
Vd(20, 20, t) 10.2964 16.3290 26.5966 51.4956 64.3913 79.4875
ϕd(20, 20, t) 0.2141 0.8425 2.2816 5.9483 7.8495 10.0752
Md(20, 20, t) -9.9176 -4.5135 4.3150 25.5473 36.5418 49.4123
Vd(0, 50, t) 0.0000 0.0052 0.9143 14.5992 25.0040 37.8305
ϕd(0, 50, t) 5.4191 6.7768 7.9649 8.8883 9.0541 9.1937
Md(0, 50, t) -5.4191 -6.7716 -7.0507 5.7109 15.9499 28.6368
Vd(10, 50, t) 0.0000 0.0649 1.9600 17.4316 28.0122 40.8814
ϕd(10, 50, t) 0.8957 1.6628 2.4839 3.2151 3.3660 3.5020
Md(10, 50, t) -10.8957 -11.5979 -10.5239 4.2165 14.6461 27.3794
Vd(20, 50, t) 0.0059 0.5605 4.7598 23.0538 33.8955 46.8282
ϕd(20, 50, t) 0.0992 0.3300 0.7045 1.1620 1.2909 1.4215
Md(20, 50, t) -20.0933 -19.7695 -15.9446 1.8918 12.6046 25.4067
Vd(30, 50, t) 0.2907 2.6258 9.7031 30.2964 41.3342 54.3146
ϕd(30, 50, t) 0.0075 0.0524 0.1804 0.4444 0.5568 0.6834
Md(30, 50, t) -29.7168 -27.4267 -20.4773 -0.1479 10.7774 23.6312
Vd(40, 50, t) 2.8009 7.7396 16.9146 38.7410 49.8770 62.8812
ϕd(40, 50, t) 0.0004 0.0068 0.0452 0.2175 0.3216 0.4462
Md(40, 50, t) -37.1995 -32.2672 -23.1306 -1.4764 9.5554 22.4350
Vd(50, 50, t) 10.2962 16.2930 26.0918 48.2350 59.3953 72.4054
ϕd(50, 50, t) 0.0000 0.0015 0.0218 0.1721 0.2742 0.3983
Md(50, 50, t) -39.7039 -33.7085 -23.9301 -1.9371 9.1211 22.0071
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Table 10: Approximations to V (u, b, t), ϕ(u, b, t) andM(u, b, t), for δ = 0.001,
c = 1.1, λ = 1 and Pareto(3,2) claims.

t=50 t=100 t=200 t=500 t=700 t=1000
Vd(0, 10, t) 6.3276 16.0321 34.0638 78.5010 101.5249 128.4774
ϕd(0, 10, t) 8.0279 13.1069 22.5280 45.7453 57.7747 71.8566
Md(0, 10, t) -1.7003 2.9252 11.5358 32.7557 43.7502 56.6207
Vd(10, 10, t) 12.9049 22.6231 40.6549 85.0921 108.1159 135.0684
ϕd(10, 10, t) 4.7056 9.7805 19.2016 42.4188 54.4482 68.5302
Md(10, 10, t) -1.8006 2.8427 11.4533 32.6732 43.6677 56.5382
Vd(0, 20, t) 1.0464 6.6739 19.4034 51.2183 67.7036 87.0019
ϕd(0, 20, t) 7.3184 10.0330 14.3874 24.9858 30.4767 36.9045
Md(0, 20, t) -6.2720 -3.3591 5.0160 26.2324 37.2269 50.0974
Vd(10, 20, t) 4.2668 11.0699 23.9603 55.7775 72.2628 91.5611
ϕd(10, 20, t) 2.5707 4.9326 9.2391 19.8368 25.3277 31.7554
Md(10, 20, t) -8.3038 -3.8627 4.7212 25.9407 36.9352 49.8057
Vd(20, 20, t) 12.1954 19.5493 32.5143 64.3326 80.8179 100.1162
ϕd(20, 20, t) 1.4978 3.6962 7.9804 18.5778 24.0686 30.4964
Md(20, 20, t) -9.3023 -4.1470 4.5339 25.7548 36.7493 49.6198
Vd(0, 50, t) 0.0000 0.0427 2.5769 21.9643 34.0039 48.2767
ϕd(0, 50, t) 7.3065 9.7172 12.2331 15.3732 16.6237 18.0544
Md(0, 50, t) -7.3065 -9.6746 -9.6562 6.5911 17.3802 30.2223
Vd(10, 50, t) 0.0001 0.2799 4.2650 24.7693 36.8559 51.1352
ϕd(10, 50, t) 2.4611 4.1875 6.2464 9.1711 10.4129 11.8424
Md(10, 50, t) -12.4610 -13.9077 -11.9813 5.5981 16.4429 29.2928
Vd(20, 50, t) 0.0307 1.4108 7.9505 30.0574 42.2106 56.4990
ϕd(20, 50, t) 0.8875 1.8593 3.3102 5.9316 7.1610 8.5888
Md(20, 50, t) -20.8568 -20.4486 -15.3597 4.1258 15.0495 27.9103
Vd(30, 50, t) 0.7085 4.5237 13.5898 37.0060 49.2127 63.5086
ϕd(30, 50, t) 0.3652 0.8747 1.8671 4.2454 5.4648 6.8911
Md(30, 50, t) -29.6567 -26.3510 -18.2773 2.7606 13.7480 26.6175
Vd(40, 50, t) 4.2250 10.4625 21.1252 45.2787 57.5154 71.8154
ϕd(40, 50, t) 0.1834 0.4794 1.2271 3.4700 4.6838 6.1094
Md(40, 50, t) -35.9584 -30.0169 -20.1018 1.8088 12.8316 25.7060
Vd(50, 50, t) 12.1835 19.2335 30.3600 54.7199 66.9650 81.2661
ϕd(50, 50, t) 0.1346 0.3747 1.0550 3.2602 4.4725 5.8979
Md(50, 50, t) -37.9511 -31.1413 -20.6951 1.4597 12.4925 25.3683
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Figure 5: Approximations to L(10, b, t) and M(10, b, t), Pareto claims.

Table 11: Parameter values for the numerical results in the modified risk
model III.

Premium rate Dividend rate Interest force Tables
1.3 0.2 0.01 12–13
1.2 0.15 0.001 14–15
2.1 1.0 0.001 16–17
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5. From Tables 14 to 17 we observe that the bounds for the expected
value V (u, b, t) are very much alike when u = b, when u − b = 10 and
when b− u = 10, excepting the case of an initial surplus equal to zero.
However we should expect to have bigger differences when t becomes
larger.

In Figure 6 we compare graphically the bounds for V (u, 10, t), for three
different levels of the initial surplus (10, 20 and 40), and the corresponding
ruin probabilities. We can see that the bounds produced for the expected
discounted payments are indeed very close and as u increases these bounds
tends to be tighter, a feature that we also found for other combinations of u
and b.

A comparison between the modified risk models I and III, in terms of the
bounds for V (u, b, t), is depicted in Figure 7. The premium rate is, for each
surplus risk process, 1.1 and 2.1, respectively. Although the dividend rate
for the first surplus is larger than the dividend rate for the second surplus
(ĉ = 1), we conclude, for such a case, that V (u, b, t) shall be much bigger for
Model III than for Model I. A great part of this difference must be due to
the corresponding small ruin probabilities obtained in Model III. Note that
in Model I the surplus process does not go above b (and therefore ruin is
certain) whereas for Model III the surplus can go above b although with a
slope 0.1.
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Table 12: Bounds for V (u, 10, t) and for ψ(u, 10, t), for δ = 0.01, c = 1.3,
ĉ = 0.2, λ = 1 and exponential(1) claims

t = 1 t = 5 t = 10 t = 20 t = 30 t = 40

V d(0, 10, t) 0.0000 0.0000 0.0048 0.1559 0.4018 0.6607
V d(0, 10, t) 0.0000 0.0000 0.0044 0.1480 0.3822 0.6287

ψd(0, 10, t) 0.4408 0.6614 0.7132 0.7460 0.7591 0.7667
ψ

d
(0, 10, t) 0.4373 0.6565 0.7077 0.7398 0.7523 0.7595

V d(10, 10, t) 0.1564 0.6813 1.3249 2.5856 3.7841 4.9004
V d(10, 10, t) 0.1547 0.6726 1.3055 2.5415 3.7142 4.8053

ψd(10, 10, t) 0.0003 0.0071 0.0215 0.0492 0.0707 0.0874
ψ

d
(10, 10, t) 0.0002 0.0067 0.0202 0.0458 0.0653 0.0803

V d(20, 10, t) 0.1990 0.9738 1.8925 3.5743 5.0761 6.4248
V d(20, 10, t) 0.1989 0.9735 1.8911 3.5677 5.0613 6.4001

ψd(20, 10, t) 0.0001 0.0001 0.0004 0.0024 0.0059 0.0102
ψ

d
(20, 10, t) 0.0000 0.0000 0.0002 0.0020 0.0050 0.0086

V d(30, 10, t) 0.1991 0.9755 1.9033 3.6242 5.1789 6.5826
V d(30, 10, t) 0.1989 0.9753 1.9030 3.6236 5.1773 6.5794

ψd(30, 10, t) 0.0001 0.0001 0.0001 0.0001 0.0003 0.0008
ψ

d
(30, 10, t) 0.0000 0.0000 0.0000 0.0000 0.0002 0.0005

V d(40, 10, t) 0.1991 0.9755 1.9034 3.6256 5.1837 6.5934
V d(40, 10, t) 0.1989 0.9753 1.9031 3.6252 5.1832 6.5926

ψd(40, 10, t) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
ψ

d
(40, 10, t) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

V d(50, 10, t) 0.1991 0.9755 1.9034 3.6256 5.1839 6.5939
V d(50, 10, t) 0.1989 0.9753 1.9031 3.6252 5.1834 6.5933

ψd(50, 10, t) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
ψ

d
(50, 10, t) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 13: Bounds for V (u, 10, t) and for ψ(u, 10, t), for δ = 0.01, c = 1.3,
ĉ = 0.2, λ = 1 and Pareto(3,2) claims

t = 1 t = 5 t = 10 t = 20 t = 30 t = 40

V d(0, 10, t) 0.0000 0.0000 0.0087 0.2359 0.5479 0.8504
V d(0, 10, t) 0.0000 0.0000 0.0080 0.2253 0.5253 0.8163

ψd(0, 10, t) 0.3987 0.6130 0.6735 0.7178 0.7389 0.7526
ψ

d
(0, 10, t) 0.3946 0.6078 0.6680 0.7118 0.7324 0.7457

V d(10, 10, t) 0.1622 0.7179 1.3794 2.6345 3.7871 4.8301
V d(10, 10, t) 0.1606 0.7103 1.3634 2.5999 3.7334 4.7577

ψd(10, 10, t) 0.0054 0.0325 0.0661 0.1196 0.1589 0.1892
ψ

d
(10, 10, t) 0.0053 0.0318 0.0644 0.1158 0.1531 0.1816

V d(20, 10, t) 0.1986 0.9639 1.8599 3.4825 4.9188 6.1989
V d(20, 10, t) 0.1985 0.9633 1.8580 3.4750 4.9030 6.1733

ψd(20, 10, t) 0.0009 0.0052 0.0121 0.0284 0.0453 0.0614
ψ

d
(20, 10, t) 0.0008 0.0050 0.0117 0.0273 0.0431 0.0579

V d(30, 10, t) 0.1990 0.9736 1.8956 3.5951 5.1192 6.4869
V d(30, 10, t) 0.1989 0.9734 1.8951 3.5935 5.1151 6.4795

ψd(30, 10, t) 0.0003 0.0015 0.0035 0.0083 0.0142 0.0207
ψ

d
(30, 10, t) 0.0002 0.0014 0.0033 0.0080 0.0135 0.0194

V d(40, 10, t) 0.1990 0.9749 1.9010 3.6161 5.1632 6.5583
V d(40, 10, t) 0.1989 0.9747 1.9007 3.6155 5.1618 6.5558

ψd(40, 10, t) 0.0002 0.0007 0.0014 0.0032 0.0054 0.0080
ψ

d
(40, 10, t) 0.0001 0.0006 0.0013 0.0030 0.0051 0.0075

V d(50, 10, t) 0.1990 0.9752 1.9023 3.6216 5.1753 6.5792
V d(50, 10, t) 0.1989 0.9751 1.9021 3.6212 5.1745 6.5779

ψd(50, 10, t) 0.0001 0.0004 0.0007 0.0016 0.0025 0.0037
ψ

d
(50, 10, t) 0.0000 0.0003 0.0006 0.0014 0.0024 0.0034
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Table 14: Bounds for V (u, b, t) and for ψ(u, b, t), for δ = 0.001, c = 1.2,
ĉ = 0.15, λ = 1 and exponential(1) claims

t = 1 t = 5 t = 10 t = 20 t = 30 t = 40

V d(0, 10, t) 0.0000 0.0000 0.0011 0.0783 0.2339 0.4189
V d(0, 10, t) 0.0000 0.0000 0.0009 0.0737 0.2205 0.3949

ψd(0, 10, t) 0.4528 0.6912 0.7504 0.7904 0.8074 0.8177
ψ

d
(0, 10, t) 0.4493 0.6865 0.7451 0.7845 0.8010 0.8108

V d(10, 10, t) 0.1167 0.5039 0.9853 1.9739 2.9889 4.0163
V d(10, 10, t) 0.1154 0.4971 0.9694 1.9351 2.9226 3.9193

ψd(10, 10, t) 0.0004 0.0084 0.0274 0.0677 0.1014 0.1289
ψ

d
(10, 10, t) 0.0002 0.0079 0.0258 0.0633 0.0943 0.1192

V d(20, 10, t) 0.1500 0.7467 1.4821 2.9135 4.3000 5.6518
V d(20, 10, t) 0.1499 0.7464 1.4810 2.9069 4.2832 5.6210

ψd(20, 10, t) 0.0000 0.0001 0.0005 0.0035 0.0094 0.0171
ψ

d
(20, 10, t) 0.0000 0.0000 0.0003 0.0029 0.0080 0.0146

V d(10, 20, t) 0.0000 0.0000 0.0012 0.1276 0.4769 0.9917
V d(10, 20, t) 0.0000 0.0000 0.0010 0.1203 0.4513 0.9398

ψd(10, 20, t) 0.0003 0.0078 0.0247 0.0579 0.0827 0.1007
ψ

d
(10, 20, t) 0.0002 0.0074 0.0235 0.0546 0.0777 0.0942

V d(20, 20, t) 0.1167 0.5039 0.9853 1.9744 2.9946 4.0390
V d(20, 20, t) 0.1154 0.4971 0.9694 1.9355 2.9283 3.9420

ψd(20, 20, t) 0.0000 0.0001 0.0004 0.0023 0.0057 0.0098
ψ

d
(20, 20, t) 0.0000 0.0000 0.0002 0.0020 0.0050 0.0086

V d(30, 20, t) 0.1500 0.7467 1.4821 2.9135 4.3001 5.6526
V d(30, 20, t) 0.1499 0.7464 1.4810 2.9069 4.2833 5.6218

ψd(30, 20, t) 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009
ψ

d
(30, 20, t) 0.0000 0.0000 0.0000 0.0000 0.0002 0.0006

V d(40, 50, t) 0.0000 0.0000 0.0012 0.1276 0.4769 0.9923
V d(40, 50, t) 0.0000 0.0000 0.0010 0.1203 0.4513 0.9403

ψd(40, 50, t) 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001
ψ

d
(40, 50, t) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

V d(50, 50, t) 0.1167 0.5039 0.9853 1.9744 2.9946 4.0390
V d(50, 50, t) 0.1154 0.4971 0.9694 1.9355 2.9283 3.9420

ψd(50, 50, t) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ψ

d
(50, 50, t) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 15: Bounds for V (u, b, t) and for ψ(u, b, t), for δ = 0.001, c = 1.2,
ĉ = 0.15, λ = 1 and Pareto(3,2) claims

t = 1 t = 5 t = 10 t = 20 t = 30 t = 40

V d(0, 10, t) 0.0000 0.0000 0.0020 0.1307 0.3500 0.5882
V d(0, 10, t) 0.0000 0.0000 0.0017 0.1238 0.3330 0.5603

ψd(0, 10, t) 0.4110 0.6409 0.7078 0.7578 0.7815 0.7969
ψ

d
(0, 10, t) 0.4069 0.6357 0.7023 0.7518 0.7752 0.7902

V d(10, 10, t) 0.1212 0.5353 1.0389 2.0459 3.0485 4.0354
V d(10, 10, t) 0.1199 0.5292 1.0256 2.0149 2.9972 3.9617

ψd(10, 10, t) 0.0055 0.0344 0.0726 0.1370 0.1861 0.2248
ψ

d
(10, 10, t) 0.0053 0.0337 0.0708 0.1326 0.1794 0.2159

V d(20, 10, t) 0.1496 0.7387 1.4548 2.8321 4.1546 5.4348
V d(20, 10, t) 0.1495 0.7383 1.4533 2.8251 4.1382 5.4060

ψd(20, 10, t) 0.0009 0.0053 0.0129 0.0320 0.0531 0.0740
ψ

d
(20, 10, t) 0.0008 0.0051 0.0125 0.0307 0.0504 0.0697

V d(10, 20, t) 0.0000 0.0000 0.0022 0.2055 0.6677 1.2744
V d(10, 20, t) 0.0000 0.0000 0.0019 0.1952 0.6385 1.2220

ψd(10, 20, t) 0.0054 0.0327 0.0672 0.1214 0.1596 0.1879
ψ

d
(10, 20, t) 0.0052 0.0322 0.0658 0.1183 0.1550 0.1821

V d(20, 20, t) 0.1212 0.5353 1.0389 2.0478 3.0661 4.0928
V d(20, 20, t) 0.1199 0.5292 1.0256 2.0168 3.0143 4.0182

ψd(20, 20, t) 0.0009 0.0052 0.0122 0.0287 0.0456 0.0616
ψ

d
(20, 20, t) 0.0008 0.0050 0.0119 0.0277 0.0438 0.0589

V d(30, 20, t) 0.1496 0.7387 1.4548 2.8324 4.1571 5.4446
V d(30, 20, t) 0.1495 0.7383 1.4533 2.8253 4.1407 5.4158

ψd(30, 20, t) 0.0003 0.0016 0.0036 0.0088 0.0152 0.0223
ψ

d
(30, 20, t) 0.0002 0.0015 0.0034 0.0084 0.0145 0.0211

V d(40, 50, t) 0.0000 0.0000 0.0022 0.2055 0.6679 1.2774
V d(40, 50, t) 0.0000 0.0000 0.0019 0.1952 0.6387 1.2248

ψd(40, 50, t) 0.0002 0.0007 0.0014 0.0030 0.0049 0.0069
ψ

d
(40, 50, t) 0.0001 0.0006 0.0013 0.0029 0.0047 0.0066

V d(50, 50, t) 0.1212 0.5353 1.0389 2.0478 3.0661 4.0933
V d(50, 50, t) 0.1199 0.5292 1.0256 2.0168 3.0144 4.0186

ψd(50, 50, t) 0.0001 0.0004 0.0007 0.0015 0.0025 0.0035
ψ

d
(50, 50, t) 0.0000 0.0003 0.0006 0.0014 0.0023 0.0033
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Table 16: Bounds for V (u, b, t) and for ψ(u, b, t), for δ = 0.001, c = 2.1,
ĉ = 1.0, λ = 1 and exponential(1) claims

t = 1 t = 5 t = 10 t = 20 t = 30 t = 40

V d(0, 10, t) 0.0000 0.0045 1.1740 5.4497 10.1029 14.8326
V d(0, 10, t) 0.0000 0.0042 1.1435 5.3399 9.9165 14.5716

ψd(0, 10, t) 0.3587 0.4659 0.4767 0.4805 0.4822 0.4834
ψ

d
(0, 10, t) 0.3556 0.4615 0.4720 0.4756 0.4771 0.4782

V d(10, 10, t) 0.8166 3.9632 8.1752 17.0035 26.0209 35.0840
V d(10, 10, t) 0.8106 3.9307 8.1079 16.8692 25.8238 34.8271

ψd(10, 10, t) 0.0003 0.0027 0.0053 0.0089 0.0113 0.0131
ψ

d
(10, 10, t) 0.0002 0.0024 0.0049 0.0082 0.0103 0.0119

V d(0, 20, t) 0.0000 0.0000 0.0004 1.7581 5.8821 10.4832
V d(0, 20, t) 0.0000 0.0000 0.0003 1.6969 5.7317 10.2539

ψd(0, 20, t) 0.3587 0.4659 0.4765 0.4785 0.4786 0.4786
ψ

d
(0, 20, t) 0.3556 0.4615 0.4717 0.4737 0.4738 0.4738

V d(10, 20, t) 0.0000 0.0046 1.6041 9.0403 17.7452 26.7105
V d(10, 20, t) 0.0000 0.0043 1.5656 8.9038 17.5345 26.4373

ψd(10, 20, t) 0.0002 0.0016 0.0023 0.0026 0.0027 0.0027
ψ

d
(10, 20, t) 0.0001 0.0014 0.0021 0.0024 0.0024 0.0024

V d(20, 20, t) 0.8166 3.9632 8.1760 17.0261 26.0985 35.2409
V d(20, 20, t) 0.8106 3.9307 8.1086 16.8926 25.9052 34.9930

ψd(20, 20, t) 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001
ψ

d
(20, 20, t) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 17: Bounds for V (u, b, t) and for ψ(u, b, t), for δ = 0.001, c = 2.1,
ĉ = 1.0, λ = 1 and Pareto(3,2) claims

t = 1 t = 5 t = 10 t = 20 t = 30 t = 40

V d(0, 10, t) 0.0000 0.0060 1.4363 5.8698 10.4438 14.9724
V d(0, 10, t) 0.0000 0.0055 1.4029 5.7669 10.2731 14.7331

ψd(0, 10, t) 0.3195 0.4397 0.4650 0.4879 0.5026 0.5138
ψ

d
(0, 10, t) 0.3161 0.4354 0.4605 0.4829 0.4973 0.5081

V d(10, 10, t) 0.8437 4.0490 8.1861 16.6055 24.9745 33.2152
V d(10, 10, t) 0.8379 4.0220 8.1321 16.4974 24.8101 32.9913

ψd(10, 10, t) 0.0052 0.0258 0.0462 0.0762 0.0983 0.1160
ψ

d
(10, 10, t) 0.0051 0.0254 0.0453 0.0744 0.0956 0.1125

V d(0, 20, t) 0.0000 0.0000 0.0008 2.1810 6.3799 10.9021
V d(0, 20, t) 0.0000 0.0000 0.0006 2.1158 6.2384 10.6901

ψd(0, 20, t) 0.3195 0.4397 0.4629 0.4742 0.4788 0.4822
ψ

d
(0, 20, t) 0.3161 0.4354 0.4583 0.4695 0.4740 0.4773

V d(10, 20, t) 0.0000 0.0060 1.8959 9.2079 17.4462 25.8777
V d(10, 20, t) 0.0000 0.0056 1.8565 9.0922 17.2689 25.6445

ψd(10, 20, t) 0.0047 0.0187 0.0277 0.0374 0.0441 0.0494
ψ

d
(10, 20, t) 0.0046 0.0184 0.0273 0.0368 0.0432 0.0484

V d(20, 20, t) 0.8437 4.0490 8.1932 16.7720 25.5228 34.3162
V d(20, 20, t) 0.8379 4.0220 8.1391 16.6639 25.3627 34.1061

ψd(20, 20, t) 0.0009 0.0043 0.0084 0.0152 0.0208 0.0256
ψ

d
(20, 20, t) 0.0007 0.0042 0.0082 0.0148 0.0203 0.0249
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Figure 6: Comparison of bounds for V (u, 10, t) and ψ(u, 10, t), for u = 10,
20, 40, c = 1.3, ĉ = 0.2, δ = 0.01 and Pareto claims.
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Figure 7: Model I vs Model III: a comparison of bounds for V (u, b, t), for
δ = 0.001 and Pareto claims.
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