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Abstract

In this paper we first obtain an expression for the probability density function of
the wrapped or circular Gamma distribution and then we show how it may be
seen, both for integer and non-integer shape parameter, as a mixture of truncated
Gamma distributions. Some other properties of the wrapped Gamma distribution
are studied and it is shown how this distribution and namely mixtures of these
distributions may be a much useful tool in modelling directional data in biology
and meteorology. Based on the results obtained, namely the ones concerning
mixtures, and on some properties of the distributions of the sum of independent
Gamma random variables, the wrapped versions of the distributions of such sums,
for both integer and non-integer shape parameters are derived. Also the wrapped
sum of independent generalized Laplace distributions is introduced as a partic-
ular case of a mixture of wrapped Gamma distributions. Among the particular
cases of the distributions introduced there are symmetrical, slightly skewed and
highly skewed wrapped distributions as well as the recently introduced wrapped
Exponential and Laplace distributions.

Keywords : mixtures, truncated Gamma distributions, circular data, circular distributions,
wrapped symmetrical and skew distributions.

1 Introduction

The wrapped Exponential and Laplace distributions have been recently introduced and
studied by Jammalamadaka and Kozubowski (2003, 2004) and their adequacy to model di-
rectional data in biology was shown. However, the wrapped or circular Gamma distribution
and associated distributions have never been adequately studied, although they may be even
better candidates to model directional data in several areas of research such as biology and
meteorology.

Although wrapping the Exponential distribution is equivalent to only truncate it at 2π,
wrapping the Gamma distribution places other interesting problems and opens interesting views.
In this paper, expressions for both the pdf (probability density function) and the cdf (cumu-
lative distribution function) of the wrapped Gamma distribution are obtained under much
manageable forms. A couple of alternative representations, based on mixtures, are obtained.
These representations show that for both integer and non-integer values of the shape parameter
the wrapped Gamma distribution may be seen as a mixture of Gamma distributions truncated
at 2π and they are thus much useful in obtaining manageable expressions for the cdf of the

1



wrapped Gamma distribution. These mixtures will be finite for integer values of the shape
parameter and infinite when the shape parameter assumes a non-integer value.

To establish the notation and nomenclature used, we will say that the r.v. (random variable)
X has a Gamma distribution with shape parameter r (> 0) and rate parameter λ (> 0) if its
pdf may be written as

fX(x) =
λr

Γ(r)
e−λx xr−1 , (x > 0) .

We will represent this fact by
X ∼ Γ(r, λ) ,

and we will use Γ(r, λ) to denote such distribution. If r is an integer we will call the Gamma
distribution an integer Gamma distribution.

We will also use
γ(r;λy) =

∫ y

0
λr e−λx xr−1 dx (1)

to denote the incomplete Gamma function and the notation

γ∗(r;λy) =
γ(r; λy)

Γ(r)
. (2)

With this notation, the cdf of the r.v. X ∼ Γ(r, λ) is given by

FX(x) = P (X ≤ x) = γ∗(r; λx) =
γ(r; λx)

Γ(r)

and the pdf of a Gamma distribution with shape parameter r and rate parameter λ, truncated
at b > 0, written as

f(x) =
λr

Γ(r) e−λx xr−1

γ∗(r;λb)
=

λr

γ(r; λb)
e−λx xr−1 .

Hereon, we will denote the fact that the r.v. X has a Gamma distribution with shape
parameter r and rate parameter λ, truncated at b > 0, by

X ∼ Γ
(
r, λ; [0, b)

)
,

and we will use Γ
(
r, λ; [0, b)

)
to denote such a distribution.

Yet, to shorten the notation, we will use: i) IN to denote the set of positive integers and
IN0 to denote the set of non-negative integers; ii) IR to denote the set of all reals, with IR+ for
the positive, IR+

0 for the non-negative, and IR−
0 for the non-positive reals.

2 The wrapped Gamma distribution

2.1 A first representation for the pdf and some properties of the distribution

Let

Φ(z, s, a) =
∞∑

k=0

zk

(a + k)s
, (3)
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where any term with a + k = 0 is excluded. The function Φ(z, s, a) is usually called Lerch’s
transcendental function and it is a generalization of both Riemann’s generalized Zeta function
and the Polylogarithm function. The generalized Riemann’s Zeta function is defined as

ξ(s, a) =
∞∑

k=0

1
(a + k)s

= Φ(1, s, a)

where any term with a + k = 0 is also excluded, while the Polylogarithm function is defined as

PLog(z, s) =
∞∑

k=1

zk

ks

=
1

Γ(s)

∫ 1

0

z (− log t)s−1

1− tz
dt = Φ(z, s, 0) .

(4)

Let X ∼ Γ(r, λ) and let
θ ≡ θ(X) = X mod 2π .

Then θ is a wrapped (around the circle) or circular Gamma r.v., that for t ∈ [0, 2π) has pdf

fθ(t) =
∞∑

k=0

fX(t + 2kπ)

=
λr

Γ(r)

∞∑

k=0

e−λ(t+2kπ) (t + 2kπ)r−1

=
λr

Γ(r)
e−λt (2π)r−1

∞∑

k=0

e−2λπk
(

t

2π
+ k

)r−1

=
λr

Γ(r)
e−λt (2π)r−1 Φ

(
e−2λπ, 1− r,

t

2π

)
.

(5)

We will denote the fact that the r.v. θ has a wrapped Gamma distribution with shape
parameter r and rate parameter λ, with the above pdf, by

θ ∼ WΓ(r, λ) .

The representation for the pdf of the wrapped Gamma distribution in (5) is rather conve-
nient since Lerch’s function is already well implemented in a number of software packages like
Mathematica (from Wolfram Research). However, it may present some problems in terms of
the determination of a manageable representation for the cdf.

Alternative representations of the pdf of the wrapped Gamma distribution may be obtained
directly from the series expression in (5), under the form of mixtures. These representations
will shed some more light on the intrinsic structure of the wrapped Gamma distribution and
will also enable us to obtain simple representations for the cdf. Details are shown in the next
subsection, where it is also shown that if the shape parameter r assumes integer values then
negative values of the rate parameter λ are allowed, producing mirrored distributions (around
the origin) of the ones with positive rate parameter.

Concerning the arbitrariness of the choice of the origin we should indeed rather write the
pdf of the WΓ(r, λ) distribution as

fθ(t) =
λr

Γ(r)
e−λ(t−a) (2π)r−1 Φ

(
e−2λπ, 1− r,

t− a

2π

)
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for t− a ∈ [0, 2π) or t ∈ [a, a + 2π), being a the origin. However, for the sake of simplicity, we
will use throughout this manuscript a = 0, thus using the notation in (5).

We should note that as either λ → 0 or r → ∞, the WΓ(r, λ) distribution tends to the
wrapped uniform distribution, with density

f(t) =
1
2π

, t ∈ [0, 2π) .

This fact may be analysed in Figures 2 and 3 and it is derived from the facts that

lim
r→+∞

Φ
(
e−2λπ, 1− r, t

2π

)

eλt Γ(r) (2λπ)−r = 1 (6)

and

lim
λ→0+

Φ
(
e−2λπ, 1− r, t

2π

)

Γ(r) (2λπ)−r = 1 , (7)

so that
lim

r→+∞ fθ(t) = lim
r→+∞

λr

Γ(r)
e−λt (2π)r−1 Φ

(
e−2λπ, 1− r,

t

2π

)
=

1
2π

and also
lim

λ→0+
fθ(t) = lim

λ→0+

λr

Γ(r)
e−λt (2π)r−1 Φ

(
e−2λπ, 1− r,

t

2π

)
=

1
2π

.

The rate of convergence of the limit in (6) is higher for smaller values of λ, while the rate
of convergence of the limit in (7) is somehow erratic for different values of r. See Figure 1.
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Figure 1. – Plots of the functions in (6) and (7), to illustrate the rates of
convergence.

The graphical aspects of the WΓ(r, λ) distribution are much variable, somehow even more
than for its linear counterpart. Contrary to what happens with the linear Gamma distribution,
with the WΓ(r, λ) distribution the lower point or antimode of the pdf is not always placed at
the origin (see Figures 2, 3 and 4).

The mode is, for sufficiently large λ and r > 1 (the largest r is, the largest λ has to be),
placed a little below t = r−1

λ . For 0 < r ≤ 1 it is placed exactly on the right of t = 0 and the
antimode on the left of t = 2π. For 1 < r ≤ 2 the antimode is placed on the right of t = 0. For
r = 2 the mode is at t = 1

λ − 2π
e2λπ−1

, while for r = 3 the value of t where the mode is placed
already has a very complicated expression,

t =
1
λ

+
2λπ

(
e2λπ − 1

)
−

√
4∑

i=0

(
4
i

)
(−1)i e2λπi + 4λ2π2

2∑
i=0

(−1)i+1

(
2
i

)
e2λπi

λ
2∑

i=0
(−1)i+1

(
2
i

)
e2λπi
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with the antimode at

t =
1
λ

+
2λπ

(
e2λπ − 1

)
+

√
4∑

i=0

(
4
i

)
(−1)i e2λπi + 4λ2π2

2∑
i=0

(−1)i+1

(
2
i

)
e2λπi

λ
2∑

i=0
(−1)i+1

(
2
i

)
e2λπi

.

The mode and the antimode are anyway, for any value of r and λ, at the values of t for
which d

dt fθ(t) does not exist or d
dt fθ(t) = 0 .
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Figure 2. – Three dimensional views of wrapped Gamma densities for λ = 2.8 and
increasing values of r. All plots have the origin placed at the same spot. In each
plot are marked the origin (O), the mode (M), the antimode (m) and the mean
direction, this one marked with a continuous line (for a definition of the mean
direction see section 3). (All plots on the same row have the same vertical scale
but plots in different rows have different vertical scales).

5



Since
d

dt
Φ

(
e−2λπ, 1− r,

t

2π

)
=

1
2π

Φ
(

e−2λπ, 2− r,
t

2π

)

as it is easy to derive from the definition of Lerch’s Phi function, the abscissas for the mode
and the antimode are the values of t ∈ [0, 2π) such that d

dtfθ(t) does not exist or

d

dt
fθ(t) = 0 ⇐⇒ Φ

(
e−2λπ, 1− r,

t

2π

)
=

r − 1
2λπ

Φ
(

e−2λπ, 2− r,
t

2π

)
.

For values of r ≤ 1 the mode is at the point t = 0, where d
dtf(t) is not defined.
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Figure 3. – Three-dimensional views of wrapped Gamma densities for r = 6.1 and
increasing values of λ. All plots have the origin placed at the same spot. In each
plot are marked the origin (O), the mode (M), the antimode (m) and the mean
direction, this one marked with a continuous line (for a definition of the mean
direction see section 3). All plots have the same vertical scale.
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As it happens with the wrapped Exponential distribution, also the integer wrapped Gamma
distribution is defined for λ < 0, with the pdf for λ < 0 yielding a symmetrical aspect (relative
to the origin) of the one it does have for positive λ. More precisely, we have the following
Theorem.

Theorem 1: For positive integer r, if

θ1 ∼ WΓ(r, λ) and θ2 ∼ WΓ(r,−λ)

then
fθ1

(t) = fθ2
(2π − t) or fθ2

(t) = fθ1
(2π − t) ,

that is, for positive integer r, wrapped Gama distributions with symmetric rate parameters
have pdf’s that are mirrored about the origin.

Proof : We may note that for positive integer r we may write the pdf of the linear Γ(r, λ)
distribution as

f(x; r, λ) =
λr

Γ(r)
e−λx xr−1

= − (−λ)r

Γ(r)
e−(−λ)(−x) (−x)r−1

= −f(−x; r,−λ)

what shows that for positive integer r, the symmetric of f(x; r, λ) with λ(> 0) replaced by −λ,
is a pdf on IR−, mirrored from f(x; r, λ).

Using this result we may easily show that for positive integer r, we have for the WΓ(r, λ)
distribution (with λ > 0),

fθ(2π − t; r,−λ) = fθ(t; r, λ) , ( t ∈ [0, 2π) )

since for t ∈ [0, 2π),

fθ(2π − t; r,−λ) =
−∞∑

k=−1

−f(2π − t + 2kπ; r,−λ) =
−∞∑

k=−1

−f(−t + 2π(k + 1); r,−λ)

=
−∞∑

k=0

−f(−t + 2πk; r,−λ) =
∞∑

k=0

−f(−t− 2πk; r,−λ)

=
∞∑

k=0

f(t + 2πk; r, λ) = fθ(t; r, λ) ,

where the equality from the row before the last to the last row is only valid for r ∈ IN .

The definition of Lerch’s Phi function in most packages, as it happens with the software
Mathematica, usually has this duality built in, so that if we implement the pdf of the WΓ(r, λ)
distribution through the use of Lerch’s Phi function, and if then we take, for r ∈ IN and λ > 0,
fθ(2π − t; r,−λ) we obtain the same values as for fθ(t; r, λ).

Also for wrapped or circular distributions the usual properties of mixtures hold. Namely:
i) if fi(t) (i = 0, 1, . . .) are pdf’s of wrapped distributions and if

∑n
i=0 pi = 1, with 0 < pi < 1

and where n may be either finite or infinite, then

f(t) =
n∑

i=0

pi fi(t)

is the pdf of a wrapped distribution;
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ii) if Φi(p) (i = 0, 1, . . .) are the c.f.’s (characteristic functions) of the wrapped distributions
with pdf’s fi(t) in i), then

Φ(p) =
n∑

i=0

pi Φi(p)

is the c.f. of the wrapped mixture distribution with pdf f(t) in i) and thus the cdf’s and
moments also mix.
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Figure 4. – Three-dimensional views of wrapped Gamma densities for different values
of λ and r. All plots have the origin placed at the same spot. In each plot are
marked the origin (O) and the mean direction (M) (for a definition of the mean
direction see section 3). Plots on the same row have the same vertical scale but
plots on different rows may have different vertical scales.

Mixtures of wrapped Gamma distributions are extremely flexible and are a powerful mod-
eling tool for circular data, adequate to model both symmetric and asymmetric circular data
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with more than one mode, since a mixture of k wrapped Gamma distributions may have from 1
to k modes. Some plots of densities of mixtures of wrapped Gamma distributions are displayed
in Figures 5, 6 and 7.

Linearized plots of the pdf’s may here be useful to better analyse the location and number
of modes, although the circular plots may be also quite elucidative.

In Figures 5 and 6 we may see how simple changes in the weight may dramatically affect
the aspect of the density of the mixture of two wrapped Gamma distributions, while in Figures
7 and 8 we may see how mixtures of wrapped Gamma distributions may exhibit multimodal
densities.
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Figure 5. – Three-dimensional views of the densities of the mixture of two wrapped
Gamma distributions, p∗WΓ(2.5, 14.1)+(1−p)∗WΓ(2.5, 4.5), for different values
of p. All plots have the origin placed at the same spot and all plots have the same
vertical scale.

2.2 Alternative representations for the pdf of the wrapped Gamma distri-
bution

The following two theorems establish two results which show how the wrapped Gamma
distribution may be seen as a mixture of truncated linear Gamma distributions both for integer
and non-integer r.

Theorem 2: For non-integer r the WΓ(r, λ) distribution is a mixture with weights

pi = γ∗(i + 1; 2λπ) (−1)i λr−i−1

Γ(r)
Γ(1− r + i)

Γ(1− r)
PLog

(
e−2λπ, i + 1− r

)
, i = 0, 1, . . . (8)

of infinitely many Γ(i + 1, λ; [0, 2π)) distributions (i = 0, 1, . . .) with a further Γ(r, λ; [0, 2π))
distribution with weight

p∗ = γ∗(r, 2λπ) . (9)
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Proof: Since for t ∈ [0, 2π) and k ≥ 1 we have
∣∣ t
2kπ

∣∣ < 1, we may write, for c 6∈ IN0,
(

1 +
t

2kπ

)c

= 1F0

(
−c;− t

2kπ

)
=

∞∑

i=0

Γ(−c + i)
Γ(−c)

(−1)i

i!

(
t

2kπ

)i

.

Then, given the uniform convergence of the series involved, we may write, directly from the
definition of fθ(t) and from (5),

fθ(t) =
λr

Γ(r)
e−λt

∞∑

k=0

e−2πλk (t + 2kπ)r−1

=
λr

Γ(r)
e−λt tr−1

+
λr

Γ(r)
e−λt

∞∑

k=1

e−2πλk
(

t

2kπ
+ 1

)r−1

(2kπ)r−1

=
λr

Γ(r)
e−λt tr−1 Γ(r)

γ(r; 2λπ)
γ(r; 2λπ)

Γ(r)

+
λr

Γ(r)
e−λt

∞∑

k=1

e−2πλk(2kπ)r−1
∞∑

i=0

(−1)i
(

t

2kπ

)i Γ(1− r + i)
Γ(1− r)

1
i!

=
λr

γ(r; 2λπ)
e−λt tr−1 Γ(r, 2λπ)

Γ(r)
+

∞∑

i=0

λi+1

γ(i + 1; 2λπ)
e−λt ti

γ(i + 1; 2λπ)
Γ(i + 1)

(−1)i λr−i−1

Γ(r)
Γ(1− r + i)

Γ(1− r)

∞∑

k=1

e−2πλk (2kπ)r−1−i

=
λr

γ(r; 2λπ)
e−λt tr−1

︸ ︷︷ ︸
pdf of Γ

(
r, λ; [0, 2π)

)
γ∗(r; 2λπ)︸ ︷︷ ︸

p∗

+
∞∑

i=0

λi+1

γ(i + 1; 2λπ)
e−λt ti

︸ ︷︷ ︸
pdf of Γ

(
i + 1, λ; [0, 2π)

)

γ∗(i + 1; 2λπ) (−1)i λr−i−1

Γ(r)
Γ(1− r + i)

Γ(1− r)
PLog

(
e−2λπ, i + 1− r

)

︸ ︷︷ ︸
pi

.

(10)
We should note that indeed for the weights pi in (8), and p∗ in (9),

∞∑

i=0

pi = 1− p∗ , or p∗ +
∞∑

i=0

pi = 1 .

For negative integer s the Lerch and Polylogarithm functions in (3) and (4) have simpler
finite representations, which are useful to develop. Such representations will be used to obtain
a finite mixture representation for the WΓ(r, λ) distribution for r ∈ IN .

We will define, for positive integers n and i, with 1 < i < n,

tn,i = (n− i + 1) tn−1,i−1 + i tn−1,i

with
tn,n = tn,1 = 1

and
tn,i = 0 for i > n or i < 0 .
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We may note that as a consequence we have, as it is really desirable,

tn,0 =

{
1 , n = 0

0 , n > 0
and tn,i = 0 for n < 0 .

Values of tn,i for n = 1, . . . , 10 (and 1 ≤ i ≤ n) are tabulated in Appendix A.
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Figure 6. – Three-dimensional views of the densities of the mixture of three wrapped
Gamma distributions, 3/7∗WΓ(2.8, 13.5)+2/7∗WΓ(2.8, 4.5)+2/7∗WΓ(2.8, r),
for different values of r. All plots have the origin placed at the same spot and all
plots have the same vertical scale.
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Then we may write, for positive integer n, and z ∈ IR

Φ∗(z, n) =
∞∑

k=0

zk kn =
∞∑

k=1

zk kn = Φ(z,−n, 0) = PLog(z,−n)

=

n∑
i=1

tn,i z
−i

(z−1 − 1)n+1 =

n∑
i=1

tn,i z
n−i+1

(1− z)n+1

(11)

and for n = 0

Φ∗(z, 0) =
∞∑

k=0

zk k0 = 1 +
∞∑

k=1

zk k0 = 1 + Φ(z, 0, 0) = 1 + PLog(z, 0)

=
z−1

z−1 − 1
=

1
1− z

,

so that we may write, for n ∈ IN0,

Φ∗(z, n) =
∞∑

k=0

zk kn =
tn,0 +

n∑
i=1

tn,i z
n+1−i

(1− z)n+1
. (12)
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Figure 7. – Three dimensional views of the density of a mixture of three wrapped
Gamma distributions: 1/3 ∗WΓ(−2.3, 3)+1/3 ∗WΓ(2, 7)+1/3 ∗WΓ(2.3, 3) and
linear plot of the same density. In each plot are marked the origin (O) and the
mean direction (M).
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Figure 8. – Three dimensional views of the density of a mixture of three wrapped
Gamma distributions: .2∗WΓ(−2.3, 2)+ .6∗WΓ(2, 7)+ .2∗WΓ(2.3, 2) and linear
plot of the same density. In each plot are marked the origin (O) and the mean
direction (M).

Theorem 3: For r ∈ IN the WΓ(r, λ) distribution is a mixture with weights

ph = γ∗(h + 1; 2λπ)
(2πλ)r−h−1

(r − h− 1)!
Φ∗

(
e−2λπ, r − h− 1

)
, h = 0, . . . , r − 1 (13)

of r distributions Γ
(
h + 1, λ, [0, 2π)

)
distributions, with h = 0, . . . , r − 1.

Proof : For r ∈ IN we may write

fθ(t) =
λr

Γ(r)
e−λt

∞∑

k=0

e−2λπk (t + 2πk)r−1

=
λr

Γ(r)
e−λt

∞∑

k=0

e−2λπk
r−1∑

h=0

(
r−1
h

)
th (2πk)r−1−h

=
r−1∑

h=0

λh+1

Γ(h + 1)
e−λt th

λr−h−1

(r − h− 1)!
(2π)r−1−h

∞∑

k=0

e−2λπk kr−1−h

=
r−1∑

h=0

λh+1

γ(h + 1; 2λπ)
e−λt th

︸ ︷︷ ︸
pdf of Γ

(
h + 1, λ; [0, 2π)

)
γ∗(h + 1; 2λπ)

(2πλ)r−h−1

(r − h− 1)!
Φ∗

(
e−2λπ, r − h− 1

)

︸ ︷︷ ︸
ph

(14)
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where
∑r−1

h=0 ph = 1, Φ∗(·, ·) is given by (12) above, and where, for non-negative integer h,

γ∗(h + 1; 2λπ) =
γ(h + 1; 2λπ)

Γ(h + 1)
= 1− e−2λπ

h∑

j=0

(2λπ)j

j!
.

For the particular case r = 1 we have the wrapped Exponential distribution of Jammala-
madaka and Kozubowski (2003, 2004).

We should note that the mixture expression obtained for non-integer r still holds for integer
r.

The mixture representations of the WΓ(r, λ) distribution are useful for a number of reasons.
Besides showing us an interesting result, they allow us to easily derive expressions for the cdf,
both for integer and non-integer r. Using the incomplete Gamma functions defined in (1) and
(2) and the mixture representation in (10) we may write the cdf of the WΓ(r, λ) distribution
for non-integer r as

Fθ(t) = p∗
γ(r; λt)

γ(r; 2πλ)
+

∞∑

i=0

pi
γ(i + 1;λt)

γ(i + 1; 2πλ)
(15)

for pi (i = 0, 1, . . .) given by (8) and p∗ given by (9), while for r ∈ IN we may write, from (14),
the cdf of the WΓ(r, λ) distribution as

Fθ(t) =
r−1∑

h=0

ph
γ(h + 1;λt)

γ(h + 1; 2πλ)
(16)

for ph (h = 0, . . . , r − 1) given in (13).

3 Trigonometric moments and related parameters

The c.f. (characteristic function) of the WΓ(r, λ) distribution is

φ(p) = λr(λ− ip)−r , p = ±1,±2, . . . ,

where i = (−1)1/2.
Using the fact that for a, b, r ∈ IR+ we may write

(a− ib)−r =
(
a2 + b2

)−r/2
eir arctan(b/a)

we have for λ > 0,

φ(p) = λr
(
λ2 + p2

)−r/2
eir arctan(p/λ)

= ρp eiµp

with
ρp = λr

(
λ2 + p2

)−r/2

and
µp = r arctan(p/λ) ,
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where arctan(·) is the usual inverse function of the tangent function, with counterdomain
]− π/2, π/2[. This way, the non-central trigonometric moments are

αp = ρp cos(µp) = λr
(
λ2 + p2

)−r/2 cos (r arctan(p/λ))

βp = ρp sin(µp) = λr
(
λ2 + p2

)−r/2 sin (r arctan(p/λ))

with
φ(p) = αp + i βp , p = ±1,±2, . . . ,

and the central trigonometric moments are given by

αp = ρp cos(µp − pµ1) = λr
(
λ2 + p2

)−r/2 cos (r arctan(p/λ)− pr arctan(1/λ))

βp = ρp sin(µp − pµ1) = λr
(
λ2 + p2

)−r/2 sin (r arctan(p/λ− pr arctan(1/λ)) .

The resultant length and mean direction are thus respectively

ρ = ρ1 = λr
(
λ2 + 1

)−r/2

and
µ1 = r arctan(1/λ) .

The circular variance is
V0 = 1− ρ = 1− λr

(
λ2 + 1

)−r/2

and the circular standard deviation is

σ0 =
√
−2 log ρ =

√
−r log

(
1 +

1
λ2

)
,

with the skewness and kurtosis not having any particularly interesting expressions, being just
defined through the usual expressions, respectively

γ0
1 = β2/V

3/2
0

and

γ0
2 =

α2 − ρ4

(1− ρ)2
.

For r ∈ IN and λ < 0 we have to use the fact that for a < 0, and b, r ∈ IR+, we may write

(a− ib)−r =
(
a2 + b2

)−r/2
eir(π+arctan(b/a))

so that in this case
φ(p) = λr

(
λ2 + p2

)−r/2
eir(π+arctan(p/λ))

with ρp being the same as for λ > 0 and

µp = r (π + arctan(p/λ))

with the concomitant changes in the mean direction and all other moments and parameters
depending on µp.

All these results confirm, for r = 1, the results from Jammalamadaka and Kozubowski (2003,
2004), except for the mean direction with λ < 0, where there seems to be a small mistake in
Jammalamadaka and Kozubowski (2003, 2004).
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4 The wrapped sum and linear combination of Gamma distri-
butions and the wrapped Generalized Integer Gamma distri-
bution

It may be shown that wrapped sums of independent Gamma distributions are particular
types of mixtures of wrapped Gamma distributions.

In fact both for integer and non-integer shape parameters, the sum of independent Gamma
distributions is a mixture of Gamma distributions. Thus its wrapped version is a mixture of
wrapped Gamma distributions. The same applies to the wrapped version of linear combinations
of independent Gamma distributions with all positive coefficients.

Let
Xi ∼ Γ(ri, λi) , i = 1, . . . , n

be n independent Gamma r.v.’s, and consider the r.v.

Z =
n∑

i=1

ai Xi , ai ∈ IR+, ∀i .

Then we may see the r.v. Z as the sum of n independent Gamma r.v.’s

Yi = ai Xi ∼ Γ(ri, µi)

where µi = λi/ai (> 0).
In the general case, Moschopoulos (1985) has shown that the distribution of Z is an infinite

mixture of Γ(r + k, µ) (k = 0, 1, . . .) distributions, where

r =
n∑

i=1

ri and µ = max
1≤i≤n

µi (17)

with weights

wk = δk

n∏

i=1

(
µi

µ

)ri

(k = 0, 1, . . .) (18)

where δ0 = 1 and for k = 1, 2, . . .

δk =
1
k

k∑

j=1

j γj δk−j (19)

with

γj =
1
j

n∑

i=1

ri

(
1− µi

µ

)j

, j = 1, 2, . . . . (20)

Thus the wrapped distribution of Z, that is, the distribution of the r.v.

θ(Z) = Z mod 2π

is an infinite mixture, with weights wk (k = 0, 1, . . .) of WΓ(r + k, µ) distributions, each one
of which is itself an infinite mixture of truncated Gamma distributions at 2π, unless r ∈ IN ,
in which case each of the WΓ(r + k, µ) (k = 0, 1, . . .) distributions is a finite mixture of r + k
truncated Gamma distributions.
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In the general case, that is, for ri ∈ IR+ (i = 1, . . . , n), we may write the pdf of θ(Z) as

fθ(Z)(t) =
∞∑

k=0

wk
µr+k

Γ(r + k)
e−µt (2π)r+k−1 Φ

(
e−2µπ, 1− r − k,

t

2π

)
(21)

with wk given by (18) through (20) above, and µ and r given by (17).
The corresponding cdf is then easy to derive from (21) above, using the incomplete Gamma

function and the mixture structure of the distribution. For non-integer r, using (15) as a
reference, it may be written as

Fθ(Z)(t) =
∞∑

k=0

wk

(
p∗k

γ(r + k; µt)
γ(r + k; 2πµ)

+
∞∑

i=0

pik
γ(i + 1; µt)

γ(i + 1; 2πµ)

)

with wk, r and µ defined as in (21) above and, from (9), with

p∗k = γ∗(r + k; 2µπ)

and, from (8), for i, k = 0, 1, . . .,

pik = γ∗(i + 1; 2µπ) (−1)i µr+k−i−1

Γ(r + k)
Γ(1− r − k + i)

Γ(1− r − k)
(2π)r+k−1−i PLog

(
e−2µπ, i + 1− r − k

)
,

while for integer r, taking (16) as a reference, we may write

Fθ(Z)(t) =
∞∑

k=0

wk

r+k−1∑

h=0

phk
γ(h + 1; µt)

γ(h + 1; 2πµ)

with, from (13), for h = 0, . . . , r + k− 1 and k = 0, 1, . . ., and taking Φ∗(·, ·) defined as in (11),

phk = γ∗(h + 1; 2µπ)
(2πµ)r+k−h−1

(r + k − h− 1)!
Φ∗

(
e−2µπ, r + k − h− 1

)
.

However, if all the ri’s are integer, the distribution of θ(Z) may be shown to have a finite
representation, since in this case the distribution of Z is what Coelho (1998) called a GIG
(Generalized Integer Gamma) distribution of depth n, with pdf

fY (y) = K
n∑

j=1

Pj(y) e−µj y

and cdf

FY (y) = 1−K
n∑

j=1

P ∗
j (y) e−µj y

where

K =
n∏

j=1

µ
rj

j , Pj(y) =
rj∑

k=1

cjk yk−1

and

P ∗
j (y) =

rj∑

k=1

cjk (k − 1)!
k−1∑

i=0

yi

i! µk−i
i

with

cj,rj =
1

(rj − 1)!

n∏

i=1
i6=j

(µi − µj)−ri , j = 1, . . . , n ,
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and

cj,rj−k =
1
k

k∑

i=1

(rj − k + i− 1)!
(rj − k − 1)!

R(i, j, n) cj,rj−(k−i) , (k = 1, . . . , rj − 1)
(j = 1, . . . , n)

where

R(i, j, n) =
n∑

k=1
k 6=j

rk (µj − µk)
−i (i = 1, . . . , rj − 1) ,

and where we assumed all µi (i = 1, . . . , n) to be different. In case 2 ≤ m ≤ n of them are
equal, we have to add the corresponding shape parameters, and then consider the n −m + 1
different rate parameters and corresponding shape parameters to obtain a GIG distribution of
depth n−m + 1.

The important point is that we may indeed look at the GIG distribution of Z as a mixture
of integer Gamma distributions, since we may write the pdf of Z as

fZ(z) = K
n∑

j=1

rj∑

k=1

cjk zk−1 e−µjz

=
n∑

j=1

rj∑

k=1

K

µk
j

Γ(k) cjk

︸ ︷︷ ︸
p∗

kj

µk
j

Γ(k)
e−µjz zk−1

what shows that it is a mixture of
∑n

j=1 rj integer Γ(k, µj) distributions with weights

p∗kj =
K

µk
j

Γ(k) cjk , k = 1, . . . , rj ; j = 1, . . . , n

with
∑n

j=1

∑rj

k=1 p∗kj = 1.

λ2 = 0.1 λ2 = 1.6 λ2 = 3

O O O

λ2 = 4.3 λ2 = 7.3 λ2 = 24.1

O O O

Figure 9. – Three-dimensional views of densities of wrapped GIG distributions of
depth 2 with shape parameters r1 = 2, r2 = 3 and rate parameters λ1 = 1.5 and
different values of λ2. All plots have the origin placed at the same spot and all
plots have the same vertical scale.
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As such, the wrapped GIG distribution of depth n is a mixture with weights p∗kj of
∑n

j=1 rj

integer WΓ(k, µj) distributions (k = 1, . . . , rj ; j = 1, . . . , n), its pdf being given by

fθ(Z)(t) =
n∑

j=1

rj∑

k=1

p∗kj

µk
j

Γ(k)
e−µjt (2π)k−1 Φ

(
e−2µjπ, 1− k,

t

2π

)

= K
n∑

j=1

rj∑

k=1

cjk e−µjt (2π)k−1 Φ
(

e−2µjπ, 1− k,
t

2π

)

or

fθ(Z)(t) = K
n∑

j=1

rj∑

k=1

Γ(k)
µk

j

cjk

k−1∑

h=0

ph

µh+1
j

Γ(h + 1)
e−µj t th

γ∗(h + 1; 2µjπ)

and the cdf by

Fθ(Z)(t) = K
n∑

j=1

rj∑

k=1

Γ(k)
µk

j

cjk

k−1∑

h=0

ph
γ(h + 1;µj t)
γ(h + 1; 2µjπ)

,

where ph (h = 0, . . . , k − 1) is given by (13), with λ replaced by µj and r replaced by k.
We may then also easily consider mixtures of wrapped GIG distributions and of wrapped

sums of Gammas.
On Figure 9 we may see the effect of the change in one of the rate parameters on the shape

of the density of wrapped GIG distributions of depth 2, while on Figure 10 we may see the
effect of the change in one of the shape parameters.

r1 = 1 r1 = 2 r1 = 4

O O O

Figure 10. – Three-dimensional views of densities of wrapped GIG distributions of
depth 2 with shape parameters λ1 = 1, λ2 = 24.1 and shape parameters r2 = 3
and different values of r1. All plots have the origin placed at the same spot and
all plots have the same vertical scale.

5 The wrapped sum of independent generalized Laplace distri-
butions or the wrapped difference of two sums of independent
Exponentials

One important particular type of mixture of wrapped Gamma distributions is the mixture of
two wrapped Exponential distributions, that is, two wrapped integer Gamma distributions both
with shape parameter equal to 1 and weights equal to 1/2 and symmetric rate parameters. Such
a distribution is a wrapped Laplace distribution (see Jammalamadaka and Kozubowski (2003,
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2004)). Indeed one way of looking at the linear Laplace distribution is to see it as the difference
of two independent Exponential distributions with the same rate parameter, what also turns
out to be a mixture with weights 1/2 of two Exponential distributions with symmetrical rate
parameters, one with support IR+

0 and the other with support IR−
0 .

Indeed we may even define the generalized linear Laplace distribution with rate parameters
λ1 and λ2, as the distribution with pdf

f(x) =





λ1
λ1+λ2

λ2 eλ2x , x ≤ 0
λ2

λ1+λ2
λ1 e−λ1x , x ≥ 0

=
λ1

λ1 + λ2
λ2 eλ2x I]−∞,0](x) +

λ2

λ1 + λ2
λ1 e−λ1x I[0,+∞[(x)

where

I[a,b[(x) =

{
1 if x ∈ [a, b[

0 if x 6∈ [a, b[

is the indicator function for the set [a, b[. This shows that the generalized Laplace distribution
may be seen as a mixture with weights λ2

λ1+λ2
and λ1

λ1+λ2
respectively of an Exponential distri-

bution with rate parameter λ1 with support IR+
0 and a ’negative’ Exponential distribution with

rate parameter λ2 with support IR−
0 . For λ1 = λ2 this distribution yields the usual Laplace

distribution.
When wrapping the generalized Laplace distribution the mixture structure and the weights

are kept, with the wrapped version of the generalized Laplace distribution with pdf

f(t) =
λ2

λ1 + λ2

λ1 e−λ1 t

1− e−2λ1π
− λ1

λ1 + λ2

λ2 eλ2 t

1− e2λ2π

=
λ2

λ1 + λ2

λ1 e−λ1 t

1− e−2λ1π
+

λ1

λ1 + λ2

(−λ2) eλ2 t

1− e2λ2π
,

a mixture with weights λ2
λ1+λ2

and λ1
λ1+λ2

respectively of a wrapped Exponential with rate λ1

and another wrapped Exponential distribution with rate −λ2.
The linear generalized Laplace distribution is quite simple and flexible since it may exhibit

both symmetrical and asymmetrical forms and its wrapped version was studied by Jammala-
madaka and Kozubowski (2003, 2004). However, these distributions have the limitation of
having a sharp top always placed at the origin. It would be interesting to be able to develop
somehow similar distributions, able to exhibit both symmetrical and asymmetrical forms but
which could have either sharp or smooth tops, not necessarily placed always at the origin,
namely when the distribution would assume an asymmetric form.

The answer to such a goal is the development of the wrapped sum of independent generalized
Laplace distributions. However, since another way to look at the linear Laplace distributions
is also as the difference of two independent Exponential distributions, exactly the Exponential
distributions that appear in the mixture structure, we may alternatively think of the wrapped
difference of two independent sums of independent Exponential distributions, which if each of
these two sums is the sum of an equal number of Exponential distributions, may then be seen
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as the sum of independent generalized Laplace distributions. Also in the case where the two
sums of independent Exponential distributions are sums of an equal number of distributions all
the formulation becomes a bit simpler, so this was our choice.

Let Z be a linear combination of n independent Exponential distributions, with all positive
coefficients, that is, let

Z =
n∑

i=1

ai Xi

where ai > 0 (i = 1, . . . , n) and Xi ∼ Exp(λi), so that

Z =
n∑

i=1

Yi

where Yi ∼ Exp(µi) with µi = λi/ai(> 0). Then the distribution of Z is just a GIG distribution
of depth n (see the previous section), with all shape parameters equal to 1 and rate parameters
µi (i = 1, . . . , n), which has pdf

fZ(z) = K
n∑

j=1

cj e−µjz

where

K =
n∏

j=1

µj and cj =
n∏

k=1
k 6=j

1
µj − µk

(j = 1, . . . , n) .

We will denote the fact that Z has this distribution by

Z ∼ SE(µj , j ∈ {1, . . . , n}) .

Let then
Z1 ∼ SE(µj , j ∈ {1, . . . , n}) and Z2 ∼ SE(νj , j ∈ {1, . . . , n})

be two independent r.v.s and let
W = Z1 − Z2 .

The pdf’s of Z1 and Z2 may then be respectively written as

fZ1
(z1) = K1

n∑

j=1

cj e−µjz1 and fZ2
(z2) = K2

n∑

j=1

dj e−νjz2

where

K1 =
n∏

j=1

µj , K2 =
n∏

j=1

νj

and, for j = 1, . . . , p,

cj =
n∏

k=1
k 6=j

1
µj − µk

, dj =
n∏

k=1
k 6=j

1
νj − νk

so that the p.d.f. of W will be given by

fW (w) =
∫ +∞

max(w,0)
K1K2




n∑

j=1

cj e−µj z1







n∑

j=1

dj e−νj(z1−w)


 dz1

= K1K2

n∑

j=1

n∑

k=1

eνkw cj dk

∫ +∞

max(z1,0)
e−(µj+νk)z1 dz1
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or,

fW (w) =





K1K2

n∑

j=1

H1j cj e−µj w w ≥ 0

K1K2

n∑

j=1

H2j dj eνj w w ≤ 0

= K1K2

n∑

j=1

H2j dj eνj w I]−∞,0](w) + K1K2

n∑

j=1

H1j cj e−µj w I[0,+∞[(w)

where

H1j =
n∑

h=1

dh

µj + νh
and H2j =

n∑

h=1

ch

µh + νj
.

Therefore, the wrapped version of this sum of independent generalized Laplace distributions or
difference of two sums of independent Exponentials, that is, the distribution of

θ(W ) = W mod 2π

is a mixture of 2n wrapped Exponentials, n of which are WΓ(µj , 1) distributions, with weights
K1K2 H1j cj (j = 1, . . . , n), and the other n are WΓ(−νj , 1) distributions, with weights
K1K2 H2j dj (j = 1, . . . , n), with pdf

fθ(W )(t) = K1K2

n∑

j=1

(
H1j cj

µj e−µj t

1− e−2µjπ + H2j dj
−νj eνj t

1− e2νjπ

)

and cdf

Fθ(W )(t) = K1K2

n∑

j=1

(
H1j cj

1− e−2µj t

1− e−2µjπ + H2j dj
1− e2νj t

1− e2νjπ

)
.

We will denote this distribution by WSL(µ1, . . . , µn; ν1, . . . , νn). For n = 1 this distribution
reduces to the wrapped generalized Laplace distribution.

This distribution has a symmetric shape if the set of rate parameters µj and the set of
rate parameters νj (j = 1, . . . , n) are the same, the order of the rate parameters µj and νj

(j = 1, . . . , n) in each set being irrelevant. We should also note that for the distribution above
all the µj are supposed to be different as well as all the νj , since this is what is required in the
GIG distribution, from which this distribution was derived. Two wrapped sums of indepen-
dent generalized Laplace distributions are symmetrical, relative to the origin if the two sets of
parameters µj and νJ are interchanged. Also, this distribution tends to the uniform distribu-
tion if at least one of the µj ’s and one of the νj ’s tend to zero. Both the sum of generalized
Laplace distributions and the GIG or the sum of independent Gammas are unimodal, both in
their linear and wrapped forms. However, mixtures of these distributions are a powerful tool
in modelling circular data, since a criterious choice of parameters may easily yield multimodal
distributions. The trigonometric moments for these distribution, and related parameters, may
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be easily obtained from the mixture structure and the results for the single wrapped Gamma
distribution.

In Figures 11 and 12 we may see some plots of densities of wrapped sums of generalized
Laplace distributions.

ν2 = 0.1 ν2 = 0.5 ν2 = 1.1

O O O

ν2 = 2.1 ν2 = 7.1 ν2 = 14.1

O O O

Figure 11. – Three-dimensional views of densities of WSL(2.9, 3.3; 4.5, ν2) for differ-
ent values of ν2. All plots have the origin placed at the same spot and all plots
have the same vertical scale.

a) b) c)

O O O

d) e) f)

O
O O

Figure 12. – Three-dimensional views of densities of:
a) WSL(2.9, 3.3, 1.1; 4.5, 3.5, 5.6), b) WSL(32.9, 33.3, 35.1; 4.5, 3.5, 5.6),
c) WSL(2.9, 3.3, 5.1; 34.5, 33.5, 35.6), d) WSL(1.9, 1.3, 1.1; 34.5, 33.5, 35.6),
e) WSL(1.9, 1.3, 1.1; 4.5, 3.5, 5.6), f) WSL(1.9, 1.3, 1.1; 1.25, 1.5, 1.6). All plots
have the origin placed at the same spot and all plots have the same vertical scale.
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6 The wrapped non-central Gamma distribution

We will say that the r.v. X has a non-central Gamma distribution with shape parameter
r, rate parameter λ and non-centrality parameter δ if the r.v. X has pdf

fX(x) =
λr

Γ(r)
e−λxxr−1 e−δ/2

0F1(r; λxδ/2)

=
∞∑

i=0

e−δ/2 (δ/2)i

i!
λr+i

Γ(r + i)
e−λx xr+i−1 ,

that is, if the distribution of X is a mixture with Poisson weights with parameter δ of infinitely
many Γ(r + i, λ) distributions (i = 0, 1, . . .).

This way, the wrapped form of the non-central Gamma distribution will be a mixture with
the same Poisson weights of infinitely many WΓ(r + i, λ) distributions (i = 0, 1, . . .), with pdf

fθ(t) = e−(λt+δ/2)
∞∑

i=0

(δ/2)i

i!
λr+i

Γ(r + i)
(2π)r+i−1 Φ

(
e−2λπ, 1− r − i,

t

2π

)

where
θ ≡ θ(X) = X mod 2π

and where, for non-integer r we may write

fθ(t) =
∞∑

j=0

e−δ/2 (δ/2)j

j!

(
p∗j

λr+j

γ(r + j; 2λπ)
e−λt tr+j−1 +

∞∑

i=0

pi,j
λi+1

γ(i + 1; 2λπ)
e−λt ti

)

= e−δ/2+λt
∞∑

j=0

(δ/2)j

j!

(
tr+j−1

Γ(r+j)
+

∞∑

i=0

ti(−1)i

Γ(i+1)
(2πλ)r+j−h−1

(r+j−h−1)!
Φ∗

(
e−2λπ, r+j−h−1

))

where
p∗j = γ∗(r + j, 2λπ) (22)

and

pi,j = γ∗(i + 1, 2λπ)(−1)i λ
r+j−i−1

Γ(r)
Γ(1− r − j + i)

Γ(1− r − j)
PLog

(
e−2λπ, i + 1− r − j

)
(23)

while for r ∈ IN ,

fθ(t) =
∞∑

j=0

e−δ/2(δ/2)j

j!

r−1∑

h=0

p∗h,j

λh+1

γ(h + 1, 2λπ)
e−λt th

= e−(δ/2+λt)
∞∑

j=0

(δ/2)j

j!

r−1∑

h=0

λh+1

Γ(h + 1)
(2λπ)r+j−h−1

(r + j − h− 1)!
Φ∗

(
e−2λπ, r + j − h− 1

)

where

p∗h,j = γ∗(h + 1, 2λπ)
(2λπ)r+j−h−1

(r + j − h− 1)!
Φ∗

(
e−2λπ, r + j − h− 1

)
. (24)

The corresponding cdf’s are given by

Fθ(t) =
∞∑

j=0

e−δ/2(δ/2)j

j!

(
p∗j

γ(r + j, λt)
γ(r + j, 2λπ)

+
∞∑

i=0

pi,j
γ(i + 1, λt)

γ(i + 1, 2λπ)

)
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for non-integer r, with pi,j (i = 0, 1, . . .) given by (23) and p∗j (j = 0, 1, . . .) given by (22), and

Fθ(t) =
∞∑

j=0

e−δ/2(δ/2)j

j!

r−1∑

h=0

p∗h,j

γ(h + 1, λt)
γ(h + 1, 2λπ)

for r ∈ IN , where p∗h,j (h = 0, . . . , r − 1; j = 0, 1, . . .) are given by (24).
We may note that, interestingly enough, this latter non-central distribution depends on r

only through the weights p∗h,j , while for non-integer r the non-central distribution has all of its
components but the first depending on r only through the weights pi,j , with the first component
being a function of r both through the weight p∗j and also through the distribution part itself.

We should also note that when δ →∞ the wrapped non-central Gamma distribution tends
to the wrapped Uniform distribution, since then the components in the mixture with higher
values for the shape parameter will have higher weights in the mixture, and as we saw in section
2, when the shape parameter tends to infinity the wrapped Gamma distribution tends to the
Uniform distribution. In Figure 13 we may see a few three-dimensional plots of densities of
wrapped non-central Gamma distributions, where this fact may be analyzed.

δ = 0.2 δ = 1.2 δ = 3.2

O O O

δ = 5.2 δ = 9.2 δ = 22.7

O O O

Figure 13. – Three-dimensional views of densities of non-central wrapped Gamma
densities with shape parameter r = 3, rate parameter λ = 1.9 and different values
of the non-centrality parameter δ. All plots have the origin placed at the same
spot and all plots have the same vertical scale.

7 Final remarks

Once unveiled the mixture structure of the wrapped Gamma distribution it became easy to
obtain expressions for its cdf and also once considered the mixture structure of the other linear
distributions considered, as the distribution of linear combinations of independent Gamma
distributions, the distribution of the sum of independent generalized Laplace distributions and
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the non-central Gamma distribution, it was easy to obtain expressions for both the pdf and cdf
of their wrapped versions.

The great advantage of the wrapped sum of generalized Laplace distributions is that these
distributions may exhibit both symmetrical and fairly asymmetrical shapes with either a sharp
or smooth top. The sharp top only occurs for n = 1, that is for the single generalized Laplace
distribution. Although these distributions are always unimodal, we may use mixtures of them
to obtain very flexible multimodal distributions.

The wrapped sum or linear combination of independent Gamma distributions, the wrapped
GIG distribution and the wrapped distribution of the sum of independent generalized Laplace
distributions are all very flexible distributions. However, they are all unimodal. Of course
when one needs to handle multimodal circular data we may think about using mixtures of
these distributions. However, then they may become a bit hard to handle from an estimation
point of view.

Mere mixtures of wrapped Gamma distributions seem to be quite a powerful tool, since
they may have from one to as many modes as the number of Gamma distributions in the
mixture. However, in cases where we need some degree of symmetry, the wrapped sum of
generalized Laplace distributions will be a distribution to consider. Of course one may use
mixtures of different distributions, as for example a mixture of a wrapped sum of generalized
Laplace distributions with a wrapped GIG distribution.

Modules programmed in Mathematica c© (from Wolfram Research, Inc.) to compute and
plot the pdf’s and cdf’s in this paper are available from the author.

Appendix A

n = 1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 156190 88234 14608 502 1

10 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1
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