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Abstract

We study the asymptotic behavior of the spectrum of an elliptic operator with periodically oscillating coefficients,
in a thin domain, with vanishing Dirichlet conditions. Two cases are treated: the case where the periodicity of the
oscillations has the same order of thickness as the domain and the case where the oscillations have a frequency
much greater than the thickness of the domain. A physical motivation can be to understand the behavior of the
probability density associated to the wave function of a particle confined to a very thin domain, with periodically
varying characteristics. To cite this article: R. Ferreira, M.L. Mascarenhas, C. R. Acad. Sci. Paris, Ser. I ...
(2007).

Résumé

Ondes dans un milieu fin à caractéristiques périodiquement oscillantes. On étudie le comportement
asymptotique du spectre d’un problème elliptique à coefficients périodiques dans un domaine mince, à condition
de Dirichlet nulle. On analyse deux cas : le cas où la périodicité des oscillations est du même ordre que l’épaisseur
du domaine et le cas où la fréquence des oscillations est trés grande devant l’épaisseur. Une motivation physique
est de comprendre le comportement de la densité de probabilité associée à la fonction d’onde d’une particule dans
un domaine mince dont les propriétés oscillent fortement. Pour citer cet article : R. Ferreira, M.L. Mascarenhas,
C. R. Acad. Sci. Paris, Ser. I ... (2007).

Version française abrégée

Notre but c’est l’étude du spectre d’un problème elliptique à coefficients périodiques dans un domaine
de très petite épaisseur, en imposant des conditions de Dirichlet nulles au bord. Le domaine est de la
forme Ωδ := ω × δI où ω est un domaine borné de R2, I := (−1/2, 1/2) et δ est un petit paramètre
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d’épaisseur. Les oscillations supposées indépendantes de la variable l’épaisseur sont décrites par un autre
petit paramètre ε.

Une motivation physique est de comprendre le comportement de la densité de probabilité associée à la
fonction d’onde d’une particule dans un domaine mince dont les propriétés oscillent fortement.

On choisit les caractères α et β pour représenter les indices {1, 2} et on utilise la convention de Einstein
dans les indices répétés. On écrira x̄ au lieu de (x1, x2). Soit Y := (0, 1)2 et considérons la matrice
symétrique réelle, à coefficients Y -périodiques, A = (aij)16i,j63 ∈ [L∞(R2)]3×3, telle que pour certains ζ
et η dans R+, l’inégalité (1) est satisfaite pour tout ξ ∈ R3 et p.p. en x̄ ∈ R2. Pour des raisons techniques
on simplifie le problème en supposant que aα3 = 0 p.p. en x̄ ∈ R2. Pour chaque ε > 0 on définit
aεij(x̄) := aij

(
x̄
ε

)
et Aε := (aεij)16i,j63. Notre problème est alors l’étude du comportement asymptotique

de λδε qui satisfait (2), quand ε→ 0 et δ → 0.
Une fois que Ωδ est borné, le spectre σδε du problème (2) se réduit à la suite de valeurs propres

0 < λδ,0ε 6 λδ,1ε 6 · · · 6 λδ,iε 6 λδ,i+1
ε 6 · · ·, i ∈ N0. Si on fait l’épaisseur δ tendre vers zéro il est clair

que les valeurs propres tendent vers l’infini. On précise la caractérisation asymptotique du spectre dans
Théorème 1.1 pour le cas ε ≈ δ et dans Théorème 1.2 pour le cas ε� δ.

La preuve des résultats repose sur la notion de Γ-convergence. On utilise un changement de variables
classique pour réduire le problème à un domaine fixe. Après un changement d’échelles et de variable
fonctionnelle (voir Proposition 2.2), on applique des résultats d’homogénéisation liés à la convergence
spectrale (Lemme 2.1 et Proposition 2.3) pour obtenir la convergence désirés.

1. Introduction and Main results

Our aim is to study the asymptotic behavior of the spectrum of an elliptic problem with periodically
oscillating coefficients in a thin domain, with zero Dirichlet boundary conditions.

We consider the domain Ωδ := ω × δI, where ω is a bounded domain in R2, I := (−1/2, 1/2) and δ
is a small parameter of thickness. The oscillations, which we assume to be independent of the thickness
variable, are described by another small parameter ε. We study the case when ε has the same order of δ
and the case when ε goes to zero faster than δ.

A physical motivation can be to understand the behavior of the probability density associated to the
wave function of a particle confined to a very thin domain, with periodically varying characteristics.

In what follows the greek characters α and β take their values in the set {1, 2} and the Einstein
convention of summation over repeated indices is adopted. We will write often x̄ instead of (x1, x2). For
Y := (0, 1)2 let A = (aij)16i,j63 ∈ [L∞(R2)]3×3 be a real symmetric and Y -periodic matrix, satisfying,
for ζ and η in R+,

ζ‖ξ‖2 6 (A(x̄)ξ, ξ) 6 η‖ξ‖2, (1)

for all ξ ∈ R3 and for a.e. x̄ ∈ R2. For technical reasons we simplify the problem, assuming that aα3 = 0
a.e. in R2.

For each ε > 0, define aεij(x̄) := aij
(
x̄
ε

)
and Aε := (aεij)16i,j63. The problem under study is then the

asymptotic behavior of λδε, as ε→ 0 and δ → 0:

−div(Aε∇ṽδε) = λδε ṽ
δ
ε , in Ωδ, ṽδε ∈ H1

0 (Ωδ). (2)

Since Ωδ is bounded, the spectrum σδε of problem (2) is discrete and can be written as σδε := {λδ,iε ∈
R+ : i ∈ N0}, where 0 < λδ,0ε 6 λδ,1ε 6 · · · 6 λδ,iε 6 λδ,i+1

ε 6 · · ·. As the thickness of the domain goes to
zero (δ → 0), it is clear that all the eigenvalues go to infinity. A precise characterization of the asymptotic
behavior of σδε is given in Theorem 1.1 for the case ε ≈ δ, and in Theorem 1.2 for the case ε� δ.
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We will use the Γ-convergence as main tool. Consider the quadratic energy Ẽδε : L2(ω×δI) → (−∞,+∞]
associated with the self-adjoint operator −div(Aε∇·) from L2(ω × δI) into itself,

Ẽδε (ṽ) :=
{ ∫

ω×δI Aε(x̄)∇ṽ(x̃)∇ṽ(x̃) dx̃, if ṽ ∈ H1
0 (ω × δI),

+∞, otherwise.
(3)

As it is usual in the dimension reduction framework, the first step is to perform a rescaling and a
change of variables in order to transform problem (2) into an equivalent one defined in the fixed domain
ω × I. To each point x̃ = (x̄, x̃3) ∈ ω × δI we associate the point x = (x̄, x3) = (x̄, δ−1x̃3) ∈ ω × I and
we define v ∈ H1

0 (ω × I) by v(x) := ṽ(x̃), if ṽ ∈ H1
0 (ω × δI). Accordingly, we rescale the energy in (3)

dividing it by δ so that the new energy becomes Eδε : L2(ω × I) → (−∞,+∞],

Eδε (v) :=
{ ∫

ω×I a
ε
αβ(x̄)∂αv(x)∂βv(x) + aε

33(x̄)
δ2 |∂3v(x)|2 dx, if v ∈ H1

0 (ω × I),
+∞, otherwise,

(4)

where ∂i stands for ∂/∂xi, i = 1, 2, 3. The rescaled spectral problem is then

−div(Cδε ∇vδε) = λδε v
δ
ε , in ω × I, vδε ∈ H1

0 (ω × I), (5)

where Cδε := AεI
δ, being Iδ the 3 × 3 diagonal matrix diag(1, 1, 1/δ2). We stress that problems (2) and

(5) are equivalent.
Let (µ0, ψ0) be the normalized first eigenpair for the following periodic spectral problem:

−∂yα
(aαβ(ȳ)∂yβ

ψ) + a33(ȳ)π2ψ = µψ, in Y , ψ ∈ H1
#(Y ),

and consider the following bidimensional homogenized spectral problem:

−∂α(āhαβ∂βϕ) = νϕ, in ω, ϕ ∈ H1
0 (ω), (6)

where the constant matrix (āhαβ) is the homogenized matrix of the periodic sequence {(āεαβ)}, āεαβ(x̄) :=(
(ψε0)

2aεαβ
)
(x̄), with ψε0(x̄) := ψ0(x̄/ε). We recall that the eigenvalue µ0 is real, positive and simple and

the associated eigenfunction ψ0 is a strictly positive function which lies in H1
#(Y ) ∩ C0,s

# (Y ), for some
0 < s < 1 (see [4]). The next theorem characterizes the behavior of the spectrum σδε when δ ≈ ε.

Theorem 1.1 Let (λkε , v
k
ε ) be a kth eigenpair associated with problem (5) for δ = ε and let θ0 ∈ H1

0 (I)
be the normalized eigenfunction associated with the first eigenvalue, π2, for the problem −θ′′ = λθ, in I,
θ ∈ H1

0 (I), that is θ0(x3) :=
√

2 cos(πx3). Then,

λkε =
µ0

ε2
+ νkε , vkε (x̄, x3) = ψε0(x̄)u

k
ε(x̄, x3), for a.e. (x̄, x3) ∈ ω × I, (7)

where, as ε → 0, νkε → νk and, up to a subsequence, ukε ⇀ uk weakly in H1
0 (ω × I), with uk(x̄, x3) =

ϕk(x̄)θ0(x3), being (νk, ϕk) a kth eigenpair associated with (6). Conversely, any eigenfunction uk = ϕkθ0
is the weak limit of a particular sequence of eigenfunctions associated with νkε .

Before stating the theorem characterizing the behavior of the spectrum σδε when ε � δ, we introduce
some notation. Let δ = ετ , τ ∈ (0, 1), and let (µε,0, ψε,0) be the normalized first eigenpair for the problem

−ε2(τ−1)∂yα
(aαβ(ȳ)∂yβ

ψε) + a33(ȳ)π2ψε = µεψε, in Y , ψε ∈ H1
#(Y ), (8)

and, for j ∈ N0, define µ̌j :=
∫
Y
π2a33(ȳ)ψ̌j(ȳ) dȳ, where ψ̌0 ≡ 1 in Y and, for j > 1, ψ̌j are the solutions

of the recurrence problems in H1
#(Y )

−∂yα
(aαβ(ȳ)∂yβ

ψ̌j) = −a33(ȳ)π2ψ̌j−1 +
j−1∑
k=0

µ̌kψ̌j−1−k,

∫
Y

ψ̌j(ȳ) dȳ = 0. (9)
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Theorem 1.2 Suppose that aαβ are uniformly Lipschitz continuous in Y . Let (λ̌kε , v̌
k
ε ) be a kth eigenpair

associated with problem (5) for δ = ετ . Let i ∈ N be such that i−1
i < τ 6 i

i+1 and let θ0 be as in Thm 1.1.
Then, as ε→ 0, µε,0 → π2

∫
Y
a33(ȳ) dȳ = µ̌0, ψε,0(x̄/ε) → ψ̌0 uniformly in ω and

λ̌kε =
i∑

j=0

µ̌j
ε2[τ(j+1)−j] + ν̌kε + ρτε , v̌kε (x̄, x3) = ψε,0

( x̄
ε

)
ǔkε(x̄, x3), for a.e. (x̄, x3) ∈ ω × I,

where, as ε → 0, ν̌kε → ν̌k, ρτε → 0 and, up to a subsequence, ǔkε ⇀ ǔk weakly in H1
0 (ω × I), with

ǔk(x̄, x3) = ϕ̌k(x̄)θ0(x3), being (ν̌k, ϕ̌k) a kth eigenpair associated with the following bidimensional homo-
genized spectral problem: −∂α(ahαβ∂βϕ) = ν̌ϕ, in ω, ϕ ∈ H1

0 (ω), where the constant matrix (ahαβ) is the
homogenized matrix of the sequence {(aεαβ)}. Conversely, any eigenfunction ǔk = ϕ̌kθ0 is the weak limit
of a particular sequence of eigenfunctions associated with ν̌kε .

2. Sketch of the proofs

The proof of Theorems 1.1 and 1.2 relies on a Γ-convergence argument applied to a sequence of quadratic
functionals related to the energy associated with problem (5) for δ = ε and δ = ετ , respectively, by means
of the following result, presented in [2].

Lemma 2.1 Let Aε : Hε → Hε be a sequence of densely defined self-adjoint operators where Hε coincides
algebraically with a fixed Hilbert space H endowed with a scalar product (·, ·)ε such that c1‖u‖2 6 (u, u)ε 6
c2‖u‖2, for suitable positive constants c1, c2, and limε(uε, vε)ε = (u, v) whenever uε → u and vε → v in
H. Let Gε : H → (−∞,+∞] be defined by Gε(u) := (Aεu, u)ε, if u ∈ D(Aε), and Gε(u) := +∞,
otherwise. Assume further that the three following conditions hold: (i) Gε(u) > c0‖u‖2, for a suitable
constant c0 > 0; (ii) If supεGε(uε) < +∞, then the sequence {uε} is strongly relatively compact in H;
(iii) Gε Γ-converges to a certain functional G. Then, the limit functional G determines a unique closed
linear operator A0 : H → H with compact resolvent such that G(u) = (A0u, u), for all u ∈ D(A0).
Furthermore, the spectral problems associated with Aε converge in the following sense: let (νkε , u

k
ε) and

(νk, uk) be kth eigenpairs associated with the operators Aε and A, respectively. Then, as ε→ 0, νkε → νk,
for every k ∈ N0. Moreover, up to a subsequence, {ukε} converges strongly to eigenfunctions associated to
νk. Conversely, any eigenfunction uk is the strong limit of a particular sequence of eigenfunctions of Aε
associated with νkε .

The idea of the proof of Theorem 1.1 is the following: since we are expecting the asymptotic behavior
mentioned in (7) for the shifted spectrum σεε −

µ0
ε2 , instead of the energy defined in (4) for δ = ε, we

consider the functional Eε : L2(ω × I) → (−∞,+∞], defined by

Eε(v) :=
{ ∫

ω×I a
ε
αβ(x̄)∂αv(x)∂βv(x) + aε

33(x̄)
ε2 |∂3v(x)|2 − µ0

ε2 |v(x)|
2 dx, if v ∈ H1

0 (ω × I),
+∞, otherwise.

(10)

The following result allows us, using a classical change of unknowns introduced in [6] (see also [1]), to
transform functional (10) in order to apply Lemma 2.1, obtaining the desired convergences.

Proposition 2.2 For fixed ε > 0, consider the functions u and v related by v(x) = ψε0(x̄)u(x), for a.e.
x = (x̄, x3) ∈ ω × I. Then v ∈ H1

0 (ω × I) if and only if u ∈ H1
0 (ω × I). Moreover, if v ∈ H1

0 (ω × I),∫
ω×I

aεαβ(x̄)∂αv(x)∂βv(x) +
aε33(x̄)
ε2

π2v2(x)− µ0

ε2
v2(x) dx =

∫
ω×I

āεαβ(x̄)∂αu(x)∂βu(x) dx.
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Using Proposition 2.2, we get Eε(v) = Gε(u), Gε(u) : L2(ω × I) → (−∞,+∞] given by

Gε(u) :=

{∫
ω×I ā

ε
αβ(x̄)∂αu(x)∂βu(x) +

(
(ψε

0)2aε
33

)
(x̄)

ε2

(
|∂3u(x)|2 − π2|u(x)|2

)
dx, if u ∈ H1

0 (ω × I),
+∞, otherwise.

Proposition 2.3 The sequence of functionals {Gε} Γ-converges, with respect to the strong topology of
L2(ω × I), to the functional G : L2(ω × I) → (−∞,+∞] defined by G(u) :=

∫
ω
āhαβ∂αϕ(x̄)∂βϕ(x̄) dx̄ if

u(x̄, x3) = ϕ(x̄) θ0(x3), ϕ ∈ H1
0 (ω), and G(u) := +∞, otherwise.

Idea of the proof. Using the periodic homogenization result, (āεαβ) G-converges to (āhαβ). Consequently
(see [3, Thm 13.12]) the associated quadratic functional Gε(ϕ) :=

∫
ω
āεαβ∂αϕ∂βϕdx̄, ϕ ∈ H1

0 (ω), Γ-
converges, with respect to the strong topology of L2(ω), to the functional G(ϕ) :=

∫
ω
āhαβ∂αϕ∂βϕdx̄. We

will now proceed in two steps.
Step 1. We prove that for any {uε} and u in L2(ω × I) such that uε → u in L2(ω × I), one has

G(u) 6 lim inf
ε→0

Gε(uε).

Up to a subsequence (not relabeled), we may assume without loss of generality that
lim infεGε(uε) = limεGε(uε) < +∞. Then {uε} ⊂ H1

0 (ω × I) and supεGε(uε) < +∞. Since uε(x̄, · ) ∈
H1

0 (I), for a.e. x̄ ∈ ω, and π2 is the first eigenvalue associated with the problem −θ′′ = λθ, in I, θ ∈ H1
0 (I),

we have
∫
I
(|∂3uε|2 − π2|uε|2) dx3 > 0, for a.e. x̄ ∈ ω. Using the uniform ellipticity of

(
(ψε0)

2aεij
)
1≤i,j≤3

and the strong convergence in L2(ω × I) of {uε}, we get∫
ω×I

|∂αuε|2 dx 6 C,

∫
ω×I

|∂3uε|2 dx 6 C ε2 + π2

∫
ω×I

|uε|2 dx 6 C, (11)

where C and C are constants independent of ε. Consequently, supε ‖uε‖H1
0 (ω×I) < +∞ and uε ⇀ u

weakly in H1
0 (ω × I). The l.s.c. of the L2-norm with respect to the weak topology, together with (11),

implies that
∫
I

(
|∂3u|2 − π2|u|2

)
dx3 6 0 for a.e. x̄ ∈ ω. Since the opposite inequality has to be satisfied

as well, we conclude the existence of a function ϕ ∈ H1
0 (ω) such that u(x̄, x3) = ϕ(x̄) θ0(x3), for a.e.

(x̄, x3) ∈ ω × I. Finally, using Fatou’s Lemma and the Γ-convergence result mentioned in the beginning
of this proof, we obtain lim infε→0Gε(uε) > lim infε→0

∫
ω×I ā

ε
αβ∂αuε∂βuε dx > G(u).

Step 2. We prove that for any u ∈ L2(ω×I), there exists a sequence {uε} ⊂ L2(ω×I) satisfying uε → u
in L2(ω × I) and G(u) = limε→0Gε(uε).

Given u ∈ L2(ω×I), the only nontrivial case is when u(x̄, x3) = ϕ(x̄) θ0(x3), with ϕ ∈ H1
0 (ω), otherwise,

considering Step 1, it’s enough to take uε ≡ u.
By the Γ-convergence result mentioned before, we know that there exists a sequence {ϕε} ⊂ H1

0 (ω)
converging in L2(ω) to ϕ and such that limε→0

∫
ω
āεαβ∂αϕε∂βϕε dx̄ =

∫
ω
āhαβ∂αϕ∂βϕ dx̄. In order to obtain

the intended equality, it’s enough to define, for each ε > 0, uε(x̄, x3) := ϕε(x̄) θ0(x3). �

On the proof of Theorem 1.1. We use Lemma 2.1 withH = L2(ω×I) and (u, v)ε :=
∫
ω×I(ψ

ε
0)

2uv dx.
For each ε > 0, Gε is a nonnegative l.s.c. quadratic form in L2(ω × I). Consequently, the associated
operator, Aε, is a self-adjoint operator in L2(ω × I) endowed with the scalar product ( · , · )ε (see [3,
Thm 12.13]). On the other hand, using Proposition 2.3, it’s easy to see that Gε satisfies the hypotheses of
Lemma 2.1. Furthermore, representing by νkε the kth eigenvalue associated with Aε, we have νkε = λkε−

µ0
ε2 .

Having in mind the change of unknowns introduced in Proposition 2.2, Theorem 1.1 follows. �

On the proof of Theorem 1.2. Replacing ψ0 by ψε,0 and µ0 by µε,0, the steps of the proof of
Theorem 1.2 are similar to those of Theorem 1.1, provided we establish the convergence ψε,0(x̄/ε) → 1
uniformly in ω and the asymptotic expansion µε,0 = µ̌0 + ε2(1−τ)µ̌1 + · · ·+ ε2i(1−τ)µ̌i + o

(
ε2i(1−τ)

)
.
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We begin by proving that µε,0 → µ̌0 > 0 and that all the others eigenvalues of problem (8) tend to
+∞. By the Rayleigh’s formula, µε,0 := inf

{ ∫
Y

aαβ

ε2(1−τ) ∂αψ∂βψ+a33π
2ψ2 dȳ : ψ ∈ H1

#(Y ), ‖ψ‖L2(Y ) = 1
}
.

Using (1) and ψ = 1 as a test function, we conclude that ζπ2 6 µε,0 6 µ̌0. Since ψε,0 is a minimizer for
µε,0, one gets ‖∇ψε,0‖L2(Y ) → 0. Consequently, ψε,0 → 1 in H1

#(Y ). Moreover, lim supε→0 µε,0 6 µ̌0. On
the other hand, lim infε→0 µε,0 > lim infε→0

∫
Y
a33π

2ψ2
ε,0 dȳ = µ̌0. Therefore, µε,0 → µ̌0. Similarly, using

the Rayleigh’s formula for µε,1 and admitting that the latter is bounded, we are led to a contradiction,
since we would conclude that any minimizing sequence of eigenfunctions convergence, on the one hand to
the constant function ψ̌0 ≡ 1, on the other hand to a function having zero mean. So, except the first, all
the eigenvalues of problem (8) tend to +∞.

Since the coefficients aαβ are uniformly Lipschitz continuous in Y , {ψε,0} is uniformly bounded in
H2(Y ) (see, [4, Thm 8.8]). Due to the compact injection of H2(Y ) in C0(Y ), we conclude that ψε,0(ȳ) →
1 uniformly in Y . From the Y -periodicity of ψε,0, we derive ψε,0(x̄/ε) → 1 uniformly in ω.

The rest of the proof is based on the following result (see [5]): Let L : H → H be a linear compact
self-adjoint operator in a Hilbert space H, and suppose that there exists a real λ > 0 and a vector f ∈ H,
f 6= 0, such that ‖Lf − λf‖H 6 γ, for a constat γ > 0. Then there exists an eigenvalue λ̄ of L such that
|λ̄− λ| 6 γ‖f‖−1

H .
For the sake of simplicity we will stretch the proof only for i = 1, the argument being easily gen-

eralized for i > 1. Considering H = L2
#(Y ) and setting ε̄ := ε2(1−τ), b(ȳ) := π2a33(ȳ) and Aε̄ϕ :=

− 1
ε̄∂α(aαβ(ȳ)∂βϕ)+b(ȳ), ϕ ∈ H1

#(Y ), we apply the above result to Lε̄ : L2
#(Y ) → L2

#(Y ) such that Lε̄g =
ϕ, solution of Aε̄ϕ = g, to fε̄ := Aε̄ψε̄, ψε̄ := ψ̌0+ε̄ψ̌1+ε̄2ψ̌2, and to λε̄ = (µ̌0+ε̄µ̌1)−1. Since Lε̄fε̄−λε̄fε̄ =
ψε̄−λε̄Aε̄ψε̄ =: wε̄, using (9) we easily obtain that wε̄ =

(
ε̄2[(b− µ̌0)ψ̌2− µ̌1ψ̌1]− ε̄3µ̌1ψ̌2

)
(µ̌0+ ε̄µ̌1)−1 and

since µ̌0 > 0 we get, for a constant c independent of ε̄, ‖wε̄‖H 6 ε̄2c and, consequently, the existence of an
eigenvalue λ̄ε̄ satisfying, for another constant c independent of ε̄, |λ̄ε̄ − (µ̌0 + ε̄µ̌1)−1| 6 ε̄2c. We used the
fact that ‖Aε̄ψε̄‖ → µ̌0 > 0. Since all the eigenvalues of Lε̄ tend to zero, except the first, which converges
to µ̌−1

0 > 0, we conclude that, for ε̄ small enough, λ̄ε̄ = µε̄,0
−1 and then |µε̄,0 − (µ̌0 + ε̄µ̌1)| 6 ε̄2C, for C

still independent of ε̄. This concludes the proof for i = 1. �
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