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Abstract

We study the asymptotic behavior of the spectrum of an elliptic operator with periodically oscillating coefficients,
in a thin domain, with vanishing Dirichlet conditions. Two cases are treated: the case where the periodicity of the
oscillations has the same order of thickness as the domain and the case where the oscillations have a frequency
much greater than the thickness of the domain. A physical motivation can be to understand the behavior of the
probability density associated to the wave function of a particle confined to a very thin domain, with periodically
varying characteristics. To cite this article: R. Ferreira, M.L. Mascarenhas, C. R. Acad. Sci. Paris, Ser. I ...
(2007).

Résumé

Ondes dans un milieu fin & caractéristiques périodiquement oscillantes. On étudie le comportement
asymptotique du spectre d’un probléme elliptique a coefficients périodiques dans un domaine mince, & condition
de Dirichlet nulle. On analyse deux cas : le cas ou la périodicité des oscillations est du méme ordre que 1’épaisseur
du domaine et le cas ou la fréquence des oscillations est trés grande devant 1’épaisseur. Une motivation physique
est de comprendre le comportement de la densité de probabilité associée a la fonction d’onde d’une particule dans
un domaine mince dont les propriétés oscillent fortement. Pour citer cet article : R. Ferreira, M.L. Mascarenhas,
C. R. Acad. Sci. Paris, Ser. I ... (2007).

Version frangaise abrégée

Notre but c’est I’étude du spectre d’un probleme elliptique a coefficients périodiques dans un domaine
de tres petite épaisseur, en imposant des conditions de Dirichlet nulles au bord. Le domaine est de la
forme 5 := w x 61 ol w est un domaine borné de R?, [ := (—1/2,1/2) et § est un petit parametre

Email addresses: ragf@ptmat.fc.ul.pt (Rita Ferreira), mlfm@fct.unl.pt (M. Luisa Mascarenhas).

Preprint submitted to Elsevier Science 9 janvier 2008



d’épaisseur. Les oscillations supposées indépendantes de la variable ’épaisseur sont décrites par un autre
petit parametre €.

Une motivation physique est de comprendre le comportement de la densité de probabilité associée a la
fonction d’onde d’une particule dans un domaine mince dont les propriétés oscillent fortement.

On choisit les caractéres « et 8 pour représenter les indices {1, 2} et on utilise la convention de Einstein
dans les indices répétés. On écrira z au lieu de (x1,z2). Soit Y := (0,1)? et considérons la matrice
symétrique réelle, a coefficients Y-périodiques, A = (a;;)1<i j<3 € [L*°(R?)]3*3, telle que pour certains ¢
et 7 dans RT, I'inégalité (1) est satisfaite pour tout &€ € R? et p.p. en € R?. Pour des raisons techniques
on simplifie le probleme en supposant que an3 = 0 p.p. en T € R2. Pour chaque € > 0 on définit
a5;(z) == aij (%) et Ae == (a5;)1<i,5<3- Notre probleme est alors I'étude du comportement asymptotique
de X qui satisfait (2), quand € — 0 et § — 0.

Une fois que Qs est borné, le spectre ag du probleme (2) se réduit a la suite de valeurs propres
0< )\g’o < )\g’l < - < )\g’i < )\g’”l < -+, 1 € Ng. Si on fait I’épaisseur ¢ tendre vers zéro il est clair
que les valeurs propres tendent vers l'infini. On précise la caractérisation asymptotique du spectre dans
Théoreme 1.1 pour le cas € =~ § et dans Théoreme 1.2 pour le cas € < 4.

La preuve des résultats repose sur la notion de I'-convergence. On utilise un changement de variables
classique pour réduire le probléeme & un domaine fixe. Aprés un changement d’échelles et de variable
fonctionnelle (voir Proposition 2.2), on applique des résultats d’homogénéisation liés & la convergence
spectrale (Lemme 2.1 et Proposition 2.3) pour obtenir la convergence désirés.

1. Introduction and Main results

Our aim is to study the asymptotic behavior of the spectrum of an elliptic problem with periodically
oscillating coefficients in a thin domain, with zero Dirichlet boundary conditions.

We consider the domain Qs := w x §I, where w is a bounded domain in R?, [ := (—1/2,1/2) and §
is a small parameter of thickness. The oscillations, which we assume to be independent of the thickness
variable, are described by another small parameter . We study the case when ¢ has the same order of §
and the case when ¢ goes to zero faster than §.

A physical motivation can be to understand the behavior of the probability density associated to the
wave function of a particle confined to a very thin domain, with periodically varying characteristics.

In what follows the greek characters a and [ take their values in the set {1,2} and the Einstein
convention of summation over repeated indices is adopted. We will write often Z instead of (x1,z2). For
Y = (0,1)% let A = (aij)1<ij<3 € [L=(R?)]>*3 be a real symmetric and Y-periodic matrix, satisfying,
for ¢ and 5 in RT,

Cllel® < (A(@)8,6) < nliell, (1)

for all ¢ € R? and for a.e. Z € R2. For technical reasons we simplify the problem, assuming that as3 = 0
a.e. in R?,
For each € > 0, define a5;(#) := a;;(Z) and A. = (a5;)1<i,j<3- The problem under study is then the
asymptotic behavior of \?, as ¢ — 0 and § — 0:
—div(A. VDY) = N2, in Q5,00 € HE(Qs). (2)

e e

Since €25 is bounded, the spectrum ¢ of problem (2) is discrete and can be written as o0 := {\%% €
R+ :i € No}, where 0 < M350 < ASL < oo < A8 < A2 ... As the thickness of the domain goes to
zero (0 — 0), it is clear that all the eigenvalues go to infinity. A precise characterization of the asymptotic
behavior of ¢ is given in Theorem 1.1 for the case £ & §, and in Theorem 1.2 for the case ¢ < 4.
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We will use the I'-convergence as main tool. Consider the quadratic energy Eg : L2(wx81) — (—o0, +00]
associated with the self-adjoint operator —div(A4.V-) from L?(w x &I) into itself,

=50 ) [ s Ac(@)VO(E)VO(Z)dz, if 0 € Hj(w x 61),
B0 = {{-OOM " otherwisoe(. " ®)

As it is usual in the dimension reduction framework, the first step is to perform a rescaling and a
change of variables in order to transform problem (2) into an equivalent one defined in the fixed domain
w x I. To each point & = (Z,73) € w x 6] we associate the point x = (z,z3) = (Z,6 '73) € w x I and
we define v € H}(w x I) by v(z) := 9(%), if © € H}(w x 6I). Accordingly, we rescale the energy in (3)
dividing it by & so that the new energy becomes E? : L?(w x I) — (—o00, +00],

B () m {fwxlagﬁ(x)aav(m)agv(x) %538 | Byv(2)|2 de, if v € HY(w x I), (1)

c 400, otherwise,

where 9; stands for 9/9x;, i = 1,2, 3. The rescaled spectral problem is then
—div(C? Vo) = N, inwx I, )€ Hi(wx I), (5)

where C? := A_I°, being I° the 3 x 3 diagonal matrix diag(1,1,1/52). We stress that problems (2) and
(5) are equivalent.
Let (po,%0) be the normalized first eigenpair for the following periodic spectral problem:

aya (a’aﬁ( ) y[fw) —+ a33( )7T2¢ = /“p7 in Y7 1/} € H;;E(Y)7

and consider the following bidimensional homogenized spectral problem:

—aa(a’;ﬂaw) =vp, inw, p<c Hyw), (6)

where the constant matrix (dgﬁ) is the homogenized matrix of the periodic sequence {(ag)}, ag5(7) :==

(¥§)%a aﬁ)( z), with ¢¥§(Z) := 10(T/e). We recall that the eigenvalue py is real, positive and simple and
the associated eigenfunction g is a strictly positive function which lies in H%E Y)n ngs (Y), for some
0 < s < 1 (see [4]). The next theorem characterizes the behavior of the spectrum ¢ when § ~ ¢.

Theorem 1.1 Let (\*,vF) be a k" eigenpair associated with problem (5) for 6 = ¢ and let 6y € HE(I)

be the normalized eigenfunction associated with the first eigenvalue, 72, for the problem —6" = N0, in I,
0c H&(I) that is 00(:53) V2 cos(mx3). Then,

P + oF(Z, x3) = V5 (Z)ul (7, x3), for a.e. (T,13) €w x 1, (7)

where, as ¢ — 0, v¥ — v* and, up to a subsequence, u¥ — u* weakly in H}(w x I), with u*(z,x3) =
Ok (2)00(x3), being (VF, %) a k" eigenpair associated with (6). Conversely, any eigenfunction u® = k6,
is the weak limit of a particular sequence of eigenfunctions associated with l/f,

Before stating the theorem characterizing the behavior of the spectrum ¢ when ¢ < 4, we introduce
some notation. Let § =¢7, 7 € (0,1), and let (e 0, %e,0) be the normalized first eigenpair for the problem

—62(771)874 (aap(9)0 Ws) + ass(y )7T2"/}s = pethe, inY, e € H%E(Y)’ (8)

and, for j € Ny, define fi; :== [}, 7 Zas3(y )’(/JJ( )dg, where ¢9 = 1in Y and, for j > 1, 1/)J are the solutions
of the recurrence problems in Hj (Y')

J—1

—0y, (a0 (§)0y, ;) = —ass(G)m° ;- 1+Zuk¢g 1—ks /% dy =0. (9)



Theorem 1.2 Suppose that a,g are uniformly Lipschitz continuous in'Y . Let ()\’g, ‘f) be a k" eigenpair

associated with problem (5) for § = ™. Leti € N be such that =+ < 7 < ﬁ and let 6y be as in Thm 1.1.
Then, as e — 0, peo — © [, ass(§) dj = fio, Ve0(T/e) — o umformly n w and
AP = Z% +oF 4 pT, OF(F,x3) = ¢so( ) Mz, 23), for a.e. (Z,23) € wx I,
7=0

where, as ¢ — 0, V¥ — ¥ pT — 0 and, up to a subsequence, u¥ — u* weakly in H}(w x I), with

W (Z, x3) = PF(Z)0p(x3), bemg ( ,o%) a kth eigenpair associated wzth the following bidimensional homo-
genized spectral problem: —0y(a 5Bg<p) =y, inw, ¢ € Hi(w), where the constant matriz (azﬁ) is the
homogenized matriz of the sequence {(as ags )} Conwversely, any eigenfunction iF = @pF0y is the weak limit

of a particular sequence of eigenfunctions associated with v¥.

2. Sketch of the proofs

The proof of Theorems 1.1 and 1.2 relies on a I'-convergence argument applied to a sequence of quadratic
functionals related to the energy associated with problem (5) for 6 = € and § = &7, respectively, by means
of the following result, presented in [2].

Lemma 2.1 Let A. : H. — H. be a sequence of densely defined self-adjoint operators where H. coincides
algebraically with a fized Hilbert space H endowed with a scalar product (-, ). such that c1|jul|® < (u,u): <
ca|lul|?, for suitable positive constants ci,co, and lim.(ue,v:). = (u,v) whenever u. — u and v — v in
H. Let G. : H — (—o00,400] be defined by G.(u) := (Acu,u)., if u € D(A), and G.(u) = 400,
otherwise. Assume further that the three following conditions hold: (i) Ge(u) > col|lul|?, for a suitable
constant co > 0; (i) If sup, G:(ue) < +00, then the sequence {uc} is strongly relatively compact in H;
(iii) G. T-converges to a certain functional G. Then, the limit functional G determines a unique closed
linear operator Ay : H — H with compact resolvent such that G(u) = (Apu,u), for all u € D(Ap).
Furthermore, the spectral problems associated with A. converge in the following sense: let (V¥ u¥) and
(vF, uF) be kth eigenpairs associated with the operators A. and A, respectively. Then, as e — 0, Vf — vk,
for every k € Ng. Moreover, up to a subsequence, {uf} converges strongly to eigenfunctions associated to
vk, Conversely, any eigenfunction u* is the strong limit of a particular sequence of eigenfunctions of A.
associated with v¥.

The idea of the proof of Theorem 1.1 is the following: since we are expecting the asymptotic behavior
mentioned in (7) for the shifted spectrum of — £3, instead of the energy defined in (4) for § = ¢, we
consider the functional E. : L?(w x I) — (—o00, +00], defined by

E.(v) = {fwxlazﬁ(x)ﬁav(x)agv(x) + %3l 5y0(2)|2 — L2 |u(z)[2dz, if v e H(w x I), (10)

400, otherwise.

The following result allows us, using a classical change of unknowns introduced in [6] (see also [1]), to
transform functional (10) in order to apply Lemma 2.1, obtaining the desired convergences.

Proposition 2.2 For fized € > 0, consider the functions u and v related by v(zx) = §5(Z)u(z), for a.e.
= (%,23) €Ewx I. Then v € H}(w x I) if and only if u € H} (w x I). Moreover, if v € H}(w x I),

/azﬁ(i‘)&lv(m)agv(x)—l—a“g'zigj)w%z(x) 'gg v (z)dz = /diﬁ(i)aau(x)agu(x)dx.
wxI wx I



Using Proposition 2.2, we get E.(v) = Ge(u), Ge(u) : L*(w x I) — (—00, +00] given by

G.(u) = { [ s 85 ()nu(z) pu(a) + L 25) @ (19su(@)]? = w?u(@)?) dz, i u e Hi(w x D),

400, otherwise.

Proposition 2.3 The sequence of functionals {G.} T'-converges, with respect to the strong topology of
L?(w x I), to the functional G : L*(w x I) — (—o0,+oc| defined by G(u) := W&Zﬁaago(i)aggp(i“) dz if
w(@,x3) = (T) O (x3), p € H}(w), and G(u) := +o0, otherwise.

Idea of the proof. Using the periodic homogenization result, (af ;) G-converges to (ah 3)- Consequently
(see [3, Thm 13.12]) the associated quadratic functional G.(p) = [ a5 30.009dT, ¢ € Hj(w), T-
converges, with respect to the strong topology of L?(w), to the functional G (i) := fw &Zﬁaagoaﬂgo dz. We
will now proceed in two steps.

Step 1. We prove that for any {u.} and u in L*(w x I) such that u. — w in L?(w x I), one has
G(u) < limiélfGE(uE).

Up to a subsequence (not relabeled), we may assume without loss of generality that
liminf. G (ue) = lime Ge(ue) < +00. Then {u.} C Hg(w x I) and sup, Ge(ue) < +00. Since u(Z, -) €
H(I), for a.e. T € w, and 72 is the first eigenvalue associated with the problem —0" = X0, in I, 0 € H}(I),
we have [;(|05uc]? — m%|uc|?) dag > 0, for a.e. T € w. Using the uniform ellipticity of ((wg)zafj)KiKs

and the strong convergence in L?(w x I) of {u.}, we get

/ |Onu.|? dz < C, / |O3uc)? de < Ce? + n? / luc|?dz < C, (11)

wxI wxI wx T

where C' and C are constants independent of . Consequently, sup, ||u.|| Hl(wx) < too and uc — u
weakly in Hl(w x I). The Ls.c. of the L2-norm with respect to the weak topology, together with (11),
implies that [, (|(93u|2 — 7r2\u|2) dxs < 0 for a.e. T € w. Since the opposite inequality has to be satisfied
as well, we conclude the existence of a function ¢ € H}(w) such that u(Z,z3) = ©(Z)6o(x3), for ae.
(Z,23) € w x I. Finally, using Fatou’s Lemma and the I'-convergence result mentioned in the beginning
of this proof, we obtain liminf. o G.(u:) > liminf._¢ fwx[ 5,500 u0pus dr > G(u).

Step 2. We prove that for any u € L?(w x I), there exists a sequence {u.} C L?(w x I) satisfying u. — u
in L?(w x I) and G(u) = lim. 0 Gc(u.).

Given u € L?(wx I), the only nontrivial case is when u(z, x3) = ¢(Z) o(z3), with ¢ € H}(w), otherwise,
considering Step 1, it’s enough to take u. = u.

By the I-convergence result mentioned before, we know that there exists a sequence {p.} C Hg(w)
converging in L?(w) to ¢ and such that lim. o fw 5,500 0 p- dT = fw dgﬂaagoaggo dZz. In order to obtain
the intended equality, it’s enough to define, for each & > 0, uc(Z, x3) := @< (Z) Oo(x3). O

On the proof of Theorem 1.1. We use Lemma 2.1 with H = L*(wxI) and (u,v). := [, (¥§)*uvdz.
For each ¢ > 0, G. is a nonnegative l.s.c. quadratic form in L?(w x I). Consequently, the associated

operator, A., is a self-adjoint operator in L?(w x I) endowed with the scalar product (-, ). (see [3,
Thm 12.13]). On the other hand, using Proposition 2.3, it’s easy to see that G. satisfies the hypotheses of

Lemma 2.1. Furthermore, representing by /¥ the k" eigenvalue associated with A., we have v* = \F — g
Having in mind the change of unknowns introduced in Proposition 2.2, Theorem 1.1 follows. (I

On the proof of Theorem 1.2. Replacing 1y by 9.0 and o by pe0, the steps of the proof of
Theorem 1.2 are similar to those of Theorem 1.1, provided we establish the convergence 1. o(Z/e) — 1
uniformly in w and the asymptotic expansion p. o = fig + &2 jiy + -+ + 2= g, + o(e2(1=7).
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We begin by proving that peo — fio > 0 and that all the others eigenvalues of problem (8) tend to
+00. By the Rayleigh’s formula, pic o := inf { [}, %8041#651/)—1—(133791/}2 dg: ¢ € H;E(Y), [l z2vy = 1}
Using (1) and ¥ = 1 as a test function, we conclude that (72 < p. o < fig. Since e,0 is a minimizer for
He,0, one gets || Vibe ol z2(yy — 0. Consequently, 1. o — 1 in H#(Y). Moreover, limsup,_, tte,0 < flo. On
the other hand, liminf, .o peo > liminf. .o [, azsm?92 o dy = fig. Therefore, e o — fig. Similarly, using
the Rayleigh’s formula for p.; and admitting that the latter is bounded, we are led to a contradiction,
since we would conclude that any minimizing sequence of eigenfunctions convergence, on the one hand to
the constant function 1)y = 1, on the other hand to a function having zero mean. So, except the first, all
the eigenvalues of problem (8) tend to +oo.

Since the coefficients ang are uniformly Lipschitz continuous in Y, {¢. o} is uniformly bounded in
H?(Y) (see, [4, Thm 8.8]). Due to the compact injection of H?(Y) in C°(Y'), we conclude that 1. () —
1 uniformly in Y. From the Y-periodicity of . o, we derive 1. o(Z/e) — 1 uniformly in w.

The rest of the proof is based on the following result (see [5]): Let L : H — H be a linear compact
self-adjoint operator in a Hilbert space H, and suppose that there exists a real A > 0 and a vector f € H,
f # 0, such that |Lf — Af|lg < 7, for a constat v > 0. Then there exists an eigenvalue A of L such that
X=X < AlIFIE

For the sake of simplicity we will stretch the proof only for ¢ = 1, the argument being easily gen-
eralized for ¢ > 1. Considering H = Li(Y) and setting & := 2077 b(y) = 7w2az3(y) and Ao :=
— 10, (aas(9)0s0) +b(7), ¢ € H4(Y), we apply the above result to Lg : L7, (Y) — L% (Y) such that Lzg =
¢, solution of Azp = g, to f= := Azths, 1z = o+EP1 +E%s, and to Az = (fio+&fi1) 1. Since Lefe—Aef= =
Ve — AeAztbe =: we, using (9) we easily obtain that ws = (£2[(b— jig)tha — junth1] — 8% f1 o) (fio +&fi1) ~* and
since figp > 0 we get, for a constant ¢ independent of &, ||wz|| g < £2c and, consequently, the existence of an
eigenvalue \: satisfying, for another constant ¢ independent of &, [A\z — (fig + &j11) | < &2c. We used the
fact that || Ase|| — fio > 0. Since all the eigenvalues of Lz tend to zero, except the first, which converges
to [Lal > 0, we conclude that, for & small enough, \z = pzo b and then |uzo — (fio + &j11)| < £2C, for C
still independent of &. This concludes the proof for i = 1. O
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